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Linear independence in linear rings
with abstract differentiation

by MicHAL KowALSKI (Wroclaw)

Abstract. A commutative ring K is considered with an operation D, such that
D(z+y) = Dz+ Dy and D(zy) = z-Dy+y Dz for any =, ye K. The equation

fz =a,D"z+ ... + a1 Dz + gz = 0,

in the unknown e K, with coefficients a; ({ =0, 1, ..., n) from a sub-ring K, = K,
has linearly independent solutions

zl,l: T1,25 003 T e

In particular, K; may be a sub-ring of constants if Da; = 0 for¢ =10,1,...,n.
Let the equation fkz = 0, obtained by superposition, have kn solutions:

Typ (=1,2,..,k;p=1,...,n).

Are the solutions , ; linearly independent? In the simplest case of constant
coefficients and when there exists a linear operation ¢ such that D(iz) = tDxr+ =,
Theorem 4 yields a positive answer.

In the general case, the solutions =, , (x> 1) are not expressed by z;p
(p =1,...,n). Wronskians have been investigated and a relation between the wrons-
kian of the z, ,, and the wronskian of the z; ; has been found. Some other determinants,
called eliminants, have turned out to be important factors. In the particular case
of constant coefficients, the eliminant is the discriminant of the polynomial f, i.e.,
the resultant of the polynomial f and its derivative.

It the superposition fgz is considered and a relation between wronskians is
required, again a determinant is found to be a factor. In the particular case of constant
coefficients, the determinant is the resultant of the polynomials f and g.

1. A new theory of operational calculus has been created by J. Mi-
kusinski, who wrote a book [7] containing the theory and its applications.
The foundations of the theory ([1}-[4]) are as follows:

Continuous complex functions of a real variable ¢, defined for ¢ > 0,
are added in the usual way and multiplied by the convolution

13
fyxg(t) = [ f(t—1)-g(z)-de.
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The commutative ring has no unit element and by Titchmarsh’$
theorem ([10], [11]) the ring has no divisors of zero. Then it is possibl®
to extend the ring to a field A, the elements of which are called operators-
The field of operators contains a sub-field which is isomorphic to the field
of complex numbers; so the field has the characteristic zero. Operational
function a(2) is a function which assigns operators to numbers 4. In partic-
ular, an ordinary continuous function a(1,?) of two variables, defined
for t > 0 and for some values 4, is an operational function a(4). A function
is said to be differentiable at a point A, if it can be represented in a neigh-
bourhood of the point as the product a(2) = gxf(4,t), where ¢ is an
operator and f(4, t) is an ordinary function such that the quotient

J(4,8) —f(2o, )
A—7

tends uniformly to the limit in every finite interval 0 <t <, as 1 tends
to 4,. A derivative of the operational function a(2) at the point 2, is the

7]
product q* f(}.o, t), which may be denoted by Df(4,). J. Mikusinski

applied his theory to partial differential equations with constant coef-
ficients. Hence the partial differential equation

0"t m (4, (4, 1)
(1) ;g "y apaap ‘p(l’ t) (anv - conSt)
can be written in the following operational form:
(2) D bux D a(d) = f(2),

et

where the function #(A) is the required operational function and the coef-
ficients b, are given operators. There is, therefore, a need to investigate
gsome equations such as a,D"™@+ ... +a,@ = 0, where the coefficients
a; (¢ =0,1,...,m) belong to a field or a ring and the operation D has
some properties of the ordinary derivative.

2. Some necessary definitions and remarks will be introduced here*
It is assumed that an operation D is defined in a commutative ring K,
and so an element Doe K is assigned to any we K. By applying the opera-
tion D i-times successively, D's is obtained. The operation D satisfies
the conditions (1)

(3) D(w+y) = Do+ Dy,
(4) D(wy) =o-Dy+y Dz

(1) Conditions (3) and (4) were assumed in J. F. Ritt’'s and E. R. Kolchin's
papers. In 1950 a book Differential algebra, written by J. F. Ritt, was published (Amer.
Math. Soc. Publ. 33, New York 1950).
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for any o, ¥ belonging to the ring K. It is evident from (3) that D(0) = 0,
and it follows from (4) that if the ring K has a unit element ¢, then De = 0.
The elements satisfying the equation Dz = 0 will be called constants;
they constitute a sub-ring K, < K. The equation

m
Te=0
will be considered. Element « is the required element of the ring K, and
the coefficients a; (¢ =0,1,...,m) are given elements from a ring
K, < K. Inparticular, we may have K, = K,(the sub-ring of constants).
Equation (5) is of the order m if a, # 0. Elements @,,...,2, (m > 1)
of the ring K are linearly independent over K, if the equality ¢,,+ ...
. +ec,m, =0 (c;e Kj, ;¢ K) occurs only if ¢, =... =¢, = 0. The
determinant
ml ’ > oo ’ wm
Wi(wy, ..., 0,) =1]. ............
D™z, ..., D" g,

is the wronskian of the elements =,, ..., ®,.
The following condition will be used later:

(A) An equation ¢;Do+cyz =0 (¢, #0, ¢y Ky, e K, K, < K)
cannot have a solution, being a divisor of zero.

