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C’-solutions of a system of functional equations

by Z. KomiNek (Katowice)

Abstract. The object of this paper is to study the system of functional equations
(1) 4’((9’) = hf(m'(pl[fi,](w)]""v Q’n[ﬁ'.n(@]): t = 1’ ey B,

where f; ;, h; denote the known functions and @; the unknown functions. There are
given conditions for the existence and uniqueness of C7-solutions of the system (1)

and also there is proved a theorem on the continuous dependence of CT-solutions of
the system (1).

The purpose of the present paper is to prove some theorems concerning
the existence and the continuous dependence of C"-solutions of the system
of functional equations

(1) i) =k (wa o1 [fu(®)], .., ‘pn[fin(w)]) (t=12,...,n),

where f;; and h; are given functions and ¢; are unknown functions of one
real variable z. This problem was investigated by B. Choczewski [2] and
by J. Matkowski [6] in the case 7 = 1.

1. Let I be an interval (0, a), a > 0. We denote by C"[A] the class
of functions which have continuous derivatives up to order r in 4,0 <r
< oo and by S7[I] the class of functions fe C"[I] which fulfil the condition

0<%<1 for zel, v # 0.

We assume the following hypotheses:
(I) fune 8T[1],

h;e C"[Q], where Q =1XR"

() (0, ...,0) =0

for i,k =1,2,...,n.
We denote by A[I] the class of functions ¢ = {¢;},¢ =1,...,n,
defined in I and such that ¢;(0) = 0.
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Let us define the funections %;, by the recurrent relations:
hur(@y YTy -+ Yms Y1y +- Yy Yn)

oh,
26_("”’ '.'/17' 1?/1;)"‘2 9y o (@, ?/17- 7yn)ypf’p(w)’
(2) p=t

h .
hisa (2, ygr“-’y?u 7y'1‘+1, ’yﬁ-H) = (977 Ylyoeer Yny ove yk)‘i‘

Oh;
+ Zz dy zk (@ Y1y oees Yny oo e y’fa <y yn)y”lfip(a’);

p=1 =0
t=1,2,...,m,k=1,...,7—1, where (2, ¥}, ..., Yoy .-es Y1y s ¥5) eI X R°H1,
We have the following two lemmas:

LeMMA 1. If hypotheses (I), (II) are fulfilled, then the functions hg
are defined and are of class O"~% in Q x R™. Moreover, we have for i =1, ...
Mk =1,...,7r

(3) by (2, ?/g’ ceey ?lgn cevy ?!lfy P yn)

= gik(a” ygr sy ygn seey y’f_q, LRy yn 1)+2 6 0 w; ?/1) veey yn)yp[fip(ﬁ)]k
p=1

where gge CT¥[Q x RM*-1],

LeMMA 2. Let hypotheses (I) and (II) be fulfilled. If ¢ A[I] is a C'-
solution of the system of equations (1) in I, then its derivatives ¢{® satisfy
the equations

<P$") (@) = hik("va o1l fa(@)]y o5 @alfin(2)]s - 1?’%1‘) [(fa(@)], -, ‘ch) [fm(w)])y
1=1,...,mk=1,..,7

The proofs of these lemmas are similar to the proofs of analogous -
Iemmas contained in [4].

Remark 1. Lemma 2 implies that if a function ¢ e A[I]is a C"-solution
of system (1) in I, then the values

(@) 7t = o(0), i=1,.c.,m L=1,...,7
17,9=<P{(0) =0, +1=1,...,n,

fulfil the system of equations

(5) ﬂi— 31(0, - ’7717- '777}”"-777117“'7’75-)-

2. Now we suppose that ge A[I]JNC"[I] is a solution of system (1).
Let us write ¢; in the form

(6) gi(@) = Py(@)+y:i(®), ©=1,...,m,
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where

(7) Po) = ¥ &

and y;(z) is the rest in the form of Peano.
We define the functions
at .
(8)  hi(m,¥3,...,Yn) = hi(a’y Py [fu(@)]+93, .-, Pn[fin(m)]+y3)—P‘(w).

It is easily seen that these function belong to the class C'[2]. It
follows from (6) and (8) that y; is a C"-solution of the system

(9) _ i(®) = hi (8 y1[Fa(@)]; -+, Valfin(@)])
such that y;(0) = 0. Moreover, by (6) and (7) we get
(10) 7i(0) = ... =y (0) = 0.

We observe that if y = {y;},7 =1,...,n, is a solution of system

(9), then ¢ = {¢;},? =1, ..., n, defined by (6), where
LY
Pi(x) = g
=1

is a solution of system (1) and %} are arbitrary fixed numbers. Thus we
have the following

LeMMA 3. The system (1) has a solution pe A[I1NC"[1] iff the system
(9) has a solution in the class C"[I].

Starting from the functions %; instead of h; we define functions Ay,
and g}, analogously as h; and g;, and we can prove analogues of Lemmas 1
and 2. Now, by (10) and Lemma 2 it is seen that

w(0,...,0) =0, k=1...,7i=1.3,m,
and by Lemma 1
g:k(o”"’o):()’ k=1,---,7',1:=1,...,’n.

THEOREM 1. Let hypotheses (I) and (II) be fulfilled. Suppose, further,
thatl inequalities

(11) |f£k(w)|<17 Lwhk=1,...,n,
and
oh; 0 Or ’
ayo (.'E, Y1y <eey yn) [fzp(m)] < 01'137
D

(12) n
Dby <1,
p=1

t =1,...,n, hold in a neighbourhood of zero. Then there exists at last one
C"-solution @e A[I] of the system (1) in I fulfilling conditions (4).

8 — Annales Polonici Mathematicl XXX.2
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Proof. Without loss of generality we may assume that

(13) hy(0y...,0) =0 and ¢g4(0,...,0) =0,
t=1..,n k=1,...,r7.
Hence and by continuity of
oh; ,
9 (2, ?/‘1'1 ceey ?/fon ~"’?/I—17 ceey y;‘l) and ’07;(‘”’ y‘lla“-’yg)[fip(\w)]r
p
we have
9 (@, 925 s I < (L= D) 85) B in 0,0’y X0, @™,  and
=1
(14) ’

oh; , - oh; , .
‘a?; (, ?I'i‘, seey y:) [f‘i;p(w)] - 0y; o, ..., 0)[f1'p(0)]

<(1-ﬁ‘«9,.,,)1{

p=1

in <0, ¢) x {0,d)", where ¢’ >0 and d >0 have been chosen in such
a manner that inequalities (12) hold in {0, ¢’> and (0, ¢'> x <0, d)", respec-
tively, and K > 0 is an arbitrary fixed number. Now we choose a ¢ so
that

(15) 0 < ¢ < min(¢, 1, d/K)
and we define the set D = 2 x RV~ a5 follows:
D= {(«, y‘:: ¥ ) 0< e <e, I?/;ﬂ <Kz 1l=0,1,...,7~1, p=1,...,n}.

To a given ¢ >0 we assign the numbers

(1 — zgnl 19,-1,) €

’
§ = TTiaK

1=1,...,n.

The functions g;, are uniformly continuous in D, fi; are uniformly
continuous in (0, ¢), and 9h;/dy} are uniformly continuous in
, ar
D' = {(@ Y], ..., 43): 0< v < e, |yp| < Ku}.
Hence we have

|9+ (%, Ty eens y;m_l)-gtr(?"’ 37‘1)’ ceey E:l” < 3;1

(16) ah — ’ —\r ah.i = = == ' = r ’
G T - B U@ — 55 @ T -, ) U )T <.
o p

for |§—Es<al,=|z;,—§;|<a,, p=1.,.,n 1=01,..r—=1, and
(z, ?_/?y ceey ?7;_'1)-9 .(“3?71’1 ;'ﬂ’?j.:l—]:)e"n‘
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Now we put
0
(17) 6L min(f—, al)

and define T, as the set of all functions defined in <0, ¢) fulfilling the
condition

la(z) —a(Z)| < e for |x—Z| < 4.

