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Hardy norm, Bergman norm, and univalency

by SHinge YamasHiTa (Tokyo, Japan)

Abstract. Sufficient conditions for f meromorphic in |z| < 1 to be univalent are proposed
in terms of the Hardy norm and the Bergman norm of the Schwarzian derivative of f (see (1.5)
and (1.6)). Various applications of the fundamental inequalities in Theorem 1 will be proposed.

1. Introduction. Let f be a function holomorphic in D = }|z| < 1}, and
let

1 2n . 1/p
WAl = lim[ﬂ “f(ff-"")l”ng , 0<r<1,0<p<cx,
r-1 0

"f” o = SUp V(Z)I s

zeD
be the Hardy norm of f of order 0 < p < oc. Let

1 /e
T Wlls = h HIf(Z)I‘”dxdyJ , z=Xx+iy, 0<p< oo,
D
"f”cn,B = ”.f”m’

be the Bergman norm of f of order 0 < p < oo. Thus, the Hardy class H” (the

Bergman space B?, respectively) is the family of f with ||f}|, < o (|f|l,,s < 2,
resp.), where 0 < p < .

The non-Euclidean distance in D is defined by
o (w, z) = tanh™ 1 (lw—z|/|1 — Zw]),
so that
H(z,y)={weD; o(w,2) <y, (0<y<x)
and
Iz, y)=weD;ow,2)=y; (0<y< )

are the non-Euclidean disk and the non-Euclidean circle, respectively, of
center ze D and radius y. For convenience, we set ['(z, oo) = C for each
zeD, where C = {|w| =1} is the unit circle.
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An objective of the present paper is to prove

THeOREM 1. Let f be a function holomorphic in D. Then, for each 0
< y< o, for each 0 < p< xc, and at each ze D, the following inequalities
hold

1/p
(1.1) (I—IZIZ)”"lf(Z)Is(tanhv)‘”"[zl J If(C)l"ldCl] < I,
Tz,

(12)  (A=1z**"|f(2) <(tanhy) 2?7

1. e
— V(C)I”didnJ < If

Hiz, )
{=<C+in.
Furthermore, both inequalities are sharp for each trio 7, p, and z.

Here, in the case p= o, the second term in (1.1) ((1.2), resp.) is
interpreted as ||f|l. =||fllo,5- In the case y = x, the second term in

(1.1) ((1.2), resp.) is interpreted as [|f]l, (Lf]l,.5, resp.).
The estimate (1.1) is a precision of the known one:

=P f @) < Ifll,. zeD,feH?, 0 <p< o0;

see [4], p- 144.
Let f be a function meromorphic in D such that the Schwarzian
derivative

Sp=U"IfY =3I

is holomorphic in D. Two suflicient conditions for f to be univalent in D in
terms of ||S/||, are obtained by Z. Nehari and D. London:

(N) IS/l < %2  ([8], Theorem II, p. 549);
(*Ly) IS;l; <4 ([7], Theorem 6, p. 990).

London [7], Theorem 1, p. 981, also obtained a sufficient condition in the
Bergman norm as follows:

(L2) 1S/l1.8 < 2.

As an application of Theorem 1, we shall propose sufficient conditions for f
to be univalent in D, which contain the above (N), (L), and (L,) as the
special cases.

To describe our result we consider

2(3—1/p) for 4
c(p) ={ (

<
23/p—1n2~2/p for <

The function c(p) is strictly increasing in [}, oc], together with c(1) =4,
c(oo) = m?/2 = 49348 . ..
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THEOREM 2. Let f be a function meromorphic in D. Suppose that S, is
holomorphic in D. Then, [ is univalent in D if one of the following two
inequalities is valid:

1 1ip
(L.3) SUP[— i ISf(C)I"IdCI] < c(p)(tanhy)'?
zeD 27[ I'(z,y) }
for a certain pair 0 <y < o, } < p< K,
1 Lip
(14) Sup[— ] ISf(C)I"d‘fdn] < c(p/2)(tanh y)*”
zeD H(z,7y)

Jor a certain pair 0 <y< oo, | £ p< w.

We do not repeat the obvious remarks in the case of y = o0 or p = oc.
It follows from Theorem 1 and Theorem 2 that, f is univalent in D if one of
the following conditions is satisfied:

L]

P 0
(1.6) ISlp.s < ¢(p/2) fora 1<p< oo

Now, (N) is the case p = oo in (1.5), (L;) is the case p =1 in (1.5), and
(L,) is the case p =1 in (1.6). The sharpness of c(o0) is known [8], p. 550.
Since [|S/]l,, = (ISll, for each 0 < p < oo, it follows that, for each | < p < o,
the constant c(p) in (1.5) may never be replaced by any constant strictly
larger than c(cc). By the same reasoning, the constant c(p/2) in (1.6) may
never be replaced by any constant strictly larger than c¢(o0). The sharpness of
¢(p) in (1.5) and ~(p/2) in (1.6) for p # oc is still open.

We notice tha. Theorem 2 extends our former results [16], Theorem 2
and Theorem 3.

(1.5) ISAl, <c(p) fora t<p<

2. Proofs of Theorem 1 and Theorem 2. We may assume that 0 < p
< ow. For the proo” of (1.1) ((1.2), resp.) we may further assume that
feH? (fe B’ resp.). 10 prove (1.1), we fix ze D and set

h,(w) =(Bw+2z)/(1+pzw), P =tanhy, 0<y< .

Then h, is holomorphic on the closed disk D = |lw| <1}, and h, maps C

one-to-one onto I'(z, y). Since h,(w)= h,(Bw), weD, it follows that the
function

F,(w) = f(h, (W) by (w)'"?
is subordinate [4], p. 10, to the function
Fr(w) = B[ (hy W) Ky ()", weD.

In effect, F,(w) = F}(Bfw), weD. It then follows from Littlewood’s subor-
dination theorem [4], Theorem 1.7, p. 10, together with the subharmonicity
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of |F,P, that
2.1)  B(L—[zP)|f 2N = |F,O)

2n 1 2n

1 _ . ‘
< g § IF e 0 = o [y e hs (e

121:

< — [|F*¥(ré®Pdl, O0<r<]1.
2n o

We next show that F} e H". Since fe H?, and since h’, e H, it follows that
feN*, and b, e N* (see [4], p. 26; N* = S(D) in the sense of [13]), whence
F*eN™. For, because log*{foh,| and log* || have quasi-bounded har-
monic majorants, the same is true of log™ |F¥|, so that FfeN™ (see [13],
Theorem 1). On the other hand, the boundary value F¥(¢'®) of Fy exists for
almost every 0€[0, 2x], and

22 5 (IFFEIPdD = 2 (11 (b, (@) Ih () d0 = BT < 0.
T o 2n o

It then follows from [4], Theorem 2.11, p. 28, that Fy e HP".
Now, letting r = 1 in (2.1), and considering (2.2), together with
l 2n

P 1
am AV E@W Ih(@0d0 = 20 | (@ iddl,

I'(z,y)
one observes that

1

BUL—z)If @I < o r<,j,y, Lf WP 1dE1 < Bl f1I5,

whence follows (1.1).
For the proof of (1.2) we consider the function

D, (w) =f(h,(w)) h’,(w)zf’, weD,

being subordinate to the function
X (w) = B f(hy, (W) M, (WP,  weD,

in D. It then follows from the subordination theorem that

1 2n 1 2n i

— j' |®, (re'f)Pdo < — f |P¥ (re'®)|Pde,

o o
whence

(2.3) ®,15.5 < 19215,5 = B2 IS5
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On the other hand, since |®,|° is subharmonic, it follows that
B2 =2 W = |9, (00 < |IPli5 5

(24)
- 1O O s o dxdy 00 = x+i9)

=L 1§ yordean

H(z,7)
Combining (2.3) and (2.4) one obtains
§ QP dedn < B35,

H(z,y)

1
B (-l @ <~

whence follows (1.2).
For the proof of the sharpness of (1.1) we consider

@, (w)=h,(—w)'?, weD (0<p< ).

Then
(1=1z1%"" @y (2 =1 = |l@yll,.

In the case p = oo, we consider ¢; = 1.
For the proof of the sharpness of (1.2) we consider
©,(w) = by (—w)*?, weD (0 < p < ®).

Then
1=z @, (2 = 1 = ||@allp.s-

In the case p = o0, we consider ¢, = 1.

Now, let f be holomorphic in D, and let
11 =sup(1 =2 If(2)l, 0< A< oo,

zeD

Ifllo, = I Nl

be the weighted H® norm of f of order 0 < A < co. It then follows from

Theorem 1 that
[ 1 e
— | QP IdCIJ ,

(2.5) Wlyp, < (tanh y)” 7 sup 2
zeD | ys

I'(z,»

B! 1/p
(2.6) Ifll2ip, < (tanhy)~*Psup| =~ ff If(C)l"dfdﬂJ -
zeD _n H(z,y)

Let f be meromorphic in D such that §; is holomorphic in D. P.R.
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Beesack ([2], (2.6), p. 217, and the italicized sentence in [2], p. 218, line 9)
proved that f is univalent in D provided that

(By) IS/l » < c(1/4)

for a 0 < 4 £ 2. Condition (B,) contains Nehari’s [8], Theorem I, as A = 2,
Nehari's (N) as 4 = 0, and the result of V. V. Pokornyi [9] (see [7], Theorem
5 p.- 988) as A =1.