This assumption will be useful when wronskians are considered.
Liouville’s well-known theorem points out that the wronskian W of the
solutions of the equation

(6) a,D*»+a, D" '+ ... +a,¢ =0

satisfies the equation a,DW +4a,_,W = 0. Thus the wronskian cannot
be a divisor of zero if condition (A) is assumed. Any product of wronskians
of the solutions of equation (6) will also be different from zero. If @, satis-
fies the equation a,D®@-a,x = 0 and @, satisfies the equation b, Dw -+
+be® = 0, the product @,#, is a solution of the equation a,b,Ds-+
+ (apb; +a,by)e = 0; thus the product cannot be a divisor of zero accord-
ing to (A), and similarly for any finite number of factors.

Another important conclusion derived from (A), namely that a constant
cannot be a divisor of zero, will now be proved. If ¢z = 0 (ce K,, e K),
then either ¢ = 0 or 2 = 0. In fact, D(cw) = D(0) = 0, D(cw) = ¢c- Do+
+0 = 0. The element # # 0 would be a solution of the equation ¢- D2+
+¢z = 0 in spite of assumption (A)if ¢ %0, z # 0, ez = 0.

Oondition (4) and equation (5) clearly indicate an application of the
results for differential equations. It is not intended, however, to use
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such terms as for instance ‘‘value of the function at a point’’ because
the problem of linear independence is an algebraic one. Functions will
be presented as elements of a ring or a field.

3. Let the elements y,, ..., v, satisfy the equation

k
(7) fo=YaDo=0 (2eK,ackK, <K

i=0

and let the elements 2, ..., 2, be the solutions of the equation

n
(8) go = Z‘b,pfm =0 (¢K,beK, < K).
ja=0
The question arises whether the (X+n) elements #,, ..., ¥y, 2y .-
...y 2, are linearly independent. When the coefficients a; (¢ = 0,1, ..., k)
and b, (j = 0,1, ..., n) are constant, the (¥ +n) elements will be the sol-
utions of the equation fgo = 0 which is obtained from f and g by super-
position. In the particular case of constant coefficients, the problem
is solved by Theorem 4, which is valid in a linear space K over the field
C, of constants. The linear independence of ¥,, ..., ¥, 2y, ..., 2, follows
directly from the linear independence of those ¥, ..., ¥, and 2,...,2,
(see the proof of Theorem 4). Another idea is to use wronskians, and for
constant coefficients a relation between resultants, discriminants and
wronskians has been established (see Theorem 3°%). The coefficients are -
not necessarily constant in Theorems 1, 2 and 3, but condition (10) has
to be introduced to ensure symmetry for the superposition. It is obvious
that condition (10) restricts the expressions f@ and go very much.

4. The elements @,,a,,...,®, are linearly dependent if constants
€y ...y €, exist such that ¢,0, 4+ ... +¢,%, =0andnot all ¢; (2 =1,2,...
..., m) are zeros. Let ¢,, # 0. The wronskian W(a,, ..., m,) is the determi-
nant of the system of equations

¢, D's,+ ... +¢,, D0, =0 (4 =0,1,...,m—1).

The determinant, expanded from the last column, can be written in the
form '

W@, ..., 8,) = Ag@p+ ... +A4,,_, D" ',
where 4,, ..., 4,,_, are the cofactors. Adding the equations
Ay (e, + ... tepo,) =0
A, (6, D™ 'w, + ... +¢,D" '0,) =0,
we obtain ¢, W(a,,...,2,) =0 because
Agp,+ oo + A4, D™ o, = W(Dy, ..., @1, %) =0 for k< m.
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Therefore, the elements @,,...,®, are linearly independent over
K, if W(@,,...,®,) # 0, and besides a constant cannot be a divisor of
zero. The inequality W(a,, ..., ®,) # 0 is sufficient for the linear inde-
pendence of the elements @,,...,#, when condition (A) is assumed.

The inequality W(e,, ..., #,) # 0 may serve as a definition of ‘‘strict
linear independence” (see [12]) because the condition is a little stronger
than linear independence. However, linear independence and the con-
dition W # 0 can be equivalent in some special cases when additional in-
formation on the ring K is given.

5. If the equation hw =c,D™@+ ... +¢,0 = 0 is satisfied by the
elements #,,...,2,, then

(9) Cm Wy, oooy@p, @) = W(g,...,2,) .
In fact,
C W(Zyy ovvy By D)
Byy oeny ZTm)y T Byyeeey Ty z
= pm-ty L, D™ lg, D™ D™y, ..., D" g, D™y
D"a,, ..., D"z, D"x| | hay..., ha, he

= W(a,...,2,) ho.

Let fg» denote the superposition of the expressions fr and g». We as-
sume that the solutions y,, ..., ¥, of equation (7) and the solutions 7, ..., 2,
of equation (8) must satisfy the condition :

(10) fogo =gfx for @ =y,,...,y, and for » =2, ..., 2,.

This means that fz = 0 fora = gy,, ..., g9y, and go = Ofora = fz, ..., fz,.
Condition (10) is always fulfilled if the coefficients of the expressions
Sf» and go are constant or if f =g, but it may happen that fgo = gfr
identically (for any ) in some other cases. For example, in the case of
the expressions fzr = Da+bs and ge = Do+ (b+c¢)w, the condition
Jgx = gfe is fulfilled for any « and any b if ¢ = const.

By putting he = fg» (the leading coefficient will be ¢,, = a,b,) and
using condition (10), the identity

Ol W (Yry ooy Yry @1y eeny 2y @) = W(Y1y oovy Yy 21y« v ey 2) SO
can be obtained from (9).

6. A consequence of equations (7) and (8) is a system of (k-+n)
equations
D*fo = D*(a, D*2+ ... +agp) =0, p=0,1,...,n—1;
(11)
D'gn =D (b, D0+ ... +b@) =0, »=0,1,...,k—-1



220 M. Kowalski

in the variables @, Do, ..., D**"~'2. A necessary condition for the existence
of a common solution of equations (7) and (8), which is not a divisor of
zero and is different from zero, is that the determinant of system (11)

should be equal to zero. The determinant will be called the eliminant.
Introducing the notation

k+p n+v
(12) D*fe = 2 a,, D?», Dgn= 2 b, Dlw
p=0 gm=0

(pb=0,1,...,2m—1;»=0,1,..., k—1)

we can write eliminant in the forms

Cp_Lktn—1) +++3 Bg1,0 bo,ov ) bo.n 0

B(f, 9) 0 Do,y <9 Qo0 br_r.09 0 Brrkin—
’ —3 —3

bk—l.k+n—u seey bk-],o Qo909 + -y o,k 0

0 bons -1 Boyo Ap_1,09 -3 Bp_1,ktn—-1

In the particular case where a,, b; (¢ =0,1,...,k;j =0,1,...,n)
are constant the eliminant is well known in algebra, namely it is the
resultant of the polynomials f(w) = a,w*+ ... +4a, and g(w) = b, w"+ ...
... +by. The discriminant of the polynomial f(w) can be obtained, in
particular, if

k
g(w) = Zr'a,-w'"'.

r=1

7. Lemma 1 is needed for the proof of Theorem 1 and Lemma 2
will be used to prove Theorem 2.

k
LeMMa 1. If fo = YaD'a =0 for ¢ =@ (j=1,...,k), go =
: i=0 _

n
= Y'b,D'a, then a}-W(ga,, ..., gn,) = E(f, ) W@y, ..., 2,).

r=0
Proof. Notation (12) is adopted and it is noted that the leading
coefficients are equal to a, for arbitrary 4 =0,1,...,and 80 a,_, ;,,_,
= ... =Gy = G = ;. Multiplying the rows of the eliminant by
the columns of the extended wronskian W(a,, ..., @), we obtain the result
E(f, 9)-W(a,,...,¢) = a;-W(ga,, ..., go,):
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bo,gy +-+9 bon 0 By yooey @ 0,...,0

....... ..

br—1,09 +++9 k1, k4n—1 D a, D'y, 0,...,0

@01 -y Bo i 0 D*a,, ..., D¥m,, 1 0

@pr0y oy Ot sna| | D70y, ..., DFT Ny, 1
9@y .-y 9@, ,

fz, ..., fa, s @,z 0
-1 -1 .
D*fo,, ..., D" fa, , A1 krn—1
[/ P (/0

= h = ay W(gmy, ..., g).

