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On the continuous dependence of solutions
of some functional equations on given functions

by S. Czerwik (Katowice)

In the present paper we shall prove that, under suitable assumptions,
the continuous solutions ¢(z) of the functional equation
(1) o[f(@)] = g(@)p (@) +F (x)

depend in a continuous manner on the given functions f(x), g(z), F(z).
In the cases g(x) =1 or g(x) = —1 this problem has been investigated
in [3] and for the more general equation

(2) ¢(2) = H(a, ¢[f()])

in [4] (under different assumptions).
The functions f(x), g(x), F (x) will be subjected to some of the fol-
lowing conditions:

(i) The function f(x) is continuous and strictly increasing in an
interval <a,b), a < f(x) <z in (a,b), f(a) = a.

(ii) The function g¢(x) is continuous in {a,b), g(z) # 0 in <{a, b).

(iii) The function F(z) is continuous in {(a, b).

(iv). There exists a constant ¢, 0 < & < 1, such that the inequality
(3) If(#w)—a| < ¢lx—al
holds in <a,a+ 8) = <{a, b) for some & > 0.

(v) There exist constants M >0 and ux > 0 such that
{4) lg(z)—1| < M |z—al*

in <{a, a+ d)
(vi) There exist a constant 6, 0 < 6 <1, and a bounded function
B(x) such that the inequalities

(5) ¥ (2)| < B(2),
{6) B[ f(x)] < 6B(x)
hold in <a,a+17), n > 0.
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We put

n—1
(7) Gu(@) =[] A @1, n=1,2,..
v=0
We assume that
(A) The limit
(8) G(z) = lim @, ()
exists, @(z) is continuous in {(a, b), and G(x) # 0 in {a, b).
The following result is known (cf. [1]):
LEMMA 1. If hypotheses (i)-(vi) are fulfilled, then equation (1) has
a one-parameter family of continuous solutions in (a, b) given by the formula

_ (44
(9) #@) = # @)+ o
where
. _ o L (@)]
10 = — e
(10) @(z) L4 Gy (2)

and G(z) (*) is defined by (8) and ¢ = ¢(a).
LemMA 2. Let a,(x), n,k =0,1,2, ..., be real functions defined in
an interval 1, af(x) >0 in I, and for every k =0,1,2,...

(11) lim af(z) = a*(x) >0  for wel

n—o00

uniformly in 1. Moreover, .z'f there exist fumctions A™(x) such that

(12) na;(z)| < A*(z), =,k =0,1,2,...,
and the series Y A" (x) converges uniformly in I, then
k=0
(13) [ @) = a2, =n=0,1,2,..,
k=0
and
(14) n a(z) = a(w)
k=0
uniformly in I and
(15) lim a,(x) = a(x)

uniformly in I.

(!) Hypotheses (i), (ii), (iv) and (v) imply that case (A) occurs (cf. [1]).-
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Proof. According to (12) the products (13) and (14) uniformly
converge in I. It suffices to prove (cf. [2], § 29) that

(16) lim (2.0 maﬁ(m)) = j lim (ina’ ()
k=0 k=0 N0

n—o0o0

uniformly in I. We have

] j lna;‘,(w)—zwl1 Ina* (w)‘
k=0 =0

N-1 0o oo
< ) Indi(s)—Ind* @)+ D IInak(@)|+ D |lna*(a)
k=0 k=N k=N
N-1 . 0o
<)) |Indf(z)—Ind*(z)|+2 ) A% (a).
k=0 k=N

Since the series ) A®(z) converges uniformly in I, for every ¢ > ¢
. k=0
there exists an index N such that

(17) Z‘ AW (@) < te for wel.
k=N

Moreover, we have

(18) [Ina*(x)—Ina*(z)| gziN for n >Ny, bk =0,1,..., N—1, zel.
From (17) and (18) we obtain (16), which completes the proof.

THEOREM. Let us assume that the functions f,(2), g,(2), F,(z),
n = 0,1, ..., fulfil hypotheses (i)-(vi) with common &, 6, M, p, B(z), 0, n
and

(19)  lim f,(#) = f(#), lim g,(2) =g(x), limF,(s)=F(a)

uniformly in {a,d) for every de(a,b) and further

(20)  f(x) is strictly increasing in {u, b), a < f(x) < x in (a, b), g(z) # O
m {a,b), and f(z) fulfils (6).

Moreover, if

(21)  the functions g,(z), n = 0,1, ..., are monotonic in <{a,b) and the
sequences {f,(z)} and {g,(x)} are monotonic for every fized
zela,b), then

(22) lim ¢, (2) = (@)
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uniformly in (@, b), where ¢(x) is the solution of equation (1) and ¢, ()
-¢8 'the solution of the equation

¢Lfa(@)] = go(2)p (@) +F, (2)

.such that g,(a) = ¢ =¢(a),n =0,1,2, ...

Proof (cf. also proof of Theorem 3 in [3]). Let us suppose that
‘the sequence {g,(z)} is increasing, the functions g,(r) are increasing,
-and the sequence {f,(r)} is decreasing (in the other seven cases the proof
runs similarly). '

It is readily seen that the functions f(x), g(z), F(z) also fulfil hy-
-potheses (i)-(vi), whence, in view of Lemma 1, solutions ¢(z) and ¢, (z)
-exist and are given by the formulas

- c - c
@ (@) =¢(w)+m; @ (€) =¢Pn($)+my
“‘where
_ o _\WFP@ - N EAe)
O e R R oY=

G, @) = []9lf*@)], G(@) =limG,(),

n=0

6P @) = [[alfr@), 6 (@) = lim 60 ().

m=0

‘According to (21) and (v)

{23) 1< i@l <alfi@]<glfi@)], k=0,1,2,...,
-and hence

0 <h9n£f£(m)]<1ng[f,f(w)] for n,k =0,1,2,...,ze{a, d).

The product [] g[f?(«)] converges uniformly in every interval (a,d),
v=0 0

.de(a, b) (cf. [1], Theorem 2) and hence also the series D' Ing[f](x)] con-
v=0
verges uniformly in {a, d). According to Lemma 2, we have

(24) lim 6™ (z) = Q(z)

n—-00

-uniformly in <a, d) for every de(a, b).
In view of (21), (23), and (v) we obtain

(26) 1<@M(@), 1<G,(@), n=0,1,2,..., v=1,2,...,0a,d.
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Evidenfly, lim B(x) = 0 (?). Consequently, for an arbitrary ¢ >0

we can choose 7, >0, 7, <7, such that

e(1—06)

{26) B(x) < 5

for ze(a, a+1,).

Since f(x) is monotonic and lim f°(x) = a, we can find an index N,

V—>00
such that

{27) ff(@)e(a, a+n,) for xe(a,d>,v>N,.
We shall prove that
{28) fi(x)e(a, a+1n,) for ze(a,d>,n,v > N,.

In fact, there exists an index K such that

fK(d) < a+n,/2.
. Next

X(d) < f5(d)+n,/2 for n >N,>K,
‘whence

fa (@) < fr(d) < fr( d)<fK(d)+ <a + +_

for n,k > N,,ze(a, d).

‘We have
N—1
L F[fy@)]  FIf(@)]
Fa@)—p @] < D |2t av+1<w)|‘+
F [f*(=)] FLf ()]
G’Sﬁ-}l(w) 2 Gyar(@) |

‘where N = max{N,, N,}. We have by (2), (3), (27) and (28) for ze(a, @)
and n,v> N o

(29) |F,[fi(@)] <6 VBIff(2)], |F[f'(@)] <6 VBLfY(@)].
From (19) we obtain

F,[f2@)] FLf(2)]
30 l _
0 | @@ G (@)

€ .

4N

() We can find a function H (z) increasing and bounded in {a, a+7) and such
that B(z) < H(z), H[f(x)] < 0H(z) in {a, a+n). The proof of the above fact does
not differ from that given in [5] (theorem 8),
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for zela,d),» >Ny >N,v=0,1,2,...,, N—1, whence

N-—1
F.[fo@)] F[f@)] e
1; GL’:.)].(W) - G'u+1(w) <Z for me(a, d), n >N3.

Aceording-to (25), (26) and (29) we have

| F, [ (%)) Y o e
@, @) <29 BIfY (2)] < —

v=N =N
5: ‘ FLf@)]) _
— v+1 (x)

o (®)—@(x)| < /2 for ze(e,d),n > N,.
Since ¢,(a) = ¢(a) = 0, we have
(31) lon(2)—@(x)| <e/2 for wela,d),n > N,.
From (24) and (31) we obtain

and analogously

87

whence

c
G‘"’ (z) G(z)

for ve{a,d> and n > M > N,, which was to be proved.

o, (@) —@(@)] < o, (x)—@ (@) +

References -

[1] B. Choczewski and M. Kuczma, On the “indelerminate case” in the theory

of a linear functional equation, Fund. Math. 58 (1966), p. 163-175.

[2] K. Knopp, Theorie und Anwendungen der unendlichen Reihen, Berlin 1947.
[3] J. Kordylewski and M. Kuoczma, On the continuous dependence of solutions
of some funclional equations on given functions (I), Ann. Polon. Math. 10 (1961),

p. 41-48.
[4] — (II), ibidem 10 (1961), p 167-174.

[3] — On some functional equations, Zeszyty Naukowe Uniw. Jagiell.,, Prace Mat.

5 (1959), p. 23-34.

Regu par la Rédaction le 25. 11. 1968



