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FOR ORTHOMODULAR LATTICES

BY
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Orthomodular lattices are non-distributive generalizations of Boolean
lattices. They have been suggested as the appropriate generalization of
the Boolean lattice of propositions in classical mechanics to the algebra
of propositions in quantum mechanics and have been studied in this
context. Orthomodular lattices also arise in operator theory: the self-
-adjoint idempotent elements in a W®*-algebra form an orthomodular
lattice. These elements play an important part in the decompesition
theory of these algebras.

In this note we show how any orthomodular lattice may be repre-
sented as the lattice of global sections of a certain sheaf of orthomo-
dular lattices over the Stone space of the center of the lattice. In the
case where the lattice is distributive, hence Boolean, then it coincides
with its center and our main result (Theorem 3.8) reduces to the Stone
representation. _

Although similar results have been obtained in a related ring-theoretic
context (cf. [8]) it seems profitable to have a description of the lattice
theoretic mechanism in the uncoordinatized case. A general treatment
of this type of representation for a class of universal algebras appears
in [3]. Our construction is independent of both of these.

Applications to dimension lattices will be considered in a later paper.

1. Orthomodular lattices. We recall some basic facts about ortho-
modular lattices. Our main reference is [6], though we depart slightly from
the notation of that paper (see also [1]).

1.1. Definition. An orthocomplemented set is a partially ordered
set P containing a universal lower bound 0, a universal upper bound 1,
and a unary operation a+> a’ (aeP) called orthocomplementation which,
for any a, be P, satisfies

(1) @ < b implies b' < a’,
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@) (@) =a,

B)aana =0 and av e =1.

If the supremum of any family {a,};.; in P exists, then so also does
the infimum of the family {a;};.; and (Va,)’ = Aa;.

The symmetric binary relation | on P, defined by a | b iff a <b’
or, equivalently, a | b iff b < a’, is called the orthogonality relation or
the orthocomplementation. If \/a; exists for a family {a‘},, ¢ in P, and
if b | a,for all ie I and some be P, then b | \/ a,.

1.2. Definition. An orthocomplemented set P in which every
finite subset of pairwise orthogonal elements has a supremum is called
orthomodular if a < b imples &’ A b exists and b = (a’ A b) v a.

1.3. LEMMA. Let P be an orthocomplemenied lattice. Then, for any
a, be P, the following are equivalent:

(1) P is orthomodular,

2) a<band b A a" =0 implya =0,

B)a<<cand b | ¢ imply a =(av b) A D'

Proof. (1) => (3). If a<<c and b | ¢, then b < ¢’ < a’. Hence, by
(1), ¢’ = (a’ A b’) v b which implies (3).

(8) = (2). Ifa<band b A o’ =0, thend | b implies a = (a v b')A
Ab=(a"Ab)Ab=1Ab=n0.

(2) = @) If a<<b, then av (b A a)<b. But bA[av (b Aa)]
=bA[aABAa)Y]=0BAa)A(DbAa)Y =0. Thus b =av (b A a')
by (2).

1.4. Definition. Let P be an orthomodular set with a, be P. Then,
we say that a commutes with b, written a <> b, if @ = (a A b) v (a A b').

1.5. LEMMA. Let L be an orthomodular lattice (or OML). Then

(1) <> is a symmetric reflexive binary relation on L,

(2) @ 1 b implies a < b,

(3) 0 and 1 commute with every ae L.

Proof. (1) To show « is symmetric suppose @ = (a A b) v (a A b).
Since L is orthomodular, b = (a A b) v [b A (& A b)']. Thus it suffices
to show that b A (a’v b)) =b A a’. Now, a = (a A b) vV (& A b') implies

= (a’ v b) A (¢’ v b), and so

bAa(a’vd)=I[bA (a'V b)]A (a'VvD)

=bAa(a’vDd)Aa(avDd)]=0bnd,
as required.
(2) @ | bimpliesa<b',andsoaAb<bAd =0.Thusa A b =0,
and 50 (@A D)V (aADd)=0v a=a.
(3) is immediate from (2). )
1.6. Definition. Let L be a lattice. If the two distributive laws
(vyyanz=@A2)v(iyaz) and (@Ay)vz=(xv2)A(yvz) are
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satisfied for all permutations of a triple (a, b, ¢) of elements L, then (a, b, c)
is called a distributive triple.

