ANNALES POLONICI MATHEMATICI XXX (1974)

C'-solutions of a system of functional equations

by Z. Kominek (Katowice)

Abstract. The object of this paper is to study the system of functional equations

(1)
$$\varphi_i(x) = h_i(x, \varphi_1[f_{i,1}(x)], \ldots, \varphi_n[f_{i,n}(x)]), \quad i = 1, \ldots, n,$$

where $f_{i,j}$, h_i denote the known functions and φ_i the unknown functions. There are given conditions for the existence and uniqueness of C^r -solutions of the system (1) and also there is proved a theorem on the continuous dependence of C^r -solutions of the system (1).

The purpose of the present paper is to prove some theorems concerning the existence and the continuous dependence of C^r -solutions of the system of functional equations

(1)
$$\varphi_i(x) = h_i(x, \varphi_1[f_{i1}(x)], \ldots, \varphi_n[f_{in}(x)]) \quad (i = 1, 2, \ldots, n),$$

where f_{ij} and h_i are given functions and φ_i are unknown functions of one real variable x. This problem was investigated by B. Choczewski [2] and by J. Matkowski [6] in the case i = 1.

1. Let I be an interval (0, a), a > 0. We denote by $C^r[A]$ the class of functions which have continuous derivatives up to order r in A, $0 < r < \infty$ and by $S^r[I]$ the class of functions $f \in C^r[I]$ which fulfil the condition

$$0 < \frac{f(x)}{x} < 1$$
 for $x \in I$, $x \neq 0$.

We assume the following hypotheses:

(I)
$$f_{ik} \in S^{r}[I],$$

(II)
$$h_i \in C^r[\Omega], \quad \text{where } \Omega = I \times \mathbb{R}^n,$$

$$h_i(0, \ldots, 0) = 0$$

for i, k = 1, 2, ..., n.

We denote by $\Lambda[I]$ the class of functions $\varphi = {\varphi_i}, i = 1, ..., n$, defined in I and such that $\varphi_i(0) = 0$.

Let us define the functions h_{ik} by the recurrent relations:

$$h_{i1}(x, y_1^0, \ldots, y_n^0, y_1^1, \ldots, y_n^1) = \frac{\partial h_i}{\partial x}(x, y_1^0, \ldots, y_n^0) + \sum_{p=1}^n \frac{\partial h_i}{\partial y_p^0}(x, y_1^0, \ldots, y_n^0) y_p^1 f_{ip}'(x),$$
(2)

$$h_{ik+1}(x, y_1^0, ..., y_n^0, ..., y_1^{k+1}, ..., y_n^{k+1}) = \frac{\partial h_{ik}}{\partial x}(x, y_1^0, ..., y_n^0, ..., y_n^k) +$$

$$+ \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} \frac{\partial h_{ik}}{\partial y_n^l}(x, y_1^0, ..., y_n^0, ..., y_1^k, ..., y_n^k) y_p^{l+1} f_{ip}'(x),$$

 $i=1,2,\ldots,n, k=1,\ldots,r-1, \text{ where } (x,y_1^0,\ldots,y_n^0,\ldots,y_1^s,\ldots,y_n^s) \in I \times \mathbb{R}^{s+1}.$ We have the following two lemmas:

LEMMA 1. If hypotheses (I), (II) are fulfilled, then the functions h_{ik} are defined and are of class C^{r-k} in $\Omega \times R^{nk}$. Moreover, we have for $i=1,\ldots,n, k=1,\ldots,r$

$$(3) \quad h_{ik}(x, y_1^0, \ldots, y_n^0, \ldots, y_1^k, \ldots, y_n^k) \\ = g_{ik}(x, y_1^0, \ldots, y_n^0, \ldots, y_1^{k-1}, \ldots, y_n^{k-1}) + \sum_{p=1}^n \frac{\partial h_i}{\partial y_p^0}(x, y_1^0, \ldots, y_n^0) y_p^k [f'_{ip}(x)]^k, \\ \text{where } g_{ik} \in C^{r-k}[\Omega \times R^{n(k-1)}].$$

LEMMA 2. Let hypotheses (I) and (II) be fulfilled. If $\varphi \in \Lambda[I]$ is a C^r -solution of the system of equations (1) in I, then its derivatives $\varphi_i^{(k)}$ satisfy the equations

$$\varphi_i^{(k)}(x) = h_{ik}(x, \varphi_1[f_{i1}(x)], \dots, \varphi_n[f_{in}(x)], \dots, \varphi_1^{(k)}[f_{i1}(x)], \dots, \varphi_n^{(k)}[f_{in}(x)]),$$

$$i = 1, \dots, n, k = 1, \dots, r.$$

The proofs of these lemmas are similar to the proofs of analogous lemmas contained in [4].

