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On infinite systems of differential equations
with deviated argument II

by BoGpAN RzEPECKI (Poznan)

Abstract. The aim of this paper is to indicate some effects caused by the deviated
argument in infinite systems of differential equations. We give theorems on averaging
and approximating by finite systems for the infinite system

zi(l) = fk(ts 2y (1), @y (hy1 (1) 5 21 (h1p (0), ..
@3 (8)s Ta(hgy (1)) 5 Ta(Rge (8)) s -,

In [10] there is a discussion of the existence and uniqueness of the
solution for infinite system of differential equations with deviated ar-
gument. The purpose of this paper is to point out some other effects
which the deviated argument has on infinite systems of differential equa--
tions.

We shall consider infinite system of differential equations
(I) (1) = fk(t; (1), "Dl(hu(t))’ $1(h12(t))a cee3
Z5(1), mz(hn(t))’ wz(hza(t))y cen)

----------------

(II) 2,(0) =a (b =1,2,...).

We shall study the averaging of (I) and its aproximation by finite:
systems.

0. Let s denote the space of all sequeneces of real numbers with the.
usual metrics. The sets 8; = S X8 X ..., 8§, = [6, a]x s, are considered
with the “product” metrics.
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Let @ = (i, £) € s,, where & = (u,) € 8, ¥, = (u;,) €s. A function f:
8§,—( — oo, co) is continuous at the point @ if and only if for every ¢ > 0
a number > 0 and natural numbers N,, N,, ..., N exist such that

|f(2; 11y Urzy -3 )—f(iy Wyry Ungy ooej---) < &y

whenever |t—i| < n, |y —Uyl<n for ¢ =1,2,..., N, 6 =1,..., M.
Let |||l be a norm in C[0, a]. In the vector space C, = C[0, a] X
x C[0, a] X ... define a sequence (p,) of seminorms p,(9) = |g,|, where,

9 = (915 92y -..). Then (cf. [1]) the functional [|[-]||, defined by
y“ o gl
— 2 n——‘—‘~
Hgillo & 14 lgal

is a paranorm in C,. It is known that the space C, equipped with this
paranorm is a By-space. Let C* = {(#,, @;, ...) € Cy: sup|lz,|| < oo}. Then
nz=1
the vector space C® equipped with the norm
gl =sup{ligll: » =1,2,...} (9 = (g1) Jay -+-))

is a Banach space.

1. In this part we shall give theorems for the aproximation of a
solution of the initial-value problem (I)-(II) by solutions of some finite
systems.

‘We shall consider the initial-value problem (I)-(II) and the following
system of differential equations:

(L) (1) = f, (t; Y1(%), yl(hll(t))’ "Jl(hu(t))’ cend

oooooooooooooooooo

Y 0y Yo (Pt )y Y Bz B}y - -5

0 0 0 .
Tm41y Tmgry Tmgrg s o o o v 0 v - ’

0 0 0 .
m,.n_‘_z, wm+2’ wm+2, -------- 9

with the initial conditions

(IL,) n0)=o (1=1,2,...,m)
and
y;(0) =] for j =m+1,m+2,...
We shall give conditions for the right-hand sides of (I) by means
of which we can reduce the consideration of (I) to the finite system (L,,).

This problem for infinite systems without deviated argument was con-
sidered by K. P. Persidski [8], [9] and expanded in [12], [2], [7].
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In this part we assume that f, (¢, &) (k =1, 2,...) is’'a real funetion
defined for (7, ) € s, and &;;(¢) (k,j = 1,2,...) is a function defined for
t € [0, a] and takes its values in [0, a].

We introduce

ASSUMPTION (A). Suppose that
1° there exists a constant q, > 0 such thai

fe O <q (k=1,2,..)
for every t [0, al, &€ sy,
2° (q)—>0 as k— oo,
30 there exists a bounded function a: [0, a]—[0, o) such that
\fie(ty &) —Fi(t, E) < a(t)sup {juy; — %l 4, j =1,2,...}
for every k = 1,2, ..., te[0,a], £ = (u,), & = (%,) €5,, where u; = (),
ﬁ, - (ﬁfﬂ.) € 8.