The following theorem summarizes Theorems 2, 3 and 7 of [6]:

1.7. THEOREM. Let L be an OML. Then

1D ae—dbiff andb=an(bva),

(2) a <> b implies a' b and a’' & b,

3) a; o bya, b imply a, v a3 > b,a;, A a3 b and (a,, a,,d) is
a distributive triple.

If L i8 complete, then

(4) of a; b for some family {a;};.;, then \/ a; b, \ a; b,
Viggad) =(Va) Ab, and A (a;v b) =(Aag) v b.

1.8. Definitions. (1) A subset M of an OML L is called an OM
sublattice of L if M is a sublattice of L containing 0 and 1, and it is closed
under complementation.

(2) Let L be an OML. For a subset M = L, the set M° = {ae L |a < b
for all be M} is called the commutant of M. The set ZL = L° is called the
center of L. If ZL = {0, 1}, L is said to be irreducible.

The following theorem summarizes Theorem 6 of [6] and its corol-
laries:

1.9. THEOREM. Let L be an OML. If M < L, then M° is an OM sub-
lattice of L. If L i3 complete, then so is M°. The center ZL is a Boolean
lattice which is complete and infinitely distributive if L is complete.

1.10. Definition. A function A: L — N, where L and N are OML’s,
ig called an OML map or morphism if

(1) h(a A b) = h(a) A h(D),

(2) h(a') = h(a). _

If L and N are complete OML’s, then & is said to be a complete mor-
phism if

(3) R(Aa;) = Ah(a) for any family {a;};.; in L.

If » is an OML map, then 2(0) = k(a A a') = h(a) A h(a’) = h(a) A
Ah(a) =0, k(1) =h(0)=h(0) =1, and h(av d) =h[(a" A b')]
= h(a’ A b') = h(a) v h(d). Similarly, complete OML maps preserve
arbitrary suprema. It is easy to see that bijective OML maps are isomor-
phisms.

1.11. Definition. Let L be an OML. A set I = L is called an ideal
of L if

(1) 0e I,

(2) a,beI implies a v bel,

(3) aeI,b<a imply bel.

A"set J < L is called a filter if
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(4) 1ed,

(5) a,bedJ implies a A bed,

(6) aeJ, b > a imply bed.

Let 8 = {a’ | ae S} for any set 8 =« L. If I is an ideal of L, then
I’ is a filter. If h: L — N is an OML map, then

kerh = {ae L | h(a) = 0}
is an ideal of L.

2. Subdirect decomposition and the Stone representation.

2.1. Definition. Let L be an OML. For any maximal ideal m of
ZL we define a binary relation ~,, by a ~,b iff there exists a cem’
such that a A ¢ = b A ¢. Let [a],, = {be L |b ~,a} and let L,, = {{a],la
e L} for any ae L.

2.2. ProPOSITION. With notation as above,

(1) ae m implies [a],, = [0],, and aem’ implies [a],, = [1],,. Thus,
if L =ZL, we may write L,, = {0, 1}, since ZL is & Boolean lattice.

(2) L, isan OML and [ },: L— L,, 8 an OML morphism.

Proof. (1) ae m implies a’'em’ and a A ¢’ =0 A @/, s0 [a],, = [0],.
aem’ implies [a],, = [1],, since 1 A a = a A a.

(2) f ¢ ~,,b and e ~,d, then a A ¢; =bAc,and eAc, =d A c,
for some ¢,, c;em’. Let ¢ =¢; A cpem’ s0o that a Ac =bAcand eAc
=dAc. Then (aAe)arc=(bAd)Ac and

(aveyac=(anc)v(enc) from 1.7 (3)
=((bAac)v(dnae)
=((bvdAac from 1.7 (3),
so the operations defined by [al, A [¢], = [a A €], and [al, v [€]ln

= [a v ¢€],, are well defined and give to L, the structure of a lattice.
If a ~,,b, then a A ¢ =b A ¢ for some ce m'. Hence, by 1.7 (3),

anc=(@ve)aAe=(@rcyrc=0bAac)yrnc=Db Ac.