Remark 1. Lemma 2 implies that if a function $\varphi \in \Lambda[I]$ is a C^r -solution of system (1) in I, then the values

(4)
$$egin{aligned} \eta_i^l &= arphi_i^{(l)}(0), & i &= 1, \ldots, n, \ l &= 1, \ldots, r, \ \eta_i^0 &= arphi_i(0) &= 0, & i &= 1, \ldots, n, \end{aligned}$$

fulfil the system of equations

(5)
$$\eta_i^l = h_{il}(0, \ldots, 0, \eta_1^1, \ldots, \eta_n^1, \ldots, \eta_1^l, \ldots, \eta_n^l).$$

2. Now we suppose that $\varphi \in \Lambda[I] \cap C^{\tau}[I]$ is a solution of system (1). Let us write φ_i in the form

(6)
$$\varphi_i(x) = P_i(x) + \gamma_i(x), \quad i = 1, \ldots, n,$$

where

(7)
$$P_{i}(x) = \sum_{l=1}^{r} \frac{\varphi_{i}^{(l)}(0)}{l!} x^{l}$$

and $\gamma_i(x)$ is the rest in the form of Peano.

We define the functions

(8)
$$h_i^*(x, y_1^0, \ldots, y_n^0) \stackrel{\text{df}}{=} h_i(x, P_1[f_{i1}(x)] + y_1^0, \ldots, P_n[f_{in}(x)] + y_n^0) - P_i(x).$$

It is easily seen that these function belong to the class $C'[\Omega]$. It follows from (6) and (8) that γ_i is a C'-solution of the system

(9)
$$\gamma_{i}(x) = h_{i}^{*}(x, \gamma_{1}[f_{i1}(x)], \ldots, \gamma_{n}[f_{in}(x)])$$

such that $\gamma_i(0) = 0$. Moreover, by (6) and (7) we get

(10)
$$\gamma_i'(0) = \ldots = \gamma_i^{(r)}(0) = 0.$$

We observe that if $\gamma = {\gamma_i}$, i = 1, ..., n, is a solution of system (9), then $\varphi = {\varphi_i}$, i = 1, ..., n, defined by (6), where

$$P_i(x) = \sum_{l=1}^r \frac{\eta_i^l}{l!} x^l$$

is a solution of system (1) and η_i^l are arbitrary fixed numbers. Thus we have the following

LEMMA 3. The system (1) has a solution $\varphi \in \Lambda[I] \cap C^r[I]$ iff the system (9) has a solution in the class $C^r[I]$.

Starting from the functions h_i^* instead of h_i we define functions h_{ik}^* and g_{ik}^* analogously as h_{ik} and g_{ik} and we can prove analogues of Lemmas 1 and 2. Now, by (10) and Lemma 2 it is seen that

$$h_{ik}^*(0,\ldots,0)=0, \quad k=1,\ldots,r, i=1,\ldots,n,$$

and by Lemma 1

$$g_{ik}^*(0,\ldots,0)=0, \quad k=1,\ldots,r, \ i=1,\ldots,n.$$

THEOREM 1. Let hypotheses (I) and (II) be fulfilled. Suppose, further, that inequalities

(11)
$$|f'_{ik}(x)| \leqslant 1, \quad i, k = 1, ..., n,$$

and

(12)
$$\left| \frac{\partial h_i}{\partial y_p^0}(x, y_1^0, \dots, y_n^0) [f'_{ip}(x)]^r \right| \leqslant \vartheta_{ip},$$

$$\sum_{p=1}^n \vartheta_{ip} < 1,$$

i = 1, ..., n, hold in a neighbourhood of zero. Then there exists at last one C^r -solution $\varphi \in \Lambda[I]$ of the system (1) in I fulfilling conditions (4).

Proof. Without loss of generality we may assume that

(13)
$$h_{ik}(0,...,0) = 0$$
 and $g_{ik}(0,...,0) = 0,$ $i = 1,...,n, k = 1,...,r.$

Hence and by continuity of

$$g_{ir}(x, y_1^0, \ldots, y_n^0, \ldots, y_1^{r-1}, \ldots, y_n^{r-1})$$
 and $\frac{\partial h_i}{\partial y_n^0}(x, y_1^0, \ldots, y_n^0)[f'_{ip}(x)]^r$

we have

$$|g_{ir}(x, y_1^0, \dots, y_n^{r-1})| \le \left(1 - \sum_{p=1}^n \vartheta_{ip}\right) K$$
 in $\langle 0, c' \rangle \times \langle 0, d \rangle^{nr}$, and (14)

$$\left|\frac{\partial h_i}{\partial y_p^0}(x,y_1^0,\ldots,y_n^0)[f_{ip}'(x)]^r - \frac{\partial h_i}{\partial y_p^0}(0,\ldots,0)[f_{ip}'(0)]^r\right| \leqslant \left(1 - \sum_{n=1}^n \vartheta_{ip}\right)K$$

in $(0, c') \times (0, d)^n$, where c' > 0 and d > 0 have been chosen in such a manner that inequalities (12) hold in (0, c') and $(0, c') \times (0, d)^n$, respectively, and K > 0 is an arbitrary fixed number. Now we choose a c so that

$$(15) 0 < c \leq \min(c', 1, d/K)$$

and we define the set $D \subset \Omega \times \mathbb{R}^{(r-1)n}$ as follows:

$$D = \{(x, y_1^0, \ldots, y_n^{r-1}) \colon 0 \leqslant x \leqslant c, |y_p^l| \leqslant Kx, l = 0, 1, \ldots, r-1, p = 1, \ldots, n\}.$$

