ON Γ-REGULAR GRAPHS

BY

J. PŁONKA (WROCŁAW)

0. We accept the terminology and definitions from the book by Harary (1). In particular, by a graph we mean a pair $G = (V; X)$, where V is a non-empty set called the set of vertices and X is a set of 2-element subsets of V called the set of edges. We do not require V to be finite. Two vertices v_1 and v_2 are called adjacent if $\{v_1, v_2\} \in X$; in that case we write $v_1 \leftrightarrow v_2$. By a subgraph of G we mean any of the graphs $(V_0; X_0)$, where $\emptyset \neq V_0 \subseteq V$ and $X_0 = \{\{v_1, v_2\} \in X : v_1, v_2 \in V_0\}$. A sequence v_1, \ldots, v_n of different elements of V is called a simple chain from v_1 to v_n if $n = 1$ or $n > 1$ and $\{v_i, v_{i+1}\} \in X$ for $1 \leq i < n$. A graph G is called connected if for any two vertices $v, v' \in V$ there exists a simple chain from v to v'. A maximal connected subgraph of G is called a component of G. The graph G is called bipartite if $V = V_1 \cup V_2$, where $V_1 \cap V_2 = \emptyset$, $V_1 \neq \emptyset \neq V_2$, and $\{v_1, v_3\} \in X \Rightarrow v_1 \in V_1, v_3 \in V_2$, or $v_1 \in V_2, v_3 \in V_1$. For $v \in V$ we write

$$\Gamma(v) = \{u : u \leftrightarrow v, u \in V\}.$$

The number $q(v) = |\Gamma(v)|$ will be called the degree of v. A graph $G = (V; X)$ is called k-regular ($k \geq 0$) if $q(v) = k$ for each $v \in V$.

In this paper we study a more general notion of regularity (2). Namely, for $v \in V$ we define

$$q_r(v) = \begin{cases} \sum_{u \in \Gamma(v)} q(u) & \text{if } \Gamma(v) \neq \emptyset, \\ 0 & \text{otherwise.} \end{cases}$$

We say that a graph $G = (V; X)$ is m-Γ-regular ($m \geq 0$ and m is an integer) if $q_r(v) = m$ for each $v \in V$. Let us say that a bipartite graph

(1) F. Harary, Graph theory, Addison-Wesley, 1969.
(2) The same notion has been independently introduced also in S. Rama Chadran, Nearly regular graphs and their reconstruction, Graph Theory Newsletter 8 (1978), p. 3 (Note of the Editors).
$(V_1 \cup V_2; X)$ is (k, s)-regular if for each $v \in V_1$ we have $\varrho(v) = k$ and for each $u \in V_2$ we have $\varrho(u) = s$.

In this paper we give a characterization of m-Γ-regular graphs.

For a real number r we denote by $[r]$ the integer part of r.

1. Observe first that if $G = (V; X)$ is a finite graph, then

$$(i) \quad \sum_{v \in \Gamma(v)} \varrho(v) = \sum_{v \in V} \varrho^2(v).$$

Indeed, since $v \in \Gamma(u)$ for any $u \in \Gamma(v)$, counting the left-hand side of (i) we take the number $\varrho(v)$ as many times as many elements the set $\Gamma(v)$ contains, i.e. $\varrho(v)$ times. From (i) we get

$$(ii) \quad \text{if a graph } G = (\{v_1, \ldots, v_n\}; X) \text{ is } m$-$\Gamma$-regular, then

$$m = \frac{\varrho^2(v_1) + \ldots + \varrho^2(v_n)}{n}.$$

A vertex v of a graph $G = (V; X)$ is called Γ-regular if for each u, $w \in \Gamma(v)$ we have $\varrho(u) = \varrho(w)$. If v is not Γ-regular, we say that v is non-Γ-regular.

Lemma 1. If a graph $G = (V; X)$ is m-Γ-regular for some $m > 0$ and there exists a non-Γ-regular vertex $v \in V$ such that $\varrho(v) = k$, then there exists a non-Γ-regular vertex $v' \in V$ such that $\varrho(v') = k' < k$.

