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Let K be a convex body in the plane and let zeint K; a norm || ||z,
(not symmetric unless z is the center of symmetry of K) is defined by

l2llx,, = inf{A > 0|z —2zel(—2+K)}.

Using the (non-symmetric in general) distance function derived
from || ||z, it is possible to define the arc length of oriented arcs (see,
e. g., Golab [1]). For an oriented closed curve C let the length of C in
this metric be denoted by Lg, (C). Let bd K denote the boundary of K
in either of its two possible orientations.

Golab [1] and Hammer [4] conjectured that

(i) supmin Lg,(bdK) <9

K zeintK
and

(ii) Lg, (bd K) > 6 for all K and zeint K.

The first conjecture was recently established in [3]. The second,
however, while well known and easily proved in case K is centrally
symmetric with center z, seems not to have been settled so far. It is the
purpose of the present paper* to give an elementary solution of (ii) by
establishing the following

THEOREM. For every planar convex body K and every zeint K the
inequality Lg, (bdK) > 6 holds. Moreover, Lg, (bd K) = 6 if and only
if K i8¢ an affine-reqular hexagon and z its center.

Proof. We shall prove explicitly only the first assertion of the
theorem, since the second follows by inspection of the possible cases of
equality in different steps of the proof. The proof is elementary throughout,
but its length makes it desirable to split it into a number of stages.

* The research reported in it has been sponsored in part by the Air Force
Office of Scientific Research, OAR, under Grant AF EOAR 63-63 with the European
Office of Aerospace Research, United States Air Force.
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1. It is well known (see, e. g., Golab [1]) that if C, and C, are convex
curves having the same orientation and such that C, encloses C,, then
Lg,(C,) < Lg,(C,). It is also well known (see [2] for a list of references)
that for each convex curve there exists an affine-regular hexagon inscri-
bed into it (i. e., having all its vertices on the curve). Therefore, denoting
by H the boundary of any affine-regular hexagon inscribed into bd K,
we have Lg, (bd K) > Lg, (H). We shall prove the theorem by showing
that the last number is at least 6. Note that since H is centrally symmetric,
its length is independent of its orientation.

2. Let H* be a polygon with at most six sides, determined by support-
ing lines of K passing through the vertices of H. Then obviously
Lg, (H) > Lg,, (H). We shall show that Lg., (H) > 6.

3. If z is not inside H, then (in the notation of Fig. 1) the edges H,
and Hg have length at least 1 each, while the sum of the lengths of H,
and H; is at least 4. Thus the theorem is established in this case; in the
sequel we shall assume that z is inside H.

4. We shall have occasion to use the following easy exercise in
analytic geometry: In an (oblique) coordinate system let be given a point
(79, ¥o) such that z, > y, > 0; if the intercepts of a straight line through
(%o, o) are a >z, and b > y,, then the function (1/a)-+(1/b) is

(i) independent of a, provided z, = y,;

(i) monotonically decreasing for decreasing a, provided x, > ¥,.

Fig. 1

This fact shall be used repeatedly in the sequel, in assertions of the
type: “If a certain line is appropriately rotated about a certain point,
the sum of the lengths of certain segments will not increase”.

5. There exists a polygon P with at most five sides, containing all
the vertices of H, and such that Lg., (H) > Lp, (H). Indeed (see Fig. 2
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for the notation), if H* is changed by rotating its two sides L; and L,
about h; resp. hg until they both coincide with the line P; determined by
hs and hg, the sum o of the lengths of the 6 heavily drawn segments A,
(i. e. the length of H) can only decrease.

Thus in order to complete the proof of the theorem it is enough to
establish it for the special case of (possibly degenerated) pentagons P
with the properties: (i) One side of the pentagon contains that side of the
hexagon H which is opposite to the “sextant” of H which contains z;
(ii) each side of P contains a vertex of H. In the remaining part
of the proof we shall have to consider three cases, according to the
position of z (see Fig. 3, in which ¢, (resp. ¢;) is the midpoint of ¢
and h, (resp. hyg)).

&/ @5

Fig. 3 Fig. 4

6. First case. 2 belongs to the triangle denoted by I in Fig. 3. Then
(see Fig. 4) o does not increase if the lines P, and P, are rotated to the
new positions ¢, and @,, and if the lines P, and P, are omitted. This
yields instead of P a triangle T (bounded by @,, @5, and P;); an element-
ary computation shows that |4,|lrs+[44lr, =3 and [4,lzr.+
+||4;llr, = 3. This completes the proof in the first case.

7. Second case. z belongs to the triangle denoted by II in Fig. 3.
(Clearly a similar reasoning applies if 2 belongs to II*). Then o does not
increase if P, and P, are omitted, P, rotated to @, (see Fig. 5), and P,
is rotated about h, until in position, @, it meets the intersection of @,
with A;. Thus P is replaced by ‘a triangle T bounded by P;, @,, @s.
Then clearly ||4,llr: > 1, |4sellr: = 2, 1 4slr. = 1, |44l = 1, [|44llrs = 4
|Allz. = 4, and the proof of the second case is completed.
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Fig. 5

8. Third case. 2 belongs to the triangle denoted by III in Fig. 3.
Then, without increasing o, it is possible to rotate P, about k, until its
intersection with P, is on A, or its continuation. Similarly, P, may be
rotated about A, until it intersects P, on A4, or its extension. Next, again
without increasing o, P, and P, may be rotated about k, (resp. k,) in such
a way that they intersect P; on the continuation of 4, resp. 4;. Finally,
P, and P, may be again rotated (about h, resp. ;) until they intersect .-

(Lw,y?
4 1+a-a?

P

Fig. 6 Fig. 7

the new positions of P, resp. P, on A, resp. A, or their extensions. Thus
we see that in the present case o is minimized by a configuration of the
type represented in Fig. 6, for which P,, P; and 4, or its extension are
concurrent, and the same applies to P,, P, and 4,, to Py, P, and 4,,
and to P,, P; and A;.
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Now we consider, within this class of pentagons, the pentagon P*
obtained from P by moving z to 2*, where z* is the intersection of the
vertical line passing through the center of H and the horizontal line
through 2. Clearly, this transition leaves |4;||+|4¢/| unchanged, and it
does not increase ||4,||4]|4,]|; it is easily checked that if z # 2* the last
sum decreases. Also, it is not hard to compute that ||A4,||+ |44 does not
increase. Thus it is sufficient to consider laterally symmetric configura-
tions. Now we introduce an orthogonal coordinate system (z, y) in which
2* = (0, a) and the vertices h; of H have coordinates as indicated in
Fig. 7. (Note that 0 < a < §.) Then the coordinates of points which
determine ||A4;||p.. are easily computed (they are indicated in Fig. 7),
and we have

¢
1 2 1+a—a?
== i nz.=2
o ;IIAJIP, {1+a+2+a—a2+1—a—a2+a3}

6 —8a -+ 3a’
2—3a—a’+3a*—a*’

In view of the positivity of the denominator for the values of a
considered, we have ¢ > 6 if and only if

6 —8a-+3a’ > 3(2—3a—a’+3a*—a?),
which simplifies to
3a*—9a’+6a’+a = 0.

Writing the left hand side in the form a{3a(2—a)(1—a)+1} we see
that it is indeed non-negative for 0 < a < 2/3, and equals zero if and
only if @ = 0.

This completes the proof of the theorem.
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