To a given $\varepsilon > 0$ we assign the numbers

$$\varepsilon_{i}' = \frac{\left(1 - \sum_{p=1}^{n} \vartheta_{ip}\right)\varepsilon}{1 + nK}, \quad i = 1, ..., n.$$

The functions g_{ir} are uniformly continuous in D, f'_{ij} are uniformly continuous in $\langle 0, c \rangle$, and $\partial h_i / \partial y^0_p$ are uniformly continuous in

$$D' \stackrel{\mathrm{df}}{=} \left\{ (x, y_1^0, \ldots, y_n^0) \colon 0 \leqslant x \leqslant c, |y_p^0| \leqslant Kx \right\}.$$

Hence we have

$$|g_{ir}(\overline{x}, \overline{y}_1^0, \ldots, \overline{y}_n^{r-1}) - g_{ir}(\overline{x}, \overline{y}_1^0, \ldots, \overline{y}_n^{r-1})| \leqslant \varepsilon_i',$$

$$\frac{\left|\frac{\partial h_i}{\partial y_p^0}(\overline{x}, \overline{y}_1^0, \ldots, \overline{y}_n^0)[f'_{ip}(\overline{x})]^r - \frac{\partial h_i}{\partial y_p^0}(\overline{x}, \overline{y}_1^0, \ldots, \overline{y}_n^0)[f'_{ip}(\overline{x})]^r\right| \leqslant \varepsilon'_i.$$

for
$$|\overline{x}-\overline{x}| \leqslant \delta_1$$
, $|\overline{y}_p^l-\overline{y}_p^l| \leqslant \delta_2$, $p=1,\ldots,n$, $l=0,1,\ldots,r-1$, and $(\overline{x},\overline{y}_1^0,\ldots,\overline{y}_n^{r-1})$, $(\overline{\overline{x}},\overline{\overline{y}}_1^0,\ldots,\overline{y}_n^{r-1}) \in D$.

Now we put

$$\delta \stackrel{\text{df}}{=} \min \left(\frac{\delta_2}{K}, \ \delta_1 \right)$$

and define T_s as the set of all functions defined in $\langle 0,c \rangle$ fulfilling the condition

$$|a(x)-a(\bar{x})| \leq \varepsilon$$
 for $|x-\bar{x}| < \delta$.

Next we define F as the space of functions u which are defined and are of class C^r in $\langle 0, c \rangle$. For $u \in F$ we define the norm:

(18)
$$||u|| = \max \left(\sup_{(0,c)} |u(x)|, \sup_{(0,c)} |u'(x)|, \dots, \sup_{(0,c)} |u^{(r)}(x)| \right).$$

Thus F is a normed vector space over the field of real numbers and the convergence of a sequence $u_n \, \epsilon \, F$ is the uniform convergence of u_n , u'_n, \ldots, u''_n in $\langle 0, c \rangle$. Hence it follows that F is a Banach space. Let $A_1 \subset F$ denote the class of functions fulfilling the following conditions:

(19)
$$\varphi(0) = \varphi'(0) = \dots = \varphi^{(r)}(0) = 0,$$

$$|\varphi^{(r)}(x)| \leqslant K \quad \text{ for } 0 \leqslant x \leqslant c,$$

$$\varphi^{(r)}(x) \in T_s.$$

We assert that if $\varphi_1, \varphi_2 \in A_1$, then

$$\|\varphi_1-\varphi_2\| = \sup_{\langle 0,c\rangle} |\varphi_1^{(r)}(x)-\varphi_2^{(r)}(x)|.$$

In fact, according to (19), (15) and the mean-value theorem we have

$$(22) \quad \sup_{\langle \mathbf{0}, \mathbf{c} \rangle} |\varphi_1(x) - \varphi_2(x)| \leqslant \sup_{\langle \mathbf{0}, \mathbf{c} \rangle} |\varphi_1'(x) - \varphi_2'(x)| \leqslant \ldots \leqslant \sup_{\langle \mathbf{0}, \mathbf{c} \rangle} |\varphi_1^{(\mathbf{r})}(x) - \varphi_2^{(\mathbf{r})}(x)|.$$

For $\varphi \in A_1$, by (15), (19), (21) and the mean-value theorem we have also

(23)
$$|\varphi(x)| \leqslant Kx$$
 and $|\varphi^{(k)}(x)| \leqslant Kx$

for
$$0 \le x \le c, k = 1, ..., r-1.$$

Now we define the transformation $\psi = P(\varphi)$ by the formula

(24)
$$\psi_i(x) = h_i(x, \varphi_1[f_{i1}(x)], \dots, \varphi_n[f_{in}(x)]), \quad i = 1, \dots, n,$$
$$(\varphi_1, \varphi_2, \dots, \varphi_n) \in A_1^n \stackrel{\mathrm{df}}{=} A.$$

We shall prove that A and ψ fulfil all asymptions of Schauder's theorem. The set A_1 is a compact and convex subset of the space F.