Theorem 2 i1s now a consequence of (2.5), (2.6), both applied to S;, and
(By).

3. Holomorphic case. Let f be a function non-constant and holomorphic
in D. Then it is well known that f is univalent in D if one of the following is
satisfied:

(P) W Moo = I/ e <202 ([11], p. 179);
(B,) W"/f N« <1 ([1], Corollary 4.1, p. 36).

Condition (B,) is an improvement of the result due to P. L. Duren, H.S.
Shapiro, and A. L. Shields [3], Theorem 2, that f is univalent in D if the

constant 1 on the right-hand side of (B,) is replaced by 2(, 5—2)=047... It
follows from (B,) that if

(3.1 W e <1

for a 0 < 4 <1, then fis univalent in D, because of the inequality |If"/f|l; .
ZWf"/fll1,»- Is there a sufficient condition like (B,), S, being replaced by
f"/f"? Unfortunately we have a reasonable answer only for small 4.

For 0 < A <1 we consider the function

G(A=2Q2-AHA A+ 1" =2 A+ )" AT 41]7

The function G is strictly decreasing in (0, 1], and satisfies
IimG(A) =4, G(1) =1,
10

so that there exist 4; and 4, such that
O0<l<ii<l, GA)=2, G@)=1.

A computation by a programmable calculator (for example, TI
Programmable 57) teaches us that

A, =01813..., 2, =0.5578...
We now define K (1) by

K(A)={

2, if 0<2<i,,
G(A), ifA,<i<i,.
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THEOREM 3. Let f be a function non-constant and holomorphic in D. Then
f is univalent in D if

3.2 W7/l - < K(A)
for a 0 < A< 4.

Since K(4) > 1 for 0 < 4 < 4, condition (3.2) is significant in view of
(3.1). Theorem 3 improves our former result [17], Theorem.

As an obvious application of Theorem 1 to (3.2), one can now easily
prove sufficient conditions for holomorphic f to be univalent in D in terms of
/N, or ILf"/f1l,,s- More precisely, one obtains

THEOREM 4. Let f be a function non-constant and holomorphic in D. Then
one of the following two inequalities asserts the univalency of f in D:

(3.3) sup | )If"(C)/f "€ 1dE] < 2nK (1/p)® tanh y

zeD TI(z,7
for a certain pair 0 <y < o0, A{'<p< x,
(34) sup 1§ U@ QP dédn < nK (2/py (tanh y)?
zeD H(z,y)

for a certain pair 0 < y< o, 2A]'<p< x.
In effect, one can easily prove that f”/f’ is holomorphic in D if (3.3) or

(3.4) is satisfied; actually, A;! > 1.
For the proof of Theorem 3 we shall make use of

LeEMMA. Let g be holomorphic in D, let 0 < A < 1, and suppose that
gl < M) < 2.
Then
(3.5) sup(1—1zI2** 1 (lg' ) + L1g (2)?) < 22— M G(A)~".
zeD
Proof. M. S. Robertson [12], Theorem A, proved that, if & is holomor-
phic in D, and if ||A||; , < 1, then, at each z € D,
(L= @ S ATAA+ P 1= 222 A+ 1) (1 =121 [k (2)) 2.
Then, at each zeD,
(3.6)  (1=lzI»** 1 (1H () +1h(2)?)
(=22 H 2]+ (1 =1z1%)** |h(z)?
SATAA+ D - 22G+ D1 =149 h(z)?
SATAA+ DM 1 =22 A+ D)4 = 2(2-2)/G(A).
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We now apply (3.6) to h = g/M (4), where we may assume, without any loss
of generality, that M(4) # 0. Inequality (3.4) is then a consequence of
M@A™ ' =}.

Proof of Theorem 3. We apply the lemma to g = f"/f’, together

with M(1) = K(4), 0 <A< 4. It then follows from (3.5), together with
K (1) < G(4), that

HSpla+ 1,0 < 2(2—2).
Since 1 <A+1<4;+1 <2 for 0< A< 4, it follows that
c(1/A+1) = 22~ ],
whence
ISellyo Sc(i/w), 1<p<i+1<2,

Therefore f is univalent in D by the Beesack criterion (B,).
Remark. The cited result of J. Becker [1], Corollary 4.1, p. 36, asserts much
more. That is, if f is holomorphic in D, f'(0) # 0, and if
glly,- <1, g2 =zf"@)/f (2),
then f is univalent in D. Again, we obtain the sufficient conditions for f to be
univalent in D in terms of |lgll; or ||gl|l,,s. The details are easy excercises.