ASSUMPTION. (B). Let m denote a fized natural number. Suppose that

1° the functions hy, ©t =1,2,...,m, j = 1,2, ..., are continuous and
Sulfil the inequality hy;(t) <t for every te [0, a],

20 the functions f;, © =1,2,..., m are continuous.

THEOREM 1. Let assumption (A) be satisfied. Then for any &> 0 there
exists a natural number m, such that if for m > m, assumption (B) is satisfied
and problems (I)—(II), (I,)-(IL,) have the solutions ® = (zy, %y, ...) and
y™ = (Y159 Yms wgr&la mgu-i-z’ -+.)y respectively, then

sup max |z; () —y,; ()] < C-¢,
o<i<a 1<i<m
a
where C = (a-c,exp(a-c,)+1) fa(t)dt, ¢, = sup{a(t): t [0, al} and
. 0. .
SUP [Ty () — Byl < e for j=1,2,...
<i<a ‘

Proof. Let m be a fixed number and let ¥ = 1,2, ..., m and t € [0, a].

Let us write ‘

I.(%) = lfk(t§ AR ml(hu(t)), ceeiens Ty (), mm(hm(t)); cee)

0 0 a m0 0 .
$m+1,.’ﬂ,m+1, 10y $m+2,56m+2, sy oo-)

=it 910, 9B @)y o5 -5 Y (®)s Y (Ba O) 5 -

0 0 . p0 0 .
$m+11wm+l’ coey wm+2’wm+2’ srey c-o)l’

and
I (1) = |fk(t; @y (¢), 931(h1i(t))r cees @a(t), a’z(hzi(t))a cee) )“
'—fk(t; Z1(t), wl(hu(t))a ceiyeeei Tpl), wm(hml(t))? vee)

0 0 . 0 0 .
Tm+1s Tmiry 03 Pmg2y Tmgzy o) ---)I'

3 — Annales Polonici Mathematici XXXIV,3
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It is easy to prove that

¢
(1) 0 (0) — ¥4 ()] < [ (L14(8) + Li (5)) ds
and 0
1, (%) < a(t)sup{|z; () — y; (0}, | @o(hy (1) — . (hy(t) |:
i=1,2,...,m,j=1,2,..},
10 (8) < a () Sup( %45 (8) — Tyl s | Tmss (B, (B) — @msst 4,5 =1, 2, ...}
It is obvious thaﬁ

:
}wj(t)—m‘}léﬂf,-(s; 1(8)y @y (h11(8))y .+ ...)lds for j =1,2,...

and therefore limsup {|a;(t)—}: t e tO, a]} = 0. Then, for every £> 0
j—o0

a number m, exists such that

(2) Sup {|&m i (8) —2m il te[0,al}<e (1 =1,2,...)

for m > m,.
Fix &> 0. By (2)

s“p{lmmﬁ(t)_wgwﬂa |-”-”m+i(hm+i.j-(t))—w?n+ii: iy J =1,2, } <e&
for m = m, and t € [0, a]. Consequently
(3) Iy <e-aft) (te[0,a))

for ¥ =1,2,...,m, where m > m,.
Let t € [0, a]. By (1) it follows that

. Ry5(¢)
| B (hig(®) — YRy )| < [ (Tui(8) — L (8)) dis

¢
< [ (T (s) = Ioe(s)) ds

for k =1,2,...,m and j =1, 2,... From this it follows that
¢

Li(t) < a(®)sup{ [ (1:(8) + Ipe(s))ds: ¢ = 1,2, ..., m}
0
for k =1, 2, ..., m. Inequality (3) implies that

¢
sup{f(Ih-(s)-I-Iﬁ(s))ds: 1 =1,2,..., 'm} < c,as+

[

4
+ [oup{l(s): i =1,2,...,m}ds
0
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for m > m,, and hence we have .

t
sup{I,,(t): k =1,2, ...,m}<ol(clq,s+ [sup{Ly(s): & =1, 2, ...,wi»}ds)
0

for m = m,. Hence, applying Gronwall’s lemma, we have
(4) sup{l,.(1): k =1,2,...,m} < cjacexp(ec,a)

for m =>m,, te[0,a]l.
By (1), (3) and (4), we get

2 (8) — 9 (0] < c1a(e,a-exp(e,a) +1) e

for te[0,a] and k£ =1,2,..., m, where m > m,. This ends the proof.