Let $(\varphi_1, \ldots, \varphi_n) \in A$. Differentiating (24) k times we obtain

(25)
$$\psi_i^{(k)}(x) = h_{ik}(x, \varphi_1[f_{i1}(x)], \ldots, \varphi_n^{(k)}[f_{in}(x)]),$$

$$k = 1, ..., r, i = 1, ..., n.$$

According to Lemma 2 the functions $\varphi_i^{(r)}$ are continuous in $\langle 0, c \rangle$ and consequently $\psi_i \in F$. Putting x = 0 in (24) and (25) we obtain by (II), (13) and (19)

$$\psi_i(0) = h_i(0, \ldots, 0) = 0, \qquad i = 1, \ldots, n,$$
 $\psi_i^{(k)}(0) = h_{ik}(0, \ldots, 0) = 0, \qquad k = 1, \ldots, r, \ i = 1, \ldots, n.$

Thus ψ_i fulfils condition (19). By (24) and (3) we have

$$\begin{aligned} |\psi_{i}^{(r)}(x)| & \leq |g_{ir}(\overline{x}, \varphi_{1}[f_{i1}(x)], \dots, \varphi_{n}^{(r-1)}[f_{in}(x)])| + \\ & + \sum_{r=1}^{n} \left| \frac{\partial h_{i}}{\partial y_{p}^{0}} (x, \varphi_{1}[f_{i1}(x)], \dots, \varphi_{n}[f_{in}(x)]) [f'_{ip}(x)]^{r} \varphi_{p}^{(r)}[f_{ip}(x)] \right|. \end{aligned}$$

In view of (I), (23) and (15) we have

$$|\varphi_i[f_{ii}(x)]| \leqslant Kx \leqslant d$$
 and $|\varphi_i^{(k)}[f_{ii}(x)]| \leqslant Kx \leqslant d$,

k = 1, ..., r-1, i = 1, ..., n.

Continuing our estimation of $\psi_i^{(r)}$ we have by (23), (12) and (14)

$$|\psi_i^{(r)}(x)| \leqslant \left(1 - \sum_{p=1}^n \vartheta_{ip}\right) K + \sum_{p=1}^n \vartheta_{ip} K \, = K \,,$$

what means that $\psi_i^{(r)}$ fulfil inequality (20).

Let us take an arbitrary $\varepsilon > 0$ and let $|\overline{x} - \overline{\overline{x}}| < \delta$, where $\delta(\varepsilon)$ is given by (17). By (25) and (3) we have

$$|\psi_{i}^{(r)}(\overline{x}) - \psi_{i}^{(r)}(\overline{x})| \leqslant |g_{ir}(\overline{x}, \varphi_{1}[f_{i1}(\overline{x})], \dots, \varphi_{n}^{(r-1)}[f_{in}(\overline{x})]) - \\ -g_{ir}(\overline{x}, \varphi_{1}[f_{i1}(\overline{x})], \dots, \varphi_{n}^{(r-1)}[f_{in}(\overline{x})])| + \\ + \sum_{p=1}^{n} \left\{ \left| \frac{\partial h_{i}}{\partial y_{p}^{0}}(\overline{x}, \varphi_{1}[f_{i1}(\overline{x})], \dots, \varphi_{n}[f_{in}(\overline{x})])[f'_{ip}(\overline{x})]^{r}(\varphi_{p}^{(r)}[f_{ip}(\overline{x})] - \varphi_{p}^{(r)}[f_{ip}(\overline{x})]) \right| + \\ + \left| \varphi_{p}^{(r)}[f_{ip}(\overline{x})] \left(\frac{\partial h_{i}}{\partial y_{p}^{0}}(\overline{x}, \varphi_{1}[f_{i1}(\overline{x})], \dots, \varphi_{n}[f_{in}(\overline{x})])[f'_{ip}(\overline{x})]^{r} - \\ - \frac{\partial h_{i}}{\partial y_{p}^{0}}(\overline{x}, \varphi_{1}[f_{i1}(\overline{x})], \dots, \varphi_{n}[f_{in}(\overline{x})])[f'_{ip}(\overline{x})]^{r} \right) \right| \right\}.$$