4. Further applications of Theorem 1. In the present section we shall
give three applications of Theorem 1.

4.1. Gavrilov's extremal theorem. Fix zeD and a complex number A
once and for all in the present subsection. Let %(z, A) be the family of all
holomorphic functions f in D such that f (z) = A. V. L. Gavrilov [5], Theorem
3, p. 843, proved that

4.1 min |If]13,5 = (1-12I*)*141%;
Je9(z,4)
the minimum is attained by the function
f2w) = A(l=z]*)hp(—w), weD.
It now follows from (1,2) in Theorem 1 that, for each 0 < p < a0,

4.2) min |f|l} 5 = (1—(z1%)?}4P;

Je¥(z,A)

the minimum is attained by the function

Sp(w) = A= z1)*Ph, (—w)?P,  weD.
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Gavrilov's result (4.1) is the special case p=2 in (4.2). Furthermore, it
follows from (1.1) that, for each 0 < p < o0,

min ||f|[ = (1—|z|?)|4);
Je¥(z, A)

the minimum is attained by the function
A=) I, (~w)'
of weD.

4.2. a-Bloch function. A function f holomorphic in D is called a-Bloch
(0<a < ) if |[fly,- < . A 1-Bloch function is simply a Bloch function
[10]. A holomorphic function f in D is continuous on D and f(¢®)eA, (0
<a < 1)if and only if fis a (1 —a)-Bloch function [4], Theorem 5.1, p. 74.

THEOREM 5. Let f be a function holomorphic in D, and let 0 < a < x.
Then the following are equivalent:

(5A) fis a-Bloch.
(5B) There exists 0 < y < oo such that

4.3) sup {§ (O dédn < oo.

zeD Hz,y)

(5C)  There exists 0 <y < oo such that

44) sup | U 1dg} < co.

zeD I(z,y)

Proof. Both (5B)=(5A) and (5C) = (5A) are consequences of Theorem
1 applied to f'. For the proofs of (5A) =(5B) and (5A) = (5C) we assume that

A=KPrE <M, (eD,

where M > 0 is a constant. One then observes that, for each 0 < y < oo,

FI U@ dédn < M2 [ (1-({%)™ 2d&dn

HEy) H(z,7)
- M2/a -”‘ (l _IWIZ)- dedy = Mlla ﬂ:ﬂz/(l —ﬁz),
fwl <8
p =tanhy,

and

§Ur@it=dg < M (=157 1dg)

I'iz,y) riz.p

=M [ (1—|w»)~"ldw| = M= 2nB/(1 - B?).
wl=8
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Remark. In the special case « = I, the integral in (4.3) ((4.4), resp.) is
the area (length, resp.) of the Riemannian image of H(z, y) (I'(z, y), resp.) by
f. The cited criterion for 2« =1 and for H(z,y) is also obtained as a
consequence of [15], Theorem 2. It might be of interest that the analogous
criterion in terms of f* = |f'|/1 +|f|?) is false for f meromorphic in D to be
normal, that is,

sup(1-z212 % () - x.
=D

In effect, P. A. Lappan [6] consiructed a function f; holomorphic and non-
normal in D, such that f; is univalent in each H(z, 7), ze D, where 0 < y - x
is a constant independent of z. Then
sup [f f (D*dédn <,
=D H(z,y)
where n is the area of the Riemann sphere. We remark that, if fis normal in
D, then, for each 0 < y < o,
sup | S*(OPdidn < x.
zeD H(=.

43. LUS function. Now, Lappan’s function f; is LUS. Namely, a func-
tion f holomorphic in D is called locally uniformly schlicht (LUS, for short) in
D 1l there exists 0 < y < o0 such that f is univalent in each H(z, }), z€ D (see
[14]). We propose criteria in

THEOREM 6. Let f be a function non-constant and holomorphic in D. Then
the following are equivalent:

(6A) fis LUS in D.

(6B)  There exists 0 < y < oc such that

(4.5) sup [ Uf"Q/f Q> dédn < oo

zeD H(z,y)

(6C)  There exists 0 < y < oo such that

(4.6) sup | U@/ (ONld) < .
€D I(z,y)

Proof. Assume (6A). Then f* never vanishes in D, and further it follows
from [14], Theorem 2, that each branch of log f’ is Bloch in D. Therefore
(6A) = (6B) and (6A) =(6C) both are consequences of Theorem 5, applied to
log /" and a = 1. Conversely, assume (6B) ((6C), resp.). It then follows from
(4.5) ((4.6), resp.), together with a local consideration, that f”/f’ has no pole
in D. It now follows from Theorem 5, applied to log f' and « = 1, that log f*
is Bloch, whence f is LUS in D again by [14], Theorem 2.

Remark. A meromorphic analogue of Theorem 6, in terms of S,
instead of f”/f”, is announced in [16], Theorem 4.
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