COROLLARY 1. Let assumptwns (A) and (B) for m =1, 2, ... be satisfied
and let problems (I)—(1I), (I,,)—~(1L,,) kave the solutions x and y‘"‘) respectwely
Then |||z —y™)|||,—0 as m— oo, and, moreover, if z, Y™ e C®'(m =1, 2,...),
then also |||z —y™)|||—>0 as m—>oco.

Now we study problems (I,)-(II,) in the case where aj =0 for
j=m+1,m+2,...

AssumpTiON (C). Suppose that ‘

19 the function hy; (i, § =1,2,...) i8 continuous and fulfils the ine-
quality h;(t) <t for every te Lo, a],

20 the function f, (k = 1,2,...) 18 continuous,

30 there exists an integrable fumction B: [0, a]—>[0, co) such that

i, OI<B®) (b =1,2;..)

for every t € [0, a], where 6 denotes the zero element- of the space sy,

4° there exists a bounded fumetion a: [0, a]—>[0 co) and the number
sequence (&), (64)—>0 as m— oo, such that ’

|fe(®y Uyy onny Uy, um"u’m+1y~--)_fk(t, Wgpyrowiy Um_1y Uy Uy o <)l
< a(t)smsup{lu"—ﬁﬂlz j =m,m+1, ey t = 1, Ly ...}

Jor every t € [0,8], k =1,2,... and %y, Uy, .. € 8 Uy, Upyyy, +-- €S, where
Ui = (um+j,n)1 Upyj = (am-kj,n) i=01, 2

THEOREM 2. Let assumption (C) be satwfwd a'q,d M = sup{z}|:
k=1,2,...} < oco. Assume, moreover, that problem (I,,)— (II,,,) (m=1,2,. ),
wheréx} = 0 forj = m-+1, m+2, ..., has the solution Y™ = (Y1 Yom, -
ymm7 07 07 "')'

Then there exists a solution & = (@y, @y, ...) of problem (I)~(II) such
that o o '

im ¥, (1) =2, () wniformly on [0,a]
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for & 51,2,...; this solution consists of uniformly bounded and - equi-
continuous functions on the interval [0, a]. Co
Proof. Let # = (,, 2, ...) € C* be a solution of (I)~(II). Put g¢(f)
= sug[lmi(t)l, |@; (kg @))|: 4 § =1,2,...} and ¢, =sup{a(?): te[0,al}
¢, = [B(t)dt. We have
’ ¢
|wm|1m+afamww@+j$wws qufmwa+%

1

for te[0,a), & <1 and ¢ =1,2,... This implies
mn<M+mfmwa+% (t € [0, a));
0

we infer from Gronwa]l’s lenu}la; that g(f) < (M ;kcz)exp(cla) forte [bn\a]-
From this it follows that B

l@; () — @ (22)] < ((M+02)019XP(010') +02) [ty —1,! .
for every t,,%,€[0;a] and ¢+ =1,2,...
Let (m,) be a number sequence such that limm, = 4 co. Denote by

f—>00

Y, = Yimys +++r Ymomy» 0, 0, ...) the solution of problems (I, )- (II
It is obvious that

(0) 1Y km, || < (M +-¢5) exp (e, a)
and
(6) W sy, (81) — Yiem,, (82)| < ((M +- €5) €,0XD (0, 0) + 6o |t, — 1]

for every k, m» =1,2,... and ?,, {,€[0,a]. So we see that the. . family
{Ym,: » =1,2,...} consists of functions uniformly bounded and .equi-
contmuous thus we can apply the Arzela theorem.

Fix an index k. Repeating the argumentation of [8] (see also [4], [9]),
we deduce that the sequence

Yimys Yemgy «+ vy Ykmys <+
contains a convergent subsequence (z,,), where

_ ¢
zlm(t) = a?‘g'l‘ ffk('g; 21.(8), zln(h;l(s))a zln(h12(s))7 oo

22 (8) s Zai (R22(8)) -5 ...} dse.
Let

limz,, () = 2,(t) uniformly on [0, a].

n—-o0

Obviously functions z, (» =1,2,...) satlsfy mequa,htles -(5) and (6). We
now prove that the funetions z,, » =1, 2, ..., satisfy problem (I)-(II).
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Xl