-------------

Now Lemma 2 should be derived from Lemma 1. Given an expression
Jo of order n, the superposition is defined in a recurrent way: f*» = ff*"'a
(2=1,2,...), f'o =o. Let o,_,, (*x=2,...,k+1; p=1,2,...,n)
be the solutions of the equation f*"'@ = 0. It is obvious that the elements
@,_,,p satisfy the equation f*@ = 0 as well. The equation fo = 0 is satis-
fied by ¥,_1p, = 21 p (x =2,..,k+1;p =1,2,...,n) because

f—lmx—l.p = fx—zmn—l,p =fyx—l,p = 0'
Putting g =h, o (» =2,3,...), we obtain the following lemma
from Lemma 1:

k n—1
LEMMA 2. Let fo = Yo, D'z and ho = Y 4, D'0. If Y, , = b9,y p
r=0

i=0 -
and fy, 1, =0for x =2,3,...,k;p =1,2,...,n, then ay - W(y,,, ...
AR ] yx.u) = E(f’ hu)'W(yn—l.l’ “eey yn—l,n)‘

8. Two theorems on wronskians will be proved.
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k n
TeEOREM 1. Let fo = )Y a;D's, gv = Y b, D'a (a;, b K, < K). If
tm=0 j=0
fy;=0fori=1,2,...,k and gz; =0 for j =1,2,...,%, then

a';:'bk'w(yly ceoy Yuo 217 ceey By) = E(.gvf)‘vv(yn seey yk)'W(zla very 2p).

Proof. The last row of the determinant W(y,, ..., Y, 21y ..., 2,)
is multiplied by b, . After that, other rows, multiplied suitably, are added
to the last row in order to obtain D* gz (j =1,2,...,n). By this way
n elements of the last row have been made equal to zero. The next step
will be made similarly. The last but one row is multiplied by b, and then
the previous rows, multiplied suitably, are added to the last but one row
in order to obtain D* %gs; (j =1,2,...,n). A rectangle having &k rows
and n columns will contain only zeros after & such steps:

aﬁ'bﬁ'W(zn ceey 2y Y1y ooy Yi)

Ry yeeny Zny Y1944 Y

— ot bk Dz, D* e, D" y,..., Dy,
= Yk Yn

D2y ..ey D", Dy, ..oy Dy,

.D'H'”_lz , Dk+n—lz ’_Dk+n-ly1 ’Dk+n-ly

= ak
goyy <oy [/ E GYyy oo ey 9Yx
D* gz, ..., D* gz, D* gy, ..., D" gy
21y vy 2y Yiy oony Y
Dn—lz Dn-lz _Dn—l _Dn—l
ey 13 ’ ny Yyyoeony Y
- Yk

----------------------
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Lemma 1 will now be used:

GY1s onny 9Yz |

28 P = B(f, )" WH1y vy W)
D gy, ..., D gy,

Thus,

a";c"bﬁ'w(zu e By Y1y oo i) = E(fy 9) W(Hay ooy i) W(2q, ..., 2,).
In addition, it might be noted that )

a,I:'bﬁ'W(yn vy Yny B1y oeey Bp) = aﬁ‘bﬁ'(—l)""W(zu cooy 2y Yy oens Yn)
= (_1)knE(fv DWWy ooy ) W2y, .00y 2,)
=E(g, ) WYy ..oy Yu) W2y, ...y 2,).

n
THROREM 2. Let fo = ) a; D’z (a;¢ K, < K). If
J=0
(i) ff@,p =0 for « =1,2,...,k;p=1,2,...,n,

n—1
(ii) Uinear combinations ho = Y d,,D’w (d, ;¢ K,) (x =2, ..., k) ewist
i

such that the n coefficients d,,, d, ,, ..., d, , , 8atisfy the n linear algebraic
equations hf* o, , =f"'o,, (p =1,2,...,n) for each combination
ho (x =2,..., k),

then the following formula holds:

(13) agt—i)k(k-l).W(m]'“ ceey By oeeey Dpry avey a’lc.n)

k
=[] ) o @y ey @10)

x=12

Proof. The leading coefficient of the expression f*», denoted by
@, .y 18 equal to a;. The formula

k-1
(14) [ ] a2 W (@5 ey Binseess By o5 Dipn)

x=]

k
= [T W s s 7 00)

xma]
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will be proved by mathematical induction. Equality (14) is assumed and
the determinant
(15) W(a’l,ly TR SIS ETER /RN PR mk+l.n)

will be considered. We begin with the last row as has been done in the

proof of Theorem 1. By suitable multiplication and elementary operations,
n’k elements of the % last rows of determinant (15) are equated to zero:

k k—1
n . . —_— n ,aqn
‘ ' Con WDy 1y o ooy Oy 05 0005 Bryray ooy Bpyrn) = l 1 Qe un” U,k
K] . =1
wl'“ ssey ml.", seey mk+l.l gy mk_'_"n
n—1 n—1 n—1 n—1
.D ml'l, evey D wl.n’ soey -D mk_l_l’l' noo’ D mk_'_l"l
kn—n kn—n -n kn-—n
| D" *my,,..., D" e, ..., D™ "e,,,.. D" g .
n—1 n—1 kn—1 -1
.Dk ml'” sy Dk wl.”’ saey .D mk+1’l’ seey .Dh mk+l’n
Dlm kn n
xl.l’ LA RS ] D wl.ﬂ’ veey Dk w,‘+l.l’ onc’ mek+l"
n+n—1 fen+n—1 n+n—1 Dlm+n—l
Dk ml.!’ seey .D wl'n, vory Dk wk_'_l.l’ erey mk+l,n
k-1
— n .
- a’n,nn
a==]
By1y oeey Bipy voey D11y ooy Tri1n
n—1 n—1 n—1 n—1
D all 00-’ D $1.n’ .av’ D wk+l'1’ 00y D mk+l.n
kn—n n—n n—n kn—n
J Dy, o, DR L, DR, e, DR
kn—1 kn—1 n—1 kn—1
-D w1'l, Coo’ -D wl’n’ o.l’ Dk wk+1.1’ .lc’ -D mk_l_l'”
k k ke K
f By ooy F®y 0y oony f D 1,19 -0y f Tpiin
n—1 gk n—1 ¢k n—1 ¢k n—1rk
D f @,y ..., D f‘”l,m--w D f"”k-l-l,u very D fmk+1,n
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k-1
= a::,am
x=1
L ORT) ’ Dy py ’ D11 ’ Dri1,n
D' g D g Dy D lg
1,1 ’ 1,n? ’ k+1,19 ’ k+1,n
kn—n kn—n kn— kn—n
D @y, y D By ny y D DByy11y 200y D Ty 1,n
kn—1 kn—1 kn—1 kn—1
D @1, y D D1,n9 y D Tri1,1y 0y D Dres1,n
k 2]
0’ ooooooooooooo 9 0’ f Wk_‘_l'l’ cevy f mk+l'n
0 0, D" 'fky D kg
9 o ¢ e e s e v e o s e e ’ y k+l.l’ ) k-‘-l n
k-1
] ' ' n . 3 . - ke k
-_— a“."n W(ml'l, saey wlm, ey mk.l, ey wk’n) W(f (Dk_,_l,“ cesy f wk_l_l,n)
wa]

k
= [T W s 7 00 0) W (o pgray ooy i)

2=
k+1

= n W(f'—lmx,U "'7fu_lmu,n)'

xm]

Equality (14) needs checking. For k = 2, it is possible to transform

the determinant W(®, ,, ..., ®, ,; 9, ,, ..., @, ,) according to the procedure
which has been described earlier.

After identity (14) has been proved, Lemma 2 will be used to show
that

@ WP 0y T8, = B (f, R W e,y P )
for » =2,3,...,k.

The elements f**»,_,, (p =1, ...,n) satisfy the equation fo =0
on the strength of assumption (i). Putting y,, =f*"'@,, (x =1,2,...

..y k;p =1,...,n) and using assumption (ii), we can obtain the last
identity by Lemma 2. .

It may be proved by mathematical induction that

a’isn-l)(x_lhw(f"_lwx,u ...,f"_lm“,n) = ”E(f, b)) W (@, yeeny ,5)

r=2
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for x =2,..., %k and so

(n-Dk(k—1) &
a, 2 'H W( _lmx,l’ "-7fx_la’x,n)

=2

k
= [ B4 (f, b W @10y ooy 01,)

x=2

k-1

and result (13) will be established if the product [] a,, is written as

wem]l

kile~1
ag e,

a’i‘(n—l)k(k—l),a:nk(k—l) — a&n-&)k(k—l).

9. A superposition of linear expressions will now be considered

fjm Eanj,j.Dnlw‘{“ cee +a°'jw’ Fj.’” Eﬁ,w.

Let the elements &, , ;(* =1,...,¢;p =1, ...,n) be the solutions
of the equation F,» = 0 of the order n,a;. Substituting j =1,2,...,m,
we may consider the superposition Fo# = F,F,... F, o and it is possible
to apply first Theorem 2 m-times and then Theorem 1 (m —1)-times.

A little trouble arises with multipliers, if we use Theorems 1 and 2
§0 many times. The total factor denoted by M,, which is required when
Theorem 2 is applied m times, is given by the formula

m
= (nj—Heyley=1)
M, —-”a,f;{i ofley=1),
=1
The leading coefficient of F;z is b; = a,j ; and the total factor, denoted

by M,, which is needed when Theorem 1 is used (m —1)-times, is the fol-
lowing product:

m m
My = [[b57"4,  where 0 = } nya;.
j=1 i=1

It is easier to formulate the next theorem now, remembering how
the eliminant E and the wronskian W have been defined earlier.