By the mean-value theorem and (21), (23), (15), (11) we have

$$\begin{split} |\varphi_{p}[f_{ip}(\overline{x})] - \varphi_{p}[f_{ip}(\overline{\overline{x}})]| &\leqslant |\varphi_{p}^{'}(t_{p})| \; |f_{ip}(\overline{x}) - f_{ip}(\overline{\overline{x}})| \leqslant K \, |\overline{x} - \overline{\overline{x}}| \leqslant \delta_{2}, \\ |\varphi_{p}^{(l)}[f_{ip}(\overline{x})] - \varphi_{p}^{(l)}[f_{ip}(\overline{\overline{x}})]| &\leqslant |\varphi_{p}^{(l+1)}(t_{p})| \; |f_{ip}(\overline{x}) - f_{ip}(\overline{\overline{x}})| \leqslant K \, |\overline{x} - \overline{\overline{x}}| \leqslant \delta_{2} \end{split}$$

for l = 1, ..., r-1, p = 1, ..., n, and also

$$|\varphi_p^{(r)}[f_{ip}(\bar{x})] - \varphi_p^{(r)}[f_{ip}(\bar{\bar{x}})]| \leqslant \varepsilon.$$

Continuing our estimation we obtain from (16), (12) and (20)

$$|\psi_i^{(r)}(\bar{x}) - \psi_i^{(r)}(\bar{\bar{x}})| \leqslant \varepsilon_i' + \sum_{p=1}^n (\varepsilon \vartheta_{ip} + K \varepsilon_i') = \varepsilon,$$

i. e. ψ_i fulfil condition (21). This completes the proof of the inclusion $\psi_i(A) \subset A_1$.

Let $\varphi_{sl} \in A_1$, s = 1, ..., n, l = 1, 2, 3, ..., tends to φ_{s0} (in the sence of convergence in F). Let us write

$$\psi_{sl}(x) = h_s(x, \varphi_{1l}[f_{s1}(x)], \dots, \varphi_{nl}[f_{sn}(x)]),$$

$$\psi_{s0}(x) = h_s(x, \varphi_{10}[f_{s1}(x)], \dots, \varphi_{n0}[f_{sn}(x)]).$$

Since h_s , s = 1, ..., n, are functions of class C^r , thus the sequence ψ_{sl} tends to ψ_{s0} . On account of the Schauder's theorem there exists a function $\varphi \in A$ satisfying the system of equations (1) in $\langle 0, c \rangle$.

This solution can be extended onto the whole interval I in the same manner as in [4] (Theorem 4.2, p. 89).

J. Matkowski has proved in [7] the following

THEOREM 2. Let (I) and (II) be fulfilled. If

$$\left|\frac{\partial h_i}{\partial y_p^0}(x,y_1^0,\ldots,y_n^0)[f_{ip}'(x)]^r\right| \leqslant \vartheta_{ip} \quad \text{in a certain neighbourhood of zero and}$$

$$\sum_{i=1}^n \vartheta_{ip} < 1 \quad \text{for } p = 1,\ldots,n,$$

then for any system of η_i^l , i = 1, ..., n, l = 0, 1, ..., r, fulfilling (5) there exists at most one $C^r[I]$ -solution of system (1) fulfilling the conditions $\varphi_i^{(l)}(0) = \eta_i^l$.

3. In this section we shall prove a certain theorem on the continuous dependence for the sequence of systems of equations

(1')
$$\varphi_i(x) = \underset{p}{h_i} \left(x, \varphi_1 [f_{i1}(x)], \ldots, \varphi_n [f_{in}(x)] \right),$$

$$i = 1, \ldots, n, p = 0, 1, 2, \ldots$$
We assume that

(I')
$$f_{ik} \in S^r[I], \quad I = \langle 0, a \rangle, a > 0;$$

(II')
$$h_i \in C^r[\Omega], \quad \Omega = I \times R^n, \quad h_i(0, \ldots, 0) = 0;$$

(III) f_{pk} tends to f_{ik} in I, h_i tends to h_i in Ω , together with derivatives up to the order r uniformly on compact sets.

For arbitrary p we can define the sequence h_{ik} in the same way as in Section 1. Thus for arbitrary p Lemmas 1 and 2 hold. By induction we have

LEMMA 4. Let hypotheses (I'), (II') and (III) be fulfilled. The sequence h_{ik} tends to h_{ik} in $\Omega \times R^{nk}$, h_{ik} h_{ik} in h_{ik} in h_{ik} h_{ik} in h_{ik} h_{ik} h

It follows from Lemma 2 that if $\varphi = \{\varphi_i\}$, i = 1, ..., n, functions belonging to $\Lambda[I]$ are $C^r[I]$ -solutions of the sequence of systems (1'), then

(4')
$$\eta_i^k = \varphi_i^{(k)}(0), \quad i = 1, ..., n, k = 1, ..., r,$$

satisfy the system of equations

(5')
$$\eta_i^k = h_{ik}(0, \ldots, 0, \eta_1^1, \ldots, \eta_n^k).$$

Hence and by (3) we obtain

$$\left(E - \frac{\partial h_i}{\partial y_j^0}(0, \dots, 0) [f'_{ij}(0)]^k\right) \eta_p^k = g_k(0, \dots, 0, \eta_1^1, \dots, \eta_p^{k-1});$$

where k = 1, ..., r, i, j = 1, ..., n, E is the unit matrix and

$$egin{aligned} egin{aligned} eta_1^k &= egin{bmatrix} eta_1^k \ eta \ eta_n^k \ eta \end{bmatrix}, & g_k &= egin{bmatrix} g_{1k} \ eta \ eta \ eta_{nk} \ eta \end{bmatrix}. \end{aligned}$$