W;ite
I = filts 210)s 2 (Bar (D) < o5 220 (0); 2o (Rna(B)5 -5 o) =
—fi(ts 2(®), 22 (R (D) +205 22(0), 2a{Bea (D)5 -5 +0)s
Iy(1) = filts 21a(8), 20 {Baa (D) - o5 20 (1), 22 (Raa (@] 005 ... —
_fk(ti 21(8)y 21 (s (D)5 ooe5 - 05 2(0), 7 (Rn (D)) o2 o5
Gt () Zyam (Mgnn (D) o005 Zipan(®)y oo ),
In(t) = filt; 22(0), 22 (s (@) <o -o5 200, 2 (R ()5 <o
21 By Zien,nPpn O -5 2z () oonjend) —
—fi(ts 210, 20z (D), - -05 2a(8), 22 (Bea (D) -5 -0
and™

h(0) = sup {2(0) — 2 (O [ (g 8)) — 2aa By (0)) |5 & = T2, 042, .,
i=1,2,..}.

Observe that
h(t) < 2(M +e¢,)exp(c,a) for te[0,a].

So we get

(7) Hao (B)] < a6 h(2) < 2084, 6, (M +¢;) exp (e, a)

for t €.[0, a]. Let n > 0. From (7) it follows that there exists a natural
number ¢ such that {I,,(8)] < 27 'y for ¢ [0, a). We know that |z, — 2l
-0 a8 n—>o0; thus for 7 there exists a matural number N such that

14 (8)] < ey sup {[2;(2) — 24, (81, | 25 (i (2)) — 24 (g (t))|=
1=1,2,...,¢q,§ =1,2, ] <27y

for n > N and t € [0, a). So we have

]ftl(s)ds} < f“I,q(s)+12q(s)| ds < a7

f(\)r'__.éir:ery te[0,a] and # > N. Thus

t
xy + ffk(s; z1(3)7z1(h11(s))a ceny 22(8),zz(h21(8)), ceed --~)d8
¢
zlim(mg+ J F(85 2n(8)s 21n (Baa (), -5 - ) d8) = 2, (0)

for te[0,a] and k¥ = 1,2, ... This ends the proof of the theorem.
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COROLLARY 2. Let the assumption of Theorem 2 be satisfied. Then
1z —y™|||—-0 as m—>oco.

2. In this section we study averaging in the infinite system
(+) @ (8) = eFy(t, 2, (1), @,(2),...) (b =1,2,...),

where ¢ > 0 is a small parameter. Let

T
Fu(z) =lim T [ Fy(t, )@ (k
T'—~o0 0

1,2,...)

and let an averaged system with (+) have the form:
(++) X;c(t) =8'Fok(xl(t)rxa(t)a'“) (k=1,2,..).

The averaging method for a differential equation has been given by
Bogolubov in [3]. The theorem of Bogolubov has been generalized in
many directions and has a large and extensive bibliography (see e.g.
[11],°[4]). I. I. Gikhman [5] proved that the Bogolubov Principle can
be obtained as a corollary of a certain theorem on continuous dependence
of a solution of the equation z’ = f(¢, #, 1) on parameter 4. In [13] and
[2] the results of Gikhman were generalized to a countable system of
differential equations. The theorems given below are obtained by a gen-
eralization of a method of Larinov and Filatov ([6], [4]).

AssuMPTION (D). Suppose that the functions F: [0, 0o) x 8—( — oo, o0),
k=1,2,..., are such that

10 there exists a bounded function y: [0, oo)—>[0, co) such that
|B (¢, 2) — Fy(t, 2)] < y(1)-sup{lz,—Z,[: » =1,2,...}

for every t>0, 2 = (2,), 2 =(3,)es and k =1,2,...,
20 there exists a finite limit

T
m T~ [ Fy(t,2)dt  (k =1,2,...)
/]

700

for every z € s.