7y
TusorEM 3. Let f;o = ) a,;D'c (a;;¢K, < K). If
i=0

(i) ﬁw”.plj == 0 (" = 1, evey aj;p - 1, vy nj;j = 1, ceey m)’
n;j—1
(ii) linear combinations h,;x = Z d.,; Do (d,, e Kyyn=2,..., a;
r=0 ,
J=1,...,m) ewist such that the coefficients d,,,, ..., d,,,,,jhl,, satisfy the
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n; linear algebraic equations h, ;ff . 1 ,; =Ff; B p; (P =1,...,n)
for any combination h,; (x =2, ..., a),

(iii) fM... oo =0 for #=w,,; (x=1,...,a;5 p=1,...,n;
j=1,...,8) for each fized s =1,...,m—1,

then
Ml-Mz'W(Xi) cevy X:l’ ceey X:nr veey _X;'nm)

m m %
= [T, e pooy [IATT B s Bog) W ()

p=2 J=1 xm=2

where

m
X; = (By1gy eer Bumys)y My = [ [ aiily™s,
j=1

m
o =mo+.. %00, M= ” a‘,{'j{;*"‘i“’i“’.
=1

Remark 1. Assumption (iii) is fulfilled identically when K, = K,
or K, = C,, i.e., for any ring or field of constant coefficients.

Remark 2. If the ring K, is a field, it is possible to divide the equation
fi® =0by L and when this is done for j =1, ..., m, the leading coef-
ficients become units, and so the total multiplier M, M, is equal to 1.

10. The linear independence of the elements @, , ;, ..., @,,,,; is assumed
for any j =1, ..., m separately and the problem is to prove the linear
independence of the elements @,,; (* =1,...,a; p =1,...,%;
j=1,...,m) by Theorem 3. If the expressions fi® (j =1, ..., m) are
of the first order, the product of wronskians is a product of powers of the
solutions. All the solutions are different from zero, being linearly indepen-
dent, and they are not divisors of zero on the strength of assumption (A).
Thus in this particular case only the eliminants show whether the wrons-
kian

(16) WX, .., X X, X

is zero or not. Similarly in more general cases, where the expressions
J;@ are of order higher than one, the wronskians are not divisors of zero
if condition (A) is assumed. A difficulty arises when it is intended to show
that the wronskian W(#,, ;, ...,ml,nj,,-)' is not equal to zero provided
that the linearly independent elements @, , ;, ..., ®,, . satisfy the equation
Jf;® = 0. A proof is not possible without an additional condition or an ad-
ditional information on the ring K. However, even if we are justified in
drawing the conclusion that a wronskian of linearly independent eloments
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is different from zero and cannot be a divisor of zero, still the eliminants
(and only the eliminants) show whether wronskian (16) vanishes or not.

11. An example, given by J. Mikusinski [6], will be presented here
in order to point out that a wronskian of linearly independent elements
can be zero. Polynomials of 2 variables » and v

n
2 c,-'j'u,"v’ ’

4,j=0

having coefficients ¢, ; from a number field, constitute the ring with ordi-
nary addition and multiplication. The operation D is defined as follows:

D 2 it = Z (+4) e utv.

i.]"=0 ‘.n’. =0

For example, the equation Do@—» = 0 has 2 linearly independent
solutions @, = u, @, = v, “the derivatives” are Du = u, Dv = v. There
is no uniqueness theorem for this ring of polynomials.

Equation D*¢—2Do+@ = 0 also has the elements @, = u, #, = v
as solutions and the wronskian
e, @, u, v

Da,, Do, B

W(o,, »;) = '

Uy

although the elements w, = %, ®, = v are linearly independent.

The same example may be used to show that an element ¢ satisfying
the equation Dt = 1 does not necessarily exist in a ring K. For the poly-
nomials of 2 variables and the operation D defined above, conditions (3)
and (4) are fulfilled. The polynomials of degree zero are constants but
an element ¢ such that Dt = 1 does not exist.

Wronskian (16) contains the elements , , ; with » > 1 and no relation
between o, , ;, ..., By p,i and @, ,, ; is established till now. This is the reason
why the linear independence of the elements ®»,,; (x =1,2,...,q) is
connected not only with wronskians of the elements @, ,; (x =1) but
first of all with eliminants. A relation between X; (x =2,...,q) and
X; = (®05y 000y 1,n;,;) can be fixed in the case of constant coefficients
when an element ¢ such that Di =1 is used.

12. Now a field C, of constant elements is taken as the ring K, and
it is assumed that in the ring K an element ¢ exists such that Dis = ¢- Do+
for any we K. If fo, = 0, then the equation f*@» = 0 is satisfied by the
elements t*@, (x =0,1,...,k—1) (see [4], p. 229). I quote the proof:
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n
Let jil)w§2ra,D"‘w denote the algebraic dervative of the expression
r=1

fz =a,D"z+ ... + a;Dz+a,x. The equalities
(17 (fra) = kfOf* e,  f(to) = tfo+fV
are true for constant coefficients. Therefore

e (te) = i (5 @) + (K +1) fOf* (¢ )

and the equalities f*(t*@,) = 0 for » = 0,1,...,k—1 are obtained by
mathematical induction.