Next we define F as the space of functions # which are defined and
are of class C" in 0, ¢). For ue F' we define the norm:
(18) llull = max (sup [ (2)|, sup |u’(x)], ..., sup [u®()]).

©,0 <0,c> 0,0

Thus F is a normed vector space over the field of real numbers and
the convergence of a sequence %,e F' is the uniform convergence of #,,
Upy .., u) in 0, ¢). Hence it follows that F is a Banach space. Let A, < F
denote the class of functions fulfilling the following conditions:

(19) P(0) =¢'(0) =... =¢"(0) =0,
(20) (@) <K for 0<z<e,
(21) ¢ (z)e T,.

We assert that if ¢,, ¢, 4;, then
llpr—@all = sup g (2) — 8 (w)].
<0,¢>
In fact, according to (19), (15) and the mean-value theorem we have

(22) sup g (@) — @2 (@) < sup lpy(2) —@y(2)] < ... < sup ¢ (2) — o (2)|.

€0,e> €0,¢> €0,¢>

For pe A,, by (156), (19), (21) and the mean-value theorem we have
also

(23) lp(@) <Kz and [|¢¥(e) <Ko
for 0K<2<e¢, k=1,...,7r—1.
Now we define the transformation y = P(¢) by the formula
(24) vi(z) = hi(wy o1 [fu(@)], ..., ‘pn[fin(m)])’ t=1...,m,
(P1) P2y - Pu)e AT S 4.

We shall prove that A and ¢ fulfil all asumptions of Schauder’s
+ theorem. The set A, is a compact and convex subset of the space F.
Let (@q, ..., @n) e A. Differentiating (24) & times we obtain

(25) "Pi‘k)(m) = hy (w’ o1 [fa(@)], ...y ‘ch) fin (‘v)])’

k=1,...,rt=1,...,n



196 Z. Kominek

According to Lemma 2 the functions ¢f? are continuous in (0, ¢)
and consequently y;¢ F. Putting # = 0 in (24) and (25) we obtain by (II),

(13) and (19)
v, (0) = h(0,...,0) =0, i=1,...,n,
W9(0) = hy(0,...,0) =0, Ek=1,...,7,¢=1,...,7m.

Thus yp; fulfils condition (19).
By (24) and (3) we have

Iw"’(w)l < igir(ir o1 [firl@)]s .oy ?’g_]) [fin(w)])‘ +

n

0h; r(r
+’ g a_?/;." (w) 1 [fil( oy Pn [f'm {D)]) [f’tp ] ‘P( )[fip(w)] .
In view of (I), (23) and (15) we have
wlfs@]<EKe<d and [¢¥[f;(2)]] z<d,

k=1,...,r—1,1 =1,.
Contmulng our estlmatlon of v we have by (23), (12) and (14)

W@l <(1— Xo,) K+ ZﬂpK =K,
p=1

what means that y{” fulfil inequality (20).
Let us take an arbitrary ¢ > 0 and let |Z— | < §, where d(¢) is given
by (17). By (25) and (3) we have

199 (Z) — v (@) < |94 (®, @2 [Fr (D)), -0, ¢V [Fin (D)) —
—Gir (w, e [ @)1y vy 95V [ fin @)]) +
+Z{

p=1

(@ @1 [fa @]y« vy @[ Fin(2)]) [fin (B (65 (10 (F) ] — 05 [ f1 (@)])) +

+ U @] (556 L@ o D) (T

}.

- W @, 01 L@, -y 2l T @) i (c?)]')

By the mean-value theorem and (21), (23), (15), (11) we have

I‘pp[fap ] q)p [f'cp \ I(Pp(t | If'lp(x) —fzp Kl:-é—;l < 627
90 [fin (&)1 — “’[f.p(w)ll < Ig5 ()] 1 fip(Z) —fz-p < K|Z—3|< 8
forl =1,...,r—1, p=1,...,n, and also

169 [fi (B) ] — 98 [fen (0)1] <
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Continuing our estimation we obtain from (16), (12) and (20)

n
W0 (@) — 90 (@) < i+ D) (e0y,+ Kej) = ¢,
p=1
i. e. y; fulfil condition (21). This completes the proof of the inclusion
vi(4) = 4,.
Let pge A;,8s=1,...,n,1=1,2,3,..., tends to ¢, (in the sence
of convergence in F'). Let us write

Vau(®) = h, (971 Pulfa(@)], ..., ‘Pnl[fsn(w)])7

Veo(®) = hy (377 Pr0lfs1(®)]s <+ -5 Prolfon (m)])

Since kg, 8 =1,...,n, are functions of class C", thus the sequence
ya tends to p,,. On account of the Schauder’s theorem there exists a fune-
tion pe A satisfying the system of equations (1) in <0, ¢).

This solution can be extended onto the whole interval I in the same
manner as in [4] (Theorem 4.2, p. 89).
J. Matkowski has proved in [7] the following

THEOREM 2. Let (I) and (IT) be fulfilled. If

oh; on b .
—— (@, 93, .-y Yn) [fip(m)]

s

(26)

<y  in a certain neighbourhood of zero and

219;,,<1 for p =1,...,n,
i=1

then for any system of o, i =1,...,m,1 =0,1,..., 7, fulfilling (5) there

exists at most one O [I]-solution of system (1) fulfilling the conditions ¢{(0)
)

= i

3. In this section we shall prove a certain theorem on the continuous
dependence for the sequence of systems of equations

(1) ei(2) = hi(@, 91 [fa (@), -5 @ulfin(2)])s
P » D

t=1..,n p=012,...
We assume that

() e ST[I), I =<0,8),a>0;
»
(IT') hie C[Q),  Q=IXE, I(0,...,0) =0;
D

(III)  fy tends to f; in I, h; tends to {)z,- in £, together with derivatives
p 0 D

up to the order r uniformly on compact sets.
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For arbitrary p we can define the sequence k; in the same way as
P

in Section 1. Thus for arbitrary p Lemmas 1 and 2 hold. By induction
we have

LemMA 4. Let hypotheses (I'), (I') and (III) be fulfilled. The
sequence hy, tends to zaik in QX R™, g, tends to gy, in 2 x B"*~V, uniformly
» » 0

on compact sets.
It follows from Lemma 2 that if ¢ = {¢;},7 =1, ..., n, functions

D P
belonging to A[I] are C"[I]-solutions of the sequence of systems (1'),
then

(4) 77 _‘P(zk)(o)i i=L..,nk=1..r,
satisfy the system of equations
(8') ’h = hzk(o a’?n ) 7/2)

V4

Hence and by (3) we obtain
dh,

b .
(E_ - (0,...,0) [fij(o)]k) n = glc(o 0, 7717 .3 ﬂn )7
ay,
where k =1,...,7, 4,) =1,....,n, E is the unit matrix and
ok Ik
X 2 2
n,= :k y I =
P Nn o Ink
» »

Hence we have the simple

LEMMA 5. Let hypotheses (I') and (I1') be fulfilled. If (11), (12), (26)
hold, then for every p the following statements hold true:

(a) the system of equations (1') has exactly one solution gpe A[IINC[I]
iff all characteristic rotts of the matriz
oh;
» ’ . .
(27) ‘;’-k = (a_y‘;(o’ ---70)[513(0)],‘)7 ) =1..,n,

are different from 1 for k =1,...,r;

(b) <f for some k there exists a characteristic root equal 1, then the system
of equations (1') has a C7-solution iff the ranks of the matriz A, and of the
»

complement matrixz are equal. In this case the system (1') has an (n—1,)-...
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. (n—1,)-parameter family of C"[I]-solutions, where I, denotes the rank of
the matriz (E— A),).
D

LEMMA 6. Let hypotheses (1'), (I1'), (XII) and condition (27) be ful-
filled. If ¢ = {p;}, © =1, ..., n, form a solution belonging to A[I]NC"[I]

p P
for p =0,1,2, ... of the sequence of systems (1'), then

lim ¢{?(0) = ¢{"(0)
p—oco P 0
Jor k=1,...,7i=1,...,n.

