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It is well known that the discontinuities of a derivative f' are pre-
cisely the points of non-uniform differentiability of f(cf. [2] and [4])
and that the set of points of non-uniform differentiability of f is an F,
and of the first category (cf. [2] and [1]). In the present paper, the above
concepts have been studied in a more general way with the help of the
notion of uniform Dini derivatives.

Let a function f be defined on an open interval I of which [a, b] is
a closed subinterval. Let us further suppose that D*f(x) is finite for each
ze[a, b]. Let

f(@+h)—f(=)
h

@(z, h) = _-D+f(w)

Now for each point ze[a,d] and for each ¢ >0, there is d(z) >0
such that ¢(x,h) < ¢ whenever 0 < h < d(x) and z-+hel. For fixed
e >0, the function é(xr) may not have a positive lower bound in [a, b].
If, however, é(x) has a positive lower bound for every ¢ > 0, then D*f
is said to be the uniform right hand upper Dini derivative of f(x).

A point £e[a, b] is said to be a point of uniform right-hand wupper
Dini differentiability if for each &> 0 there is a neighbourhood of £ in
which d(z) has a positive lower bound. So, a point in every neighbourhood
of which é(x) has no positive lower bound for some sufficiently small
¢ > 0 is said to be a point of non-uniform right-hand upper Dini differen-
tiability. It is clear that D*f is uniform or non-uniform at &£e[a, b]
accordingly as Lim ¢(x, h) = 0 or > 0. Taking w*(£) = Lim ¢(z, h)

(@,h)—(¢,04) (@,h)—>(£,0+)
we shall term w™ (&) the measure of the non-uniformity of D*f at & and

the function w* (x) defining the measure of non-uniformity of D*f at
2 is termed the measure function of non-uniformity of Df.

In a similar manner we introduce the functions w_(x), w—(x) and
w_(2) by considering D_f(x), D-f(x) and D_f(x) respectively, in the
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following way:

wip) = m (JEIDIE —b+f(x)},
(®.h)—>(&,0+)

w-(§) = Lim {f(w-l-h)—f(w) —D‘f(w)},
(@) (8:0—) h

w_(£) = Lim {f(m—l—h)—f(w) —D_f(a;)}.
@R E0-) h

It is clear that if f is differentiable, then & is a point of uniform dif-
ferentiability of f [2] iff all the four Dini derivatives are uniform at &.
If the right-hand derivative f, exists, i.e., if D*f = D_f, then & is a point
of uniformity of f, iff & is a point of uniformity of both D*f and D.f.
Similar is the case for the left-hand derivative f_, when it exists.

THEOREM 1. The function w™(z) is upper semicontinuous on [a, b].

Proof. Let £e[a, b] and let ¢ > 0 be arbitrary. From the definition
of w* (&) there is a neighbourhood D of & and a 6 > 0 such that ¢(x, h)
< wt(£)+¢/2 for all xeD and 0 < h < 4. If possible, let there be points
x' in every mneighbourhood of & such that w*(#') > w'(£)+e So there
is an o'eD such that w*(2’) > w*(£)+ ¢/2 and hence there are points
weD and h, 0 < h < J, such that ¢(z, h) > w*(£)+ ¢/2, which is a con-
tradiction. This completes the proot.

COROLLARY 1. If w*(x) is unbounded from above on [a,b], then there
is at least one point &, where wt(§) = oo.

For, if w*(z) is unbounded from above on [a, b], there is a point
£ in every neighbourhood of which w®(#) is unbounded and since w™(x)
is upper semicontinuous, w* (&) = co.

COROLLARY 2. The set of points where w'(x) = oo is closed.

For, since w*(x) is upper semicontinuous, the set {x:we[a,b];
wt(z) > n} is closed for each positive integer n and hence the set

(@:aela, b]; w*(@) = oo} = () {e:2e[a, b]; w*() > n)

is closed.

THEOREM 2. If f is continuous at Ee[a,b] and if w'(&) = 0 then
D+f is lower semiconfinuous at §.

Proof. Since w™(&) = 0, corresponding to ¢ > 0 there is a neigh-
bourhood D, of & and a 6 >0 such that ¢(x, h) < /3 for all x¢D, and

for all k, 0 < h < 6. Since Limg(&, h) = 0, there is an %y, 0 < h, < 8,
h—o0+ ’
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such that |@(&, k)| < ¢/3. Let

f(@+hy)—f(x)
hy :

p(x) =

Since y(x) is continuous at &, there is a neiglibourhood D, of & such
that |y(z)—w(&)| < ¢/3 for all zeD,. Let D = D,n D,. Then D is
a neighbourhood of &. For zeD we have

_ f@+hy)—f(x) +f(w+h1)—f(m) +

D*f(x)—D?*f(§) = D*f(a)

hy hy
hy) — hy) —
G CRPPIR CE
= — ¢(@, by)+o(&, b)) +y(x)—yp(§)
> — e/3—e[3—¢[3 = — e

Hence D*f(x) is lower semicontinuous at &.

COROLLARY. If f is continuous at Ee[a, b], [, exists in [a, b] and if
wt (&) = w, (&) = 0, then f. is continuous at &, and hence f'(&) ewists.

