ON THE RADIUS OF UNIVALENCE OF BOUNDED FUNCTIONS

BY

HASSOON S. AL-AMIRI (BOWLING GREEN, OHIO)

It is the purpose of this note to prove the following

THEOREM. Let f(z) be an analytic function bounded by 1 in the unit disc, |z| < 1, and normalized so that f(0) = 0, f'(0) = a, 0 < |a| = a < 1. Let $z_0 \neq 0$ be a zero of f(z) in the unit disc such that $f(z_1) = 0$, $|z_1| < 1$ imply $|z_0| \leq |z_1|$. Then f(z) is univalent in the disc

$$|z| < \varrho = (\alpha + r_0 + r_0^2 - r_0 \alpha - ((\alpha + r_0 + r_0^2 - r_0 \alpha)^2 - 4r_0^2 \alpha^2)^{1/2})/2r_0 \alpha,$$

where $r_0 = |z_0|$.

Proof. (A) Let

$$g(z) = f(z)/((z-z_0)/(1-\bar{z}_0z)) = -(a/z_0)z+...$$

It is easily seen that g(z) is analytic and bounded by 1 in the unit disc. By Schwarz lemma [2], p. 165, it follows that

$$|g'(0)| = \alpha/r_0 \leqslant 1.$$

(B) Let

$$h(z) = f(z)/z((z-z_0)/(1-\bar{z}_0z)) = -(a/z_0)+...$$

Again h(z) is analytic and bounded by 1 in the unit disc. It is known (cf. [2], p. 167) that

$$|h(z)| \geqslant (|h(0)| - r)/(1 - |h(0)|r) = (a - rr_0)/(r_0 - ar) \geqslant 0$$

where |z| = r < a.

The right-hand side of this inequality is a non-negative number, since r < a and of the result of part (A). Thus for r < a, we get

$$|f(z)| = |z| |(z-z_0)/(1-\bar{z}_0z)| |h(z)| \geqslant r((r_0-r)/(1-rr_0))((\alpha-rr_0)/(r_0-\alpha r)).$$

(C) To prove the Theorem, it is sufficient to show that we cannot have $f(z_1) = f(z_2)$, $z_1 \neq z_2$, $|z_1| = |z_2| = r < \varrho$. To this end, assume $f(z_1) = f(z_2) = b$, $z_1 \neq z_2$, $|z_1| = |z_2| = r$. Then there exists a regular

function g(z) such that $|g(z)| \leq 1$ in the unit disc and satisfying the following equality:

$$(f(z)-b)/(1-\bar{b}f(z)) = ((z-z_1)/(1-\bar{z}_1z))((z-z_2)/(1-\bar{z}_2z))g(z).$$

Consequently, $|g(0)| = |b|/r^2 \le 1$, i.e., $|b| \le r^2$; see also [2], p. 171. From this and the inequality at the end of part (B), we get

$$r^2\geqslant |b| \ = \ |f(z_1)|\geqslant rig((r_0-r)/(1-rr_0)ig)ig((lpha-rr_0)/(r_0-lpha r)ig).$$

Hence the radius of univalence for f(z) is at least as large as the smallest positive number satisfying the equality

$$r = ((r_0 - r)/(1 - rr_0))((\alpha - rr_0)/(r_0 - \alpha r)),$$

which can be written as

$$(r-1)(r^2+r+1-pr)=0,$$

where $p = (r_0^2 + r_0 + a)/r_0 a$.

Thus

$$\varrho = 2^{-1} (p-1-((p-1)^2-4)^{1/2}),$$

which proves the Theorem.

Remarks. We remark here that if $r_0 = a$, then $\varrho = \varrho_0 = a^{-1}(1 - (1-a^2)^{1/2})$, which is the corresponding radius of univalence for the class of bounded functions normalized as in the Theorem. The radius ϱ_0 is the largest possible for such class as can be seen by considering the bounded function $f_0(z) = z(a-z)/(1-\overline{a}z)$. This result is due to E. Landau. Our Theorem represents an improvement on Landau's for the individual bounded functions since $\varrho \geqslant \varrho_0$.

For the subclass of bounded functions which is zero free-except at z = 0, the problem of obtaining the radius of univalence has been raised recently [1].

REFERENCES

- [1] W. O. Egerland, Problem 5758, American Mathematical Monthly 77 (1970), p. 873.
- [2] Zeev Nehari, Conformal mapping, New York 1952.

Recu par la Rédaction le 15.2.1971