Hence we have the simple

LEMMA 5. Let hypotheses (I') and (II') be fulfilled. If (11), (12), (26) hold, then for every p the following statements hold true:

(a) the system of equations (1') has exactly one solution $\varphi \in \Lambda[I] \cap C^r[I]$ iff all characteristic rotts of the matrix

(27)
$$\underline{A}_{p} = \left(\frac{\partial h_{i}}{\partial y_{4}^{0}}(0, \ldots, 0)[f'_{ij}(0)]^{k}\right), \quad i, j = 1, \ldots, n,$$

are different from 1 for k = 1, ..., r;

(b) if for some k there exists a characteristic root equal 1, then the system of equations (1') has a C^{τ} -solution iff the ranks of the matrix A_k and of the complement matrix are equal. In this case the system (1') has an $(n-l_1) \cdot \ldots$

 $\dots (n-l_r)$ -parameter family of $C^r[I]$ -solutions, where l_k denotes the rank of the matrix $(E-A_k)$.

LEMMA 6. Let hypotheses (I'), (III'), (III) and condition (27) be fulfilled. If $\varphi = \{\varphi_i\}$, i = 1, ..., n, form a solution belonging to $\Lambda[I] \cap C^r[I]$ for p = 0, 1, 2, ... of the sequence of systems (1'), then

$$\lim_{p\to\infty} \varphi_i^{(k)}(0) = \varphi_i^{(k)}(0)$$

for k = 1, ..., r, i = 1, ..., n.

LEMMA 7. If A is a compact metric space and the sequence of transformations T fulfils the conditions

$$1^{\mathbf{o}} \ T(A) \subset A,$$

 2° T is continuous in A for p = 0, 1, 2, ...,

3°
$$T(\varphi) = \varphi$$
 if and only if $\varphi = \varphi$ and $\varphi \in A$, $p = 0, 1, 2, ...,$
4° T tends to T uniformly in A ,

then φ is convergent and $\lim_{p\to\infty} \varphi = \varphi$.

The proof of this lemma may be found in [6].

THEOREM 3. Let hypotheses (I'), (III'), (III) be fulfilled. If (11), (12), (26) and (27) hold for p = 0, 1, 2, ..., then there exists an interval $\langle 0, c \rangle$ such that for arbitrary p there exists exactly one C^r-solution φ of system (1').

Moreover, φ tends to φ together with derivatives up to order r, uniformly in this interval.

Proof. Let T_s , F, A_1 and A be defined as in the proof of Theorem 1. We define the norm in the set $\overline{F} \stackrel{\text{df}}{=} F^n$ as follows:

(28)
$$||(\varphi_1, \ldots, \varphi_n)|| \stackrel{\text{df}}{=} ||\varphi_1|| + ||\varphi_2|| + \ldots + ||\varphi_n||.$$

Now we define the sequence of transformations T:

$$T_{p}=(\psi_{1},\ldots,\psi_{n}),$$

where ψ_i are defined by the formula

$$\psi_i(x) = h_i(x, \varphi_1[f_{i1}(x)], \ldots, \varphi_n[f_{in}(x)]).$$

We shall show that A and the sequence of transformations T fulfil the hypotheses of Lemma 7. Similarly as in the proof of Theorem 1 we can show that 1° and 2° are fulfilled. Now, Theorem 2 and Lemma 5 imply condition 3°. To prove 4° it is sufficient to show that for a given $\varepsilon > 0$ there exists an N such that for $p \ge N$ and for every $\varphi \in A$ we have

$$||T[\varphi] - T[\varphi]|| \leq \varepsilon.$$

From (28), (21) and Lemma 2 we have

$$\|T[\varphi_1,\ldots,\varphi_n]-T[\varphi_1,\ldots,\varphi_n]\|$$

$$=\sum_{l=1}^n \|\psi_l[\varphi_1,\ldots,\varphi_n]-\psi_l[\varphi_1,\ldots,\varphi_n]\|$$

$$=\sum_{l=1}^{n}\sup_{\langle 0,c\rangle} |h_{lr}(x,\varphi_{1}[f_{l1}(x)],\ldots,\varphi_{n}^{(r)}[f_{ln}(x)]) - h_{lr}(x,\varphi_{1}[f_{l_{1}}(x)],\ldots,\varphi_{n}^{(r)}[f_{ln}(x)])|$$

$$\leq \sum_{l=1}^{n} \{ \sup_{\langle 0,c \rangle} |h_{lr}(x,\varphi_{1}[f_{l1}(x)],\ldots,\varphi_{n}^{(r)}[f_{ln}(x)]) - h_{lr}(x,\varphi_{1}[f_{l1}(x)],\ldots,\varphi_{n}^{(r)}[f_{ln}(x)])| + \sup_{\langle 0,c \rangle} |h_{lr}(x,\varphi_{1}[f_{l1}(x)],\ldots,\varphi_{n}^{(r)}[f_{ln}(x)]) - h_{lr}(x,\varphi_{1}[f_{l1}(x)],\ldots,\varphi_{n}^{(r)}[f_{ln}(x)])| \}.$$