THEOREM 3. If f is continuous on I, then the set

{w:wela, b]; w (o) >381[1Pb][1)+f (#)—D.f(x)1}
€|a,
is of the first category and it is an F,,

Proof. Let s = sup [D'f(x)—D,f(x)] and let ¢ >s. Then since
Zze[a,b]

w*(x) is upper semicontinuous, the set {x:xe[a, b]; w*(x) > o} is closed.
If possible, let this set be dense in some subinterval [a', '] = [a, b] and
8o [a',b'] c {x:xe[a, b]; wh(z) > 0}. Let &e[a’,d’]. Then w'(§) > 0.
Choose ¢ > ¢’ > s and a positive null sequence {6,}. Then since w* (&) > ¢,
there is a point &' in some neighbourhood of & contained in [a’, '] and
a number h,, 0 < h; < §;, such that

J(&'+h)—f(&)

R » Y ' ’
hl Df(£)>6'

Therefore we can find an h,, 0 < h, < h,, such that

FE AR —f(&) _ JE+h)—fE) _

I, - s =
Since
foth =@ g fethfo

7 — Colloquium Mathematicum XXI 1



98 N. C. MANNA

are continuous at &', there exists a neighbourhood D, of & contained
in [a', '] such that for every point zeD, we have

f@+h)—f@)  fl@+h)—f(a)
hy hy

> o',

Now w'(&') > o and hence there is a point £ eD, and an hy, 0 < hy
< min [é,, h,], such that

J(&" +-he) —f (&)

_ + 7] ,
7y D7f(¢&") > o

Proceeding as above, we can find a neighbourhood D, of &'’ contained
in D, such that for every ze¢D, we have

foth) @) _ foth)—@ _
hs b

where 0 < h, < hs.

Continuing this process we get a decreasing sequence of neighbour-
hoods {D,} such that for every x¢D, we have

f(w+h2n—l)_f(w) . f(w‘l"hzn) —f(ﬁ) > ,

g,

h’2n— 1 h n

where 0 < hyy < hgp_y < Min [, ky_5]. We can choose the neighbour-
hoods D, in such a way that there is at least one point z, which belongs
to each D, and so at this point

J(@o+hgn_1) —f () . J(@o+han) —f (2) > o

h2‘n—l h’2‘n

for all n. So we conclude that
D*f(a0)—D.f(w,) > o

But since z,¢[a, b], we have D*f(z,)—D, f(x,) < 8< ¢'. This is a con-
tradiction. Hence we conclude that the set {z:xe[a,b]; w'(x) > o} is
closed and nowhere dense. Considering a sequence {o,}, o, > 8 and o, — 8,
we infer that the set

{x:xela, b]; wH(x) >s} = O {z:xela, b]; wt(z) > 0n}

is an F-get of the first category.

COROLLARY. For a continuous function f, if f, exists, then the set
where f.. is mot continuous is a set of the first category and hence f' exists
except a set of the first category.
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THEOREM 4. If f is continuous on I, then a necessary and sufficient
condition that D¥f be continuous at a point Ee[a, b] is that

Lim ¢(z, k) = 0.
(@h)—(£,0)

Proof. To prove the necessity we shall show that for each ze[a, b]
and each b # 0, x+hel, one of the following inequalities must be true:

f@+h)—f(x)
h

(i) D*f(x+0h) < < D_f(x+9h),

(ii) D.f(z+6h) >

IEENAD) - pfiasom,
where 0 <4 < 1.
Let ce[a, b] and c+hel. Let

flo+h)—flo)
9.

Then y(x) is continuous in {¢, ¢+h]. Also p(¢+h) = y(c). Let M and
m be the upper and the lower bounds of v on {¢, ¢c+h]. If M = m, then
v is constant on [¢, ¢+h] and hence the above conclusion remains valid.
So, let us suppose that at least one of M and m is different from w(c).
If M # y(c), then there is a ¢, 0 <& <1, such that y(¢c+oh) = M,
and hence i

y(z) = f(x)—

D*y(e+9h) < 0 < D_y(o+9h),
i.e.

fle+h)—f(o)
h

D*f(c+0h) < < D_f(c+0h).

Similarly, if m # y(¢), then for some 4, 0 <9 < 1, we have

J(e+h)—f(e)
h

Thus for each ze[a, b] and h with x+hel, at least one of the fol-
lowing must be true:

D, f(c+3h) >

> D~f(c+9h).

f(w+h)—f(@)
h

< D_f(z+9h)—D*f(x),

f@+h)—f(=)
h

(1) D*f(w+90h)—Df(z) < —D*f(w)

(ii) D, f(z-+9h)—D*f(x) > —D*f(x)

> D~f(w+0h)—D+*f(a).
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Since D*f(x) is continuous at & D~f(x), D, f(x) and D_f(x) are also
continuous at & and

D¥f(&) = D™f(&) = D,f(¢) = D_f(¢)

(cf. [3], p. 204).
Hence, letting « - &, h — 0, we get

f(@+h)—f()
h

Lim{ —D+f(w)} = 0.

The proof of the sufficiency follows from the proof of Theorem 2 if
we note that for any ¢ > 0 there is a neighbourhood D, of £ and a 6 >0
such that |p(z, k)| < ¢/3 for weD, and 0 < |h| < §, and hence that

|D*f(2) —Df(€) < lp (@, hy)l+ lp (&, By)l+ (@) —p (&) < &

whenever xzeD, N D,.
I am thankful to Dr. S. N. Mukhopadhyay for his kind help in the
preparation of the paper.
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