Thus the operation [a],, —> [a'],, is well defined and is easily verified
to be an orthocomplementation. If [a], < [b],, then a A ¢<b A ¢ for
some cem’. Hence

bac=(@nc)v {bac)a(anc)}
=(@Aac)v{bac)a(avc)

=(a,/\c)v(b/\0/\ar') by 1.7 (3)-
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So
[b]m = [b A c]m

=[anc)vibaa Ac)l, =[ancl,v[bAaa Acl,

= [aln V ([b]n A []n)

establishing the orthomodularity of L,,.

We recall a formulation of the Stone representation theorem:

2.3. THEOREM (cf. [1] and [6]). Let B be a Boolean lattice and let
M g be the set of (proper) maximal ideals. (An ideal m of B is maximal iff
a¢m implies a’em for all ae B.) The map u: B —2*B defined by wu(a)
= {me My | adm} is an isomorphism (into) and the image of B is a basis
of open and closed sets for a compact Hausdorff topology on M gz. For any
me ‘///B, the neighbourhood basis at m of open and closed sets is {u(a) | m

a)} = {u(a) |agm’} = u(m).

We can motivate the construction of the next section by the fol-

lowing considerations. Suppose L is an OML and denote the set of maximal

ideals of ZL by #,. Let & = U L, and let p: LM 1. be the natural
medy,

projection. Then we can write

” L, = {s: ‘//lL—>.?7|(ps)(m) =m for all me #,}.

me.f g,

We have a map : L— ﬂ L, defined by d(m) = [a],, for ae L and

m e A7, which is an OML map when the product is equipped with pointwise
operations. If ce ZL, then é(m) = [0],, if cem and é(m) = [1],, if c¢m
by 2.2(1). Thus é can be regarded as the characteristic function cf u(c)

and it follows from the Stone representation that Z/E is isomorphic to
ZL. Moreover, as part (1) of Lemma 2.4 shows, is in fact injective.

Subdirect decompositions of this type have, of course, been con-
sidered by many writers (for the case of continuous geometries see, for
example, [7]; for von Neumann lattices, see [9]). The significance of
the result we shall prove in the next section (Theorem 3.8) is that it gives
an explicit description of L.

The following lemma is crucial:

2.4. LEMMA. (1) Suppose ae ZL and ¢, de L such that ¢ < a,d < a,
and [¢),, = [d],, for all m such that a ¢ m. Then ¢ = d.

(2) If a;eZL and s;<a; for i =1,...,n (8;¢ L), and if 8; A a;
= 8; A a; for all i,j, then there exists s < \/a; such that s A a; = 8; for
all j.

Proof. (1) The hypotheses imply that, for every me u(a), there
exists an h,,e m’ such that ¢ A h,, =d A h,,. Moreover, me u(a) implies

‘m
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me u(h,) so that u(a) = |J wu(h,) and since u(a) is compact, we can
meu(a)
choose a finite number of these %,,’s, {k;}7 say, such that

u(a) = Lij u(hy) N u(@) = U (b A a) = u(V (h; A @)).
Thus
a=\ (g Aa) (2.3)
‘

and

c=cAa=¢cANMAra)=V(AhAa) (1.7(3))
i i
=V@Ahnra)=dAV(nra)=dra=4d.
(2) Let s =\/s,-. Then

sna;= (V&) Aa = 1}/(s,- A a) (L7 (3))
=V Aa) =84AVa =s.

3. Sheaves and pre-sheaves.

3.1. Definitions. (1) A (downward) directed set is a partially ordered
set I such that, for any pair 4, j of elements of I, there is a ke I such that
k<iand k<j. A subset J = I which is itself a directed set with respect
to the inherited partial order and with the property that, for each ie I,
there exists a ke J such that k < ¢ will be called cofinal.

(2) A family {L;},;.; of OML’s, where I is a directed set, is a direct
system of OML’s if

(a) ¢ <j implies there exists an OML map x;: L; - L,,

(b) my: L; — L; is the identity map,

(€) mymy =7y H i<J< k.