According to Lemma 4 the sequence h_{lr} tends to h_{lr} uniformly in $D \times \langle 0, K \rangle$. Thus there exists p_0 such that for $p \geqslant p_0$ and $x \in \langle 0, c \rangle$ we have

$$\left| h_{lr}\left(x, \varphi_1[f_{l1}(x)], \ldots, \varphi_n^{(r)}[f_{ln}(x)]\right) - h_{lr}\left(x, \varphi_1[f_{l1}(x)], \ldots, \varphi_n^{(r)}[f_{ln}(x)]\right) \right| \leqslant \varepsilon/2n.$$

It follows from the uniform continuity of $\varphi_i^{(k)}$ in $\langle 0, c \rangle$ that there exists a p_1 such that for $p \geqslant p_1$ and i = 1, ..., n, k = 0, 1, ..., r

$$|\varphi_i^{(k)}[f_{li}(x)] - \varphi_i^{(k)}[f_{li}(x)]| \leqslant \delta.$$

Continuing our estimation we have

$$\|T[\varphi_1,\ldots,\varphi_n]-T[\varphi_1,\ldots,\varphi_n]\|<\varepsilon$$

for $p \ge \max(p_0, p_1)$, $0 \le x \le c$, $(\varphi_1, \ldots, \varphi_n) \in A$. Thus 4° is proved. Now, Lemma 6 and (6) complete the proof.

4. In this section we consider the special case of a system of equations (1), namely:

(29)
$$\varphi_i(x) = h_i(x, \varphi_1[f(x)], \ldots, \varphi_n[f(x)]), \quad i = 1, \ldots, n.$$

We shall prove that in this case the assumption (11) is superfluous (see Theorem 1).

We have the following theorem:

THEOREM 4. Let hypotheses (I), (II) and condition (12) be fulfilled. Then there exists at most one C^r -solution of system (29) belonging to $\Lambda[I]$ and fulfilling conditions (4).

Proof. It follows from hypotheses (I) that $|f'(0)| \leq 1$. Theorem 1 guarantees the existence of a C^r -solution in the case |f'(0)| < 1, thus it is sufficient to consider the case |f'(0)| = 1. Now, by (12) we obtain

$$\sum_{l=1}^{n} \left| \frac{\partial h_i}{\partial y_l^0}(0,\ldots,0) \right| < 1, \quad i=1,\ldots,n.$$

Let

$$\vartheta_{ij} \stackrel{\mathrm{df}}{=} \left| \frac{\partial h_i}{\partial y_0^i}(0, \ldots, 0) \right| + \varepsilon',$$

where $\varepsilon' > 0$ is chosen so that

From the continuity of $\partial h_i/\partial y_j^0$ and by the mean-value theorem there exists a neighbourhood of zero V such that for $(x, \overline{y}_1^0, \ldots, \overline{y}_n^0)$, $(x, \overline{y}_1^0, \ldots, \overline{y}_n^0) \in V$ we have

$$|h_i(x, \overline{y}_1^0, \ldots, \overline{y}_n^0) - h_i(x, \overline{\overline{y}}_1^0, \ldots, \overline{\overline{y}}_n^0)| \leqslant \sum_{l=1}^n \vartheta_{il} |\overline{y}_l^0 - \overline{\overline{y}}_l^0|.$$

Since $\vartheta_{il} > 0$ and inequalities (30) hold, thus from Lemma 1 of [5] it follows that $\vartheta_{il}^{\varkappa} > 0$, where

$$artheta_{il}^1 = egin{cases} artheta_{il}, & i
eq l, \ 1 - artheta_{il}, & i = l, \end{cases}$$

and

$$\vartheta_{il}^{\mathbf{x}+1} = \begin{cases} \vartheta_{1l}^{\mathbf{x}} \vartheta_{i+1l+1}^{\mathbf{x}} + \vartheta_{i+11}^{\mathbf{x}} \vartheta_{1l+1}^{\mathbf{x}}, & i \neq l, \\ \vartheta_{il}^{\mathbf{x}} \vartheta_{i+1l+1}^{\mathbf{x}} - \vartheta_{i+11}^{\mathbf{x}} \vartheta_{1l+1}^{\mathbf{x}}, & i = l, \end{cases}$$

 $\varkappa = 1, ..., n-1, i, l = 1, ..., n-\varkappa$. Now, by Theorem 1 of [1] (see also [3], Theorem 4) there exists exactly one continuous solution of the system (29) in I. We shall prove that this solution is of class $C^r[I]$. For this purpose we introduce the sequence of systems of equations