By substituting @, , = t*'@, , in Theorem 2, we can easily evaluate
ho = (x—1)f"@ by (17), remembering the conditions f’@,, = 0 for
v > ». In fact,

_lwn,p =f”—1(tmx—l,p) = tf‘_lmn—l,p+(f"_l)(l)wn—1,p
= (fn_l)(l)$x—l,p = (“_1)f(l)f“_2mx—l,p'
Hence

ha =(x—1)f, E(f, k) = (=-1)"E(f, fV),

k

[] B8, b) = [] (emyrte=xs0 B 1, )

u=2 *=2

= [15712570 L (1) ] [B(f, ) e

k(k—1)
=[1!2!-... '(k—l)!]"-[E(f,f(l))] z

The eliminants E(f, g) are the resultants of the polynomials f(w)
and g(w). Let the leading coefficients be unit coefficients, i.e., monic poly-
nomials are taken as f;(w) (j =1, ..., m). By using the identity E(f, gh)
= K(f, 9)-(E(f, ) many times the following theorem is obtained from
Theorem 3:

TuroREM 3% If

]
(i) fim = Z;a,,D’m =0 for o =w,;(p =1,...,m; j =1,...,m),
T om
a',jC Go < K, ani’j = 1 fO’l‘j = 1, veey m,
(ii) an element te K ewists such that Diw =tDo+ o for any oe K,
then

WX, oy X5 Xy ey X ™)
m aj(a,-—l)
=[] Ew(f,5)-[Ji012t . (q =)t [E(f;, T = WX},
i=1

Isy<pusm
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where
X; = (t"wu, .-.,t"a’nj.]‘), x =0, ...,aj—l; j =1, crey M.

13. The superposition Fo = F, F, ... F, o corresponds to a factoriza-
tion of the polynomial ¥ (w), constant coefficients of which are taken from
a field C,. The field of operators is not closed algebraically [9]. However,
if the operational equation (2) has been obtained from the partial differen-
tial equation (1), the polynomial f(w) = a,w™+ ... + a,w + a,is a product
of linear factors (w—w;) only ([4], p. 242-244), and if the equation
e =a,D"0+ ... +a,@ =0 has m linearly independent solutions, then
each of the equations Dz = w;» (j =1,..., m) has a solution @; +# 0.
This follows from the theorem on the uniqueness of solutions (see [1]).

In the particular case where the polynomial ¥ (w) of degree n con-
tains only linear factors, i.e.,

P(w) = o[ ] 0y,

i=1

the resultant of the polynomials f,(w) =w—w, and f,(w) =w—w,
is equal to (w, —w,). If the product 7! ... @,m of the solutions of the equa-
tions Dy = w;» (j =1, ..., m) is different from zero, then the following
result [5] is obtained from Theorem 3°:

(wtl))(O)’ ceey (wg)("l_l), ceey (O.)?n)(o), ceey (wg.)(”m'l)

(w})(o), secy (wi)(al—l)’ srey (wrln)(o)v teey (w:n)(am_l)

------------------------------

(@ 7N, oy (@D, (@O, L (@Y

=ﬁ[1!2!...(a,,-1)!]- [] (@.—w)s,

=l 1<x<u<m
‘where
(0 = (¢ =0,1,...), () =0 (» =1,2,...),
(@°) =a(0—=1)...(6—v+1) 0" (o, =1,2,...)
and the natural numbers a,, a,, ..., a, satisfy the condition a; +ay+ ...
e Fa, =0,

The determinant on the left-hand side is a simplified wronskian of
the solutions of the equation Fo = 0 after multiplying by the product
o' ... 2% (see the beginning of the proof of Theorem 2).
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14. A polynomial F(w), with the coefficients from the field ¢, can be
factorized,

F(w) =[] f(w).

i=1

Let the polynomials f;(w) (j =1,...,m) be irreducible over this
field Cy. By Theorem 3? the wronskian of the elements t*#,, (x = 0,1, ...
veyay—15 p=1,...,n; j =1,...,m) is the product of the resultants
and discriminants of the polynomials f;(w) and of the powers of the wrons-
kians W(®, ;, ..., o, 1,1)- The resultants of the polynomials which are relatively
prime (with respect to one another) are different from zero. In spite of
the irreducibility of the polynomials in the field C,, it may happen, how-
ever, that some discriminants of the polynomials f;(w) may vanish
the case of a field having a positive characteristic. This is because the
algebraic derivative f{(w) can be identically zero (all coefficients are ze-
ros) in the case of positive characteristic.