(8) A direct limit of a direct system {m;: L;— L;};,; of OML’s is
a family {=;: L;—> N};.,; of OML maps which satisfies

(a) ¢ <j implies m;my; = my,

(b) if {f;: L; > P};; is any other family of OML’s satisfying (a),
then there exists a unique OML map A: N — P such that f; = hax;.

It follows from (3), by a familiar argument, that a direct limit, should
it exist, is unique up to OML isomorphism. We denote it by lim L;. Suppose

—

el
L is an OML, and let L, =[0,¢] ={aeL|0<a< ¢} for any ceZL.
Then L, is an OML (complete if L is); for ¢, de ZL with ¢ < d, n4: L;— L,,
given by m.(a) = a A ¢, L, is an OML morphism (complete if L is), and
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the family {n.;: L;— L}, qem for me #; iz a direct system of OML
maps. '

3.2. PROPOSITION.

imZ,=L,.
c_:;)n'

Proof. Define n,: L,—~ L, by n.(a) = [a],. Then

(8) 0< d implies m,7eq(a) = 7e(a A 0) = [a A C], = [a], = m4(a);

(b) if {f,: L,— P}, 18 any other family of OML maps satisfying
(a), h: L, — P is defined by k([al,) = f.(a). This is well defined since
[@),, = [b],, implies a A ¢ =b A ¢ for some cem’. But then f,(a)
=fa/\c7‘a/\c,1(a') =fb/\cnb/\c,1(b) =f1(b). ZEvidently, f, =hn, and h is
unique with this property.

3.3. Definition. A sheaf of OML’s is a triple (&, p, X), where &
and X are topological spaces, p: & — X is a local homeomorphism and
the following conditions are satisfied:

(1) For all ze X, p~!(x) has the structure of an OML.

(2) f #v& denotes the set {(8,t)e ¥ X |p(8) = p(t)} equipped
with the topology inherited from & x &, then the maps

i) v: Y& > &,

(i) A: VL > &,

(iii) ': & - &,
defined in the obvious way, are continuous.

The OML p~'(x) we call the stalk over . For any subset W < X,
a continuous function ¢: W — & with the property that po = 1,, (or,
equivalently, that o(x)e p~'(z) for all xe« W) is called a section over W.
We call a section over X global. The set of all sections over W we denote
by I'(W, &). In virtue of 3.3 (2), it is immediate that I'(W, &) has the
structure of an OML with respect to pointwise operations.

In this section we show that every OML can be isomorphically rep-
resented as the OML of global sections of a sheaf of OML’s over .#,,
the stalk over each me .#; being the OML L,. Indeed, we show that
the OML of sections over any basic neighbourhood #%(a) is isomorphic
with [0, a].

We obtain the sheaf in question by generating it from a pre-sheaf.

3.4. Definition. Let X be a topological space. A pre-sheaf of OML’s
on X is an assignment to each open U < X of an OML #(U) such that
if V is open and V < U, we have an OML map g¢p y: Z£(U)—> Z(V)
(restriction) such that W =« V < U implies ow,pop,u = ow,p- (We take

£(0) to be the trivial OML.)

For example, if & is a sheaf of OML’s, the assignment to each open
U c X of the OML I'(U, &) together with restriction (of sections) con-
stitutes a pre-sheaf of OML’s. This example is canonical in the sense
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that every pre-sheaf ¥ of OML’s for which lim #(U) exists for all xe X
—>
zeU

generates a sheaf ¥ of OML’s such that, for all open U < X, there is

a morphism 0,: £ (U)— I'(U, .é) commuting with restrictions. We
proceed to describe this construction. As a set

Let p: & — X denote the obvious projection. Then, for each open
gset Uc X and each s« #(U), we have a map &: U— % where $§(x)

equals the class of s in lim £ (U); evidently, p8 = 1. Give to & the finest
—_—

xeU
topology making the functions {8 |se £(U), open U < X} continuous.

Then

3.5. PrROPOSITION. (1) Zisa sheaf of OML’s on X.

(2) The map O0y: L(U)— I'(U, L) given by 0y (8) = § is a morphism
for each open U = X commuting with restrictions.

This is standard sheaf theory — we refer to [2] or [4] for proofs.
(These works consider sheaves and pre-sheaves of groups, rings and other
algebraic objects; however, it is quite clear that the construction works
also for pre-sheaves of OML’s.)

3.6. PrOPOSITION (cf. [2] and [4]). The map 0y: Z(U)— I'(U,2)
18 an isomorphism iff the following conditions hold:
i) If U=\ U, with U, open in X, and 8,te £Z(U) are such that

ov,,u(8) = oy, u(?) for all a, then s =1.
(ii) Let {U,} be a family of open sets in X and let U = \J U,. If
s, (U, are such that

QU,n U U, (80) = QU,n Uﬂ,Up(sﬂ)’
then there exists an element 8¢ L (U) such that
ov,v(8) =8, for all a.

Let L be an OML. We proceed to build a pre-sheaf of OML’s on
A, the maximal ideal space of ZL. Recalling that {u(a)},.zz is a base
for the topology on #;, define #(U) for any open U < 4, by

2(U) = {fe [ | Ln|®{as}ir = ZL, and s;¢ [0, a;] such that

meU

U = U u(a;) and meu(a;) implies f(m) = [8;]n}
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with pointwise operations. If U < V, define ¢y : Z(V)— Z(U) by restric-
tion in the obvious way. Then . is a pre-sheaf of OML’s on ./, and it
ig easily verified that % satisfies the conditions of 3.6. Hence, 0,: 2 (U)
~ I'(U, %) for any open set U < ;. In particular, Z(u(a)) = I'(u(a), ff)
for any ae ZL. The usefulness of this construction results from the
following

3.7. PROPOSITION. For each aeZL define @,: [0, a]—> £ (u(a)) by
@a(e)(m) = [e],, for meu(a), ce [0, a]. Then

(i) for a,be ZL with a < b, the following diagram commutes:

2(u(5) —2*0, (u(a)

% }9a
[0, 2] —— 1[0, a]

(i) @g: [0, a]— L (u(a)) is an isomorphism for all aeZL.
Proof. (i) For me u(a), ce [0, b],

(@u(a),u) Po) (€) (m) = (¢ (0))(m) = [c]n = [c A @), sinceacm’
= @alc A a)(m) = (pa7tg) (m).

So the diagram commutes.

(ii) To show that ¢, is injective suppose ¢,(¢) = ¢,(d) for ¢, de [0, a].
That is, [¢], = [d), for all me u(a). Lemma 2.4(1) then implies that
¢ =d.

To show that ¢, is surjective suppose fe #(u(a)). Then, since u(a)
is compact, there is a finite number of elements a;e ZL and s;e [0, a;]
such that u(a) = U u(a;) and f(m) = [8;], if meu(a;). But then, for all

i
me u(a;) O u(a;) = u(a; A a), f(m) = [8;1,, = [8; A a; Aa;],, since a; Aa;em’
= [8; A a;],, since s;e [0, a;].

Similarly, f(m) = [8; A a;],, and so [s; A a;],, = [8; A a;], for all
me u(a; A a;). Thus, by Lemma 2.4 (1), s; A a; = 8; A a; and, by Lemma
2.4 (2), there exists an se [0, a] such that s A a; = s;. Hence, for me u(a;),

Pa (8)(m) = [s]m = [8 A ai]m = [si]m =f(m)
as required.

3.8. THEOREM. (i) The stalk over m in the sheaf Z is isomorphic with
L,,.

(i) For aeZL, [0, a] =~ I'(u(a), .@) via the map ¢ é where ¢(m)
= [¢]m. .

In particular, with a =1, we have L ~ I'(M;,L).
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Proof. (i) The stalk over m in £ is lim Z(U). Now, the set of basic

—_—

meU
neighbourhoods of m is cofinal in the directed set of all neighbourhoods
of m and it is not hard to see that a limit taken over a cofinal subset is

isomorphic to the limit taken over the whole set. Thus

Iim#(U) ~ im L, (3.7(i), (ii))
m_e).U ms_u?a)

=L, (3.2).

(ii) This is immediate from 3.7 (i) and 3.6.

If L = ZL, then it is immediate from 2.2 (i) that £ is the constant
sheaf #;x{0,1} (with {0,1} discretely topologized) and I'(#,, .?7)
can be identified with the lattice of continuous functions on #; with
values in {0, 1}. Thus we recover the Stone representation.
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