THEOREM 3. Let assumption (D) be satisfied and let systems (+), (++)
have the solutions x = (x,, 3, ...) and X = (X,, X,, ...), respectively, such
that x,(0) = X;(0) for k =1,2,... Assume, moreover, that there exists
a constant K > 0 such that

L
[ fz Fak(xl(t)’ X, (1), °°~) dtl < Kt —1, (k=1,2,...)
4

for every 1y, 1, > 0.
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—~

Then for any n > 0 and L > 0 there exisis an g, > 0 such that if e € (0, &,),
then )

sup {|z, () - X, ())|: £ =1,2,...}<7q
fJor every t e [0, 'L].
Proof. Fix L > 0, ¢ > 0 and an index k. We write
I =[0,e'L], C =sup{y(t): t=0}

and .
gi(t, 2) = Fi(t, 2) — Fy(t, 2),

[ ¢
G(t) =| [guls, Xs)ds|, Hy(t,2) =|t7 [ gi(s,2)ds |-

Let T be a point it which the function G,|; has its maximum. Now we
divide the interval [0, T'] into m equal parts {, =0<t, <...<t, =T.
Let us fix ¢ =0,1,...,m—1 and ¢ € I. Since

t
X, (1) = X, (1)) = | & [ Fop (X (s))ds| < eK [t—1
4

for n =1,2,..., we have
19, (25 X (2) — g (8, X(8))| < [Filt, X(8) — Fr(2, X (8))] +
+ | For (X () — Foie (X (1)) |
< 2C-sup{|Xn(t)—Xn(ti)|: n = 1,A2, ..} < 20Ke-|t—t,.
Hence

‘l

f (g,,(s X (8) — g (35 X(t)))ds| m-1KCL2.

"M§

8) l

Since lim H, (¢, z) = 0 for every fixed x € 8, we have
t—-o00

z+1
f 9 (s, X(t‘))dsl sup rH,,(— X(t,)): r € [0, etH_l]}

< sup {er (-E, X(t,.)): 7 [0, (i+1)Lm“]}

and

¢
o| [ guls, X(t))as| < SuP{tHk(%, X(t,.)) : ze[0, m“iL]},
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Hence

m—1 fi41
9) [ ouls, Xet)as

i=0

m—1
< 2 sup {rﬂk( X (2 )) ve [O,m‘l(i—i-l)L]}—i—
+ 2 sup {er( , X (1; )) 7 [0, m“iL]}.

We have

[
lmk(t)—Xk(t)léc-a‘fsup{lwn(s)—Xv,,(s)li: n=1,2,...}ds+
0

[4
+e-max{G,(t): teI}< C-e- [ sup{ia,(s) —X,(s)|: » =1,2,...}ds +
0

m—1 i1 } m—1 tt1
+]e > [ (ols, Xe)—auls, X))as| +[e 37 [ guls, Zita))ds .
i=0 ¢ i=0 I;

Hence, by (8) and (9), we get
(10) Iz, (t) — X, (0))
t
<Ce f sup{|z,(s) —X,(8)}: » =1,2,...}ds +m ' KCL* +

0

m—1
+ 2 sup{er(E, X(ti)): te[0,m (i + l)L]} +

+2 sup{er(— Xt )) te[0, m zL]}

t=1

For G > 0 there exists a natural number m, such that 2KCL* < mS.
Since
m=1

1im(2 sup{z'Hk( X(t)) ze[o, m"‘(z-{—l)L]}
m—1

+ vsup{er( y X (¢ )): re[O,m“o}L]}) =

i=1
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for S there exists ¢, > 0 such that

1n0—l
(11) mo"KGL2+2 sup {er (2, X(t,;)): z [0, mo‘l(i—}-l)L]}-l-
i=0

my—1
1 2 sup {er (1, X(t,.)): ref0, mbL]l <@,
: '
where & < g,. |
Let > 0 and 0 < S < exp(—CL)yn. From (10) and (11) we have
sup {ja, (1) — X, (A)]: £ =1,2,...}

t
<C~e-fsup{lxk(s)—X,c(s)|: k=1,2,..}d84+G
0

for ¢ < ¢, and t € I. Hence, applying Gronwall’s lemma, we have
sup {|lz, () — X, (1)|: & =1, 2,...} < Sexp(e0t)
for ¢ < ¢, and t € I; therefore
sup{|z, () — X, (%): k =1,2,...}< 7y
for e< ¢, and t [0, 'L].

3. Let (I,) denote system (I) in which the right-hand side terms.
are multiplied by a small positive parameter ¢. Let

T
Jor(r1y 73y .0) =1im T—Iffk(ti FiyTayeess TayTayeenons)dt
b

T—>c0

for r, e (— o0, ), k =1, 2, ... and let an averaged system with (I,) have
the form

(ILI) X,(1) = of(Xalt), Xu(®),..) (B =1,2,..).