(31)
$$\varphi_i(x) = h_i(x, \varphi_1[f_k(x)], \ldots, \varphi_n[f_k(x)]), \quad i = 1, \ldots, n,$$

where $f_k(x) = t_k f(x), 0 < t_k < 1, \lim_{k \to \infty} t_k = t_0 = 1.$

In view of Theorem 1 and Theorem 1 of [1] for k = 1, 2, ..., the system of equations (31) has exactly one $C^r[I]$ -solution $\varphi_k = \{\varphi_{ik}\}, i = 1, ..., n$, belonging to $\Lambda[I]$ since $|f'_k(0)| = t_k < 1$. Thus we have

$$\varphi_{ik}(x) = h_i(x, \varphi_{1k}[f_k(x)], \ldots, \varphi_{nk}[f_k(x)]).$$

Differentiating both sides of this equality we have

$$\varphi_{ik}'(x) = \frac{\partial h_i}{\partial x} (x, \varphi_{1k}[f_k(x)], \dots, \varphi_{nk}[f_k(x)]) +$$

$$+ \sum_{i=1}^{n} \frac{\partial h_i}{\partial y_i} (x, \varphi_{1k}[f_k(x)], \dots, \varphi_{nk}[f_k(x)]) \varphi_{jk}'[f_k(x)] f_k'(x).$$

This means that $\Phi_{ik}(x) = \varphi'_{ik}(x)$ satisfies the system

(32)
$$\Phi_{ik}(x) = H_{ik}(x, \Phi_{1k}[f_k(x)], \ldots, \Phi_{nk}[f_k(x)]),$$

where

$$\begin{split} H_{ik}(x, v_1, \dots, v_n) &\stackrel{\text{df}}{=} \frac{\partial h_i}{\partial x} \left(x, \varphi_{1k}[f_k(x)], \dots, \varphi_{nk}[f_k(x)] \right) + \\ &+ \sum_{j=1}^n \frac{\partial h_i}{\partial x_j} \left(x, \varphi_{1k}[f_k(x)], \dots, \varphi_{nk}[f_k(x)] \right) f_k'(x) v_j. \end{split}$$

Since the sequence f_k tends to f_0 uniformly on every compact subset of I, the sequence φ_{ik} tends to φ_{i0} on every compact subset of I (see [1], Theorem 5). Hence it follows that H_{ik} uniformly converges to the function

$$H_{i0}(x, v_1, \dots, v_n) = \frac{\partial h_i}{\partial x} (x, \varphi_1[f(x)], \dots, \varphi_n[f(x)]) +$$

$$+ \sum_{j=1}^n \frac{\partial h_i}{\partial y_j} (x, \varphi_1[f(x)], \dots, \varphi_n[f(x)]) f'(x) v_j$$

on every compact subset of $I \times \mathbb{R}^n$. For $k = 0, 1, 2, \ldots$ we have

$$\begin{split} \sum_{j=1}^{n} \left| \frac{\partial H_{ik}}{\partial v_{j}}(0, \dots, 0) \right| &= \sum_{j=1}^{n} \left| \frac{\partial h_{i}}{\partial y_{j}}(0, \dots, 0) f'_{k}(0) \right| \\ &= \sum_{j=1}^{n} t_{k} \left| \frac{\partial h_{i}}{\partial y_{j}}(0, \dots, 0) \right| < 1. \end{split}$$

Therefore (similary as above) $\Phi_{ik} = \varphi'_{ik}$ is the unique solution of the system of equations (32). Applying again the theorem on the continuous dependence of continuous solutions (Theorem 5 of [1]) we obtain $\lim_{k\to\infty} \varphi'_{ik} = \Phi_{i0}$ uniformly on every compact subset of I. Hence it follows that φ_i is of class $C^1[I]$ and $\varphi'_i = \Phi_{i0}$ in I, because $\lim_{k\to\infty} \varphi_{ik} = \varphi_i$. Repeating this procedure r times we obtain $\varphi_i \in C^r[I]$. This completes the proof.

References

- [1] K. Baron, A few observations regarding continuous solutions of a system of functional equations, Publ. Math. (Debrecen) (to appear).
- [2] B. Choczewski, Investigation of the existence and uniqueness of differentiable solutions of a functional equation, Ann. Polon. Math. 15 (1964), p. 117-141.
- [3] J. Kordylewski, On continuous solutions of functional equations, ibidem 25 (1971), p. 53-83.
- [4] M. Kuezma, Functional equations in a single variable, Monografie Matematyczne, Warszawa 1968.
- [5] J. Matkowski, Some inequalities and a generalization of Banach's principle, Bull. Acad. Polon. Sci., Ser. Sci. Math. Astr. Phys. (to appear).
- [6] On the continuous dependence of C^r solutions of a functional equation on the given functions, Aeq. Math. 6, fasc. 2/3 (1971), p. 215-227.
- [7] The uniqueness of solutions of a system of functional equations in some classes of functions, ibidem (to appear).

Reçu par la Rédaction le 30. 1. 1973