LeEMMA 7. If A is a compact metric space and the sequence of transfor-
mations T fulfils the conditions
»

1° T(A) c A,

2° T is conlinuous in A for p =0,1,2,.

3° T(tp) = ¢ if and only if ¢ = (p and qaeA, p =0, 1,
4° T tends to T uniformly in A

then (p i8 convergent and lim g = ¢.
P00 P [}

The proof of this lemma may be found in [6].

TBEOREM 3. Let hypotheses (1'), (II'), (III) dbe fulfilled. If (11), (12),
(26) and (27) hold for p = 0,1, 2, ..., then there exists an interval 0, c)
such that for arbitrary p there exists exactly one CT-solution ¢ of system (1').

D
Moreover, ¢ tends to ¢ together with derivatives up to order r, uniformly in
]

P
this interval.

Proof. Let 7,, F, A, and A be defined as in the proof of Theorem 1.
We define the norm in the set F = F" as follows:

at
(28) N1y -+ @a)ll = llgall + ll@ell + ...+ ll@all.
Now we define the sequence of transformations 7':
p

T = (915 -ees )y
b4 D

where yp; are defined by the formula
»

yi(z) = hi(a’r P1[fi(@)]y -o s ‘Pn[fin(*’”)])-
P 4 » D

We shall show that A and the sequence of transformations 7' fulfil
»

the hypotheses of Lemma 7. Similarly as in the proof of Theorem 1 we
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can show that 1° and 2° are fulfilled. Now, Theorem 2 and Lemma 5
imply condition 3°. To prove 4° it is sufficient to show that for a given
& > 0 there exists an N such that for p > N and for every ¢e A we have

ITlp]—Tlell< e
D 1}
From (28), (21) and Lemma 2 we have

"g'[‘Pu ceey ‘Pn]“%T‘Pu |

n
= 2 lploss -oos gl = pulgas sl

= ZSUPIhzr(W: @1 [fu 3 ‘Pg)[fln(m)])—(’:’lr(mrq’l [oftl )], ..., Q’g)[ftn(af')])l

= .0
Z ‘sucl; l’;lr(a:"! ‘Pl[,zll(m)]’ ceny ?’(r:)[fln(w)]) _’[')’lr (997 ‘P1[£u @)1 ..., ‘Pg) [flu('m)])' +
+(soltl>)|{:'lr(w’ (pl[?fll(w)]’ 7‘Pg)[fln(m)])-’glr(w, ‘Pl[.’fu(‘v)]a .y ‘P(r:)[fln(m)])” .

According to Lemma 4 the sequence h,, tends to h,, uniformly in

D x (0, K>. Thus there exists p, such that for p = p, and ze (0, ¢c) we
have

Iﬁlr(wa P E’fll(w)]’ v ‘Pn) [fln(a")]) - hlr("”" P [fll $)], * ‘Pg) [fln(w)])l < 5/2”"

It follows from the uniform continuity of ¢{® in (0, ¢> that there
exists a p, such that for p>p,and 1 =1,...,7,k =0,1,...,7r

(k)[fh ()] — ‘P(k)[fu(w)] <6
Continuing our estimation we have
L1 oo @) =Tl -5 gulll <&

for p > max(py, P1), 0 <2< ¢ (@1y...,pn)e A. Thus 4° is proved.
Now, Lemma 6 and (6) complete the proof.

4. In this section we consider the special case of a system of equations
(1), namely:

(29) 9i(@) = hifz, gy [f (@), .., @ [f(@)]), ¢ =1,...,m.

We shall prove that in this case the assumption (11) is superfluous
(see Theorem 1).
We have the following theorem:



System of funmctional equations 201

THEOREM 4. Let hypotheses (I), (II) and condition (12) be fulfilled.
Then there exists at most one CT-solulion of system (29) belonging to A[I]
and fulfilling conditions (4).