15. If we want to infer the linear independence of the elements #*a, ;
(» =0,1,...,¢,—1; p=1,...,m; j =1,...,m) from the linear inde-
pendence of the elements #, ;, ..., #, ; for any j =1, ..., m by Theorem
3% we must prove that the wronskians W(a,,,...,®, ;) are different
from zero and they are not divisors of zero. The trouble may be avoided if
we do not use wronskians at all. The next theorem needs only the idea
of linear independence and some algebraic theorems.

THEOREM 4. A linear space K over a field C, of constants is considered. If
(1) operations t and D satisfy the conditions

t(aw+by) = alo+bly, D(ae+by) =a-Do+b-Dy,
Din =tDo+ao  for any a,beCy, ,ye K,

(ii) the polynomials f;(w) (j = 1, ..., m), over the field C,, are relatively
prime (with respect to one another) and no fiy(w) has a common factor with
its derivative,

&)
(iii) fo = 2;%1' D'w =0 (a,;eCy, 0c K) for @ =w,,(p =1, ..., 53
j=1,...,m),
(iv) the elements @, ;, ..., .5 are linearly independent over the field
Coforamyj =1,2,...,m,
then the elements t"w,; (» =0,1,...,q;—1;p =1,...,p;; j =1,...,m)

are linearly independent over C, for arbitrary natural numbers a; (j =1, ...
ooy m).
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Proof. If the equations fo =a, D0+ ... +ap@ =0 and go =
b,D"®+ ... +bew = 0 have a common solution @®,, then o, E(f,g)
=0, where E(f,g) denotes the resultant of the corresponding polyno-
mials f, g. This follows from the system of equations (11).

Suppose that the elements t*@,; (x =0,1,...,4—1;p =1, ..., p;;
j =1, ..., m) are linearly dependent, i.e.,

m P %1

DY Y eupytie,; =0

J=1 p=1 x=0

a.nd not all o,,, are zeros. Let ¢, 5., # 0. “The equations f,'@ = 0 and
I f,,, ® = 0 have the common solutnon

» -1 m P -1
mo= ) Pl == 3 Y 0y ta
P=1 %=l =2 pm=l xm0

and E(f%, f22...fa% @, = 0. The resultant E(f;',f....f.™ does not
equal to zero because the polynomials f;'(w) and f;*(w)...f,™(w) are
relatively prime, and so the equality

) a;—-1
2 2 c"-ptl't”wﬂul = 0
p-l x=0
is obtained. We write @, , = @,, p, = %, a; =k, ¢, 51 = €, 5, [1(Ww) = f(w)

in order to simplify notation. Now

k-1 =

@y = 2 Zo,,.,,‘t"wp =0, ¢, #0.

%m0 pel

If ¢,_,,, # 0 for a certain subscript p (p =1,...,n), weput k; =k,
and if a;_;, =0 for p =1,...,n, we choose the number k, in such
a way that ¢, , = 0 for x> ko, p=1,...,nbut ¢ _,, # 0 for a certain
subscript p.

The element

Yo = Crp-11P1F -or T+ Cpp1,nTy

is different from zero. This follows from the linear independence of the
elements @, ..., @,.

The equa.tlon f ¥o=1p = 0, corresponding to the polynomial g('w)
= ff~l(w) = b,w*+ ... +b,w+b,, is satisfied not only by the elements
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t*yo (» = 0,1, ..., k,—2) but also by the element #*o~'y, because

ko—2
thlyy = — ) Zcu_p-t"mp.

%=0 D=l
Let g®'(w) denote the »-th derivative of the polynomial g(w), t°0 = a,

(’: )-t”"m = 0 for » > p. Using the condition Diw = tDo+w®, we prove
the following identity

8 8 i

1 . 3 :

No,piyg = ' 3 (1) (2)-vrtpiry,
j=0 j=0 »=0

8 J \
" &Y G () e

- S0 Staoee = )
v=0 J=r

ye=0

Putting successively p =1,2,...,k,—1, we see that the element
¥y, satisfies not only the equation fo = 0 but also the equation g*o="g =
0, corresponding to the polynomial

g"o~(w) = [fV(w)Fo~" +Q(w)-f(w),

where @ (w) is a polynomial. J. Mikusiriski proved [8] the following the-
orem: “If the equations fo = 0 and go = 0 have a common solution @, # 0,
then the polynomials f(w) and g(w) have a common divisor of positive degree”.
According to this theorem, the polynomials f(%) and [f*(w)}*~! must
have a common factor of positive degree, which contradicts assumption
(ii).

A theorem, very similar to Theorem 4, was proved by J. Mikusinski
[8] by another method, assuming p; = n;, @,; = D* 'w;. The number
of solutions of the equation f» = 0 is not necessarily equal to the order
of the expression fz in the proof of Theorem 4.
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