We introduce

AssumpTION (E). Suppose that hy(t) (i, j =1,2,...) i8 a function
defined for t > 0 and takes its values in [0, oo) and the fi(t, £) (K =1, 2, ...)
is a real function defined for (i, £) € [0, c0) x 8, and such that

1° 8 =sup{|h;(t)—t:t>0,14, ] =1,2,...} < oo,

2° there exists a bounded function v: [0, c0)—[0, oo) such that

Fulty )= filt, B < p(0) sup {luy — Tl: 6, § =1,2,...)

for every t>0, & = (u,), E = (,) €8, where u; = (u,), % = (4,) € s
and k =1,2,...,
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30 there exislts a constant M > 0 such that
e, O)I< M (k=1,2,...)
for every (t, &) € [0, ) X s;.
AssoMPTION (F). Suppose that
1° assumption (E) is satisfied,
2° there exists a finite limit

T
limT—lJ fk(t; 7'1, 7-1, c-o; 7'2, 7’2, ao.; n--)dt
0

T—oo
for every rye(—oo, 00) and k =1, 2, ...
First, together with system (I,) we consider system (IV) obtained
from (I,) when h;(t) =1 (¢, § =1,2,...):
{IV) ?/;c(t) = sfk(ti Y1(8)y Y2(t)y -5 Ya(®)y Ya(?)y -5 )

(k=1,2,...).
The following lemma holds:
LEMMA. Let assumption (E) be satisfied and systems (L), (IV) have

solutions © = (y, ©,,...) and y = (Y1, Y, ...), respectively, such that
25 (0) = ¥,(0) for k =1,2,...

Then for any L > 0 and for any n > 0 there exists an g, > 0 such that
if € € (0, &), then
sup {la (1) — g (®)]: k = 1,2, ..} <7
for every te[0,e ' L).
Proof. To prove this, observe first that
t

[ (b () —2i ()| <& [
k()

for t>0 and ¢, j =1,2,... Setting D = sup {y(¢): {> 0}, we obtain
|, (8) — Y (2)]

fi(s7 x,(8), w1(h11(3)), ceey ) ld3 LeMS

t
< [ p(s)-sup{le;(s) —y: (8, |2 (G (9)) —wul9)|: 4, j =1, 2,...}ds
¢
<23Dfsup{|mi(s)—yi(s)|: t=1,2,...}ds+
t
—}-eDf sup! |z (b (s)) —2:(8)|: 4, j =1,2,...)ds
0

t
ge‘*‘DMSt+2st sup{|z;(8) —y;(8)|: ¢ =1,2,...}ds
0
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for t>0 and ¥ =1,2,... So we have

sup {lz,(!) —y,(®)I: ¥ =1,2,...}
¢
< eDMSL +2eD f sup {|z,(8) —y,(8)|: £ =1,2,...}ds
0

for te[0,¢'L], where L> 0 and e> 0. Hence, applying Gronwall’s
lemma, we have

sup {|z,(t) =y, (8): k =1,2,...} < eDMSLexp(2¢Dt) < eDMSLexp(2DL)
for ¢t € [0, e ' L], where L > 0 and ¢ > 0. Taking n > 0, L > 0 and setting

_ 1
" DMSL-exp(2DL)’

€o

we obtain

sup {lz,(t) —y,(®): & =1,2,..}<n for te[0,&s 'L}, where ¢ < ¢,.

This ends the proof.
By the lemma and Theorem 3 it follows

THEOREM 4. Let assumption (F) be satisfied and systems (I1,), (ILI)
have solutions x = (x,, 3, ...) and X = (X,, X,, ...), respectively, such
that x,(0) = X,.(0) for £ =1,2,...

Then for any L > 0 and for any n > 0 there exists an g, > 0 such that
if € €(0, &), then

sup {|z,(8) — X, (@)|: k¥ =1,2,...} <79
for every t e [0, e ' L].

Remark. Let (I,,) denote system (I,) in which the right-hand side
terms are multiplied by a small positive parameter . From Theorem 1
and Theorem 4 if follows that under the same initial conditions, the so-
lution of (I,,.) obtained by the averaging method for a sufficiently large m

is an approximate solution of (I,) on some sufficiently large but finite
interval. '
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