Proof. It follows from hypotheses (I) that [f'(0)] < 1. Theorem 1
guarantees the existence of a C"-solution in the case [f'(0)] < 1, thus it
is sufficient to consider the case |f'(0){ = 1. Now, by (12) we obtain

n

2 oh, .
l=1 a_y?(o’n--,o) <1, 1/=1’-;-’no
Let
at | Oh; |
¥y = a_yg(o’“"o)}“’

where ¢ > 0 is chosen so that
”
(30) doy<1, i=1,..,n.
=1

From the continuity of dh;/dy; and by the mean-value theorem ‘there
exists a neighbourhood of zero V such that for (z, %%, ...,7%), (=, ¥}, ...
...y Y0)e V we have

i (@, By ey Fo) —Ri(@y BT, ooy BRI < ) BT 1)
lml

Since #; > 0 and inequalities (30) hold, thus from Lemma 1 of [5]
it follows that 97 > 0, where )

1 _
il —

B, © #1,
1 - 0,”, 'l: == l,
and
P l i+ 9Ny, 1 #
P - t3 t.3 x £ -
’9i10£+1l+1_'9i+11011+17 1 =1,
x=1...,n—1,%,1l =1,...,n—» Now, by Theorem 1 of [1] (see also
[3], Theorem 4) there exists exactly one continuous solution of the system

(29) in I. We shall prove that this solution is of class C"[I]. For this purpose
we introduce the sequence of systems of equations

(31) pi(z) = hi(‘”} @1 [fe(@)], -, ‘Pn[fk(a’)])r i = :_I-’ veey My
where f.(z) = t.f(z),0 <, <1,lim¢t, =t =1.
fe—

In view of Theorem 1 and Theorem 1 of [1] for ¥ = 1,2, ..., the
system of equations (31) has exactly one C"[I]-solution ¢, = {p;},7 =1, ...
...y M, belonging to A[I] since |f;(0)| = #, < 1. Thus we have

P (2) = hi(w; Pl fe(®)]y -+ Paie [fk(-’”)])-
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Differentiating both sides of this equality we have

, oh;
pa(®) = %(a), Puclfe(@)]y ..oy ‘Pnk[fk(w)])'l'

oh; ) '
+ Za_y;-(w’ 1L @)y« oy P [ (2)]) o [fi () 1f2 () -

This means that @,,(x) = @y (z) satisfies the system

(32) Dy (w) = Hik("'v, D[ fe(@)]y ..oy ¢nk[fk(a’)]);

where

at Oh
Hup (2 1y .00y V) = 0_5!:

(# @uiLFe (@)D, -y P Fic(@)]) £

=y oh, ’
+ 2 6.'1:; (-’D, oulfr(@)], ..., ‘Pnk[fk(-’v)])fk(:v)vj.

j=1

Since the sequence f; tends to f, uniformly on every compact subset
of I, the sequence g, tends to ¢; on every compact subset of I (see [1],
Theorem 5). Hence it follows that H;, uniformly converges to the function

oh
Hip(@) 015 o3 %) = 220 01 [ (@)] -5 ou[f@)]) +

=y ok
+ 2 @f‘m, @1 [f(@)); -, 0a [F (@) (@)%

i=1

on every compact subset of I x R*. For k = 0,1, 2, ... we have

n n

0H,, oh; ,
,.4_?. 7 (o,-.-,O)’—g; ayj(o,...,mf,,m)!
>y | Ok,
= Du 0_(0""’0).<1‘
j=1 Y5

Therefore (similary as above) @, = ¢, is the unique solution of the
system of equations (32). Applying again the theorem on the continuous
dependence of continuous solutions (Theorem 5 of [1]) we obtain lim gy

k-0

= @,;, uniformly on every compact subset of I. Hence it follows that
@; is of class C'[I] and ¢; = ®,, in I, because limg,, = ¢;. Repeating
%

—00

this procedure r times we obtain ¢;e C"[I]. This completes the proof.
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