Proof. Since v is non-Γ-regular, we have $k > 0$. Moreover, it follows that $1 < k < m$. In fact, if $k = 1$, then v is regular; if $k = m$, then for any $w \in \Gamma(v)$ we have $\varrho(w) = 1$ and v is regular again. Put $s = [m/k]$. Then

$$(1) \quad ks \leq m,$$

and if q is a positive integer, then

$$(2) \quad k(s + q) > m.$$

Let $\Gamma(v) = \{v_1, \ldots, v_{\varrho(v)}\}$. Since G is m-Γ-regular, we have

$$(3) \quad \varrho(v_1) + \ldots + \varrho(v_{\varrho(v)}) = m.$$

But v is non-Γ-regular, so there exists $v_i \in \Gamma(v)$ such that $\varrho(v_i) = s + q$ for some positive integer q. In fact, if $\varrho(v_j) = s$ for $j = 1, \ldots, \varrho(v)$, then v is regular — a contradiction. If $\varrho(v_j) \leq s$ for $j = 1, \ldots, \varrho(v)$ and $\varrho(v_i) < s$ for some $t \in \{1, \ldots, \varrho(v)\}$, then by (1) we get a contradiction with (3). Put

$$k' = \min \{\varrho(w): w \in \Gamma(v_i)\}.$$
Let $v' \in \Gamma(v_i)$ be a vertex of V such that $\varrho(v') = k'$. Since $v \in \Gamma(v_i)$, $\varrho(v_i) = s + q$, $\varrho(v) = k$, so by (2) and the m-Γ-regularity of G we obtain $k' < k$. We have also

$$k' \leq \frac{m - k}{s + q - 1}.$$ \hfill (4)

In fact, let $\Gamma(v_i) = \{v, w_1, \ldots, w_{s+q-1}\}$. Then

$$\varrho(v) + \varrho(w_1) + \ldots + \varrho(w_{s+q-1}) = m$$

and

$$k' \leq \min \{\varrho(v), \varrho(w_1), \ldots, \varrho(w_{s+q-1})\} \leq \min \{\varrho(w_1), \ldots, \varrho(w_{s+q-1})\}$$

$$\leq \frac{\varrho(w_1) + \ldots + \varrho(w_{s+q-1})}{s + q - 1} = \frac{m - k}{s + q - 1}.$$

We have further

$$\frac{m - k}{s + q - 1} (s + q) < m.$$ \hfill (5)

In fact, assume

$$\frac{m - k}{s + q - 1} (s + q) \geq m.$$

Then $-k(s+q) \geq -m$ and $k(s+q) \leq m$, which contradicts (2). By (4) and (5) we have

$$k'(s+q) \leq \frac{m - k}{s + q - 1} (s + q) < m.$$

Thus

$$k'(s+q) < m.$$ \hfill (6)

Now we can prove that v' is non-Γ-regular. Assume that v' is Γ-regular. We have $\varrho(v') = k'$ and $v_i \in \Gamma(v')$. Consequently, since G is m-Γ-regular, we get $\varrho_i(v') = k'(s + q) = m$, which contradicts (6).

Corollary. If a graph $G = (V; X)$ is m-Γ-regular for $m \geq 0$, then any vertex $v \in V$ is Γ-regular.

Proof. For $m = 0$ the proof is obvious. If $m > 0$, then by Lemma 1 all vertices of G have to be Γ-regular. Otherwise, using Lemma 1 we obtain an infinite sequence v, v', v'', \ldots of non-Γ-regular vertices such that $\varrho(v) > \varrho(v') > \varrho(v'') > \ldots$, which is impossible. Let us recall that if $\varrho_i(u) = 1$ or $\varrho_i(u) = 0$, then u is Γ-regular.

Lemma 2. If in a connected graph $G = (V; X)$ any vertex is Γ-regular and for some vertex v we have $\varrho_i(v) = m \geq 0$, where m is an integer, then
\(G \) is either \(k \)-regular, where \(k = \sqrt{m} \), or \(G \) is a bipartite \((k, s)\)-regular graph, where \(ks = m \).

Proof. If \(m = 0 \), then \(V = \{v\}, X = \emptyset \), and \(G \) is 0-regular. Assume \(m > 0 \). Put \(q(v) = k \). So for \(w \in \Gamma(v) \) we have \(q(w) = m/k = s \). Let \(v' \) be a vertex of \(G \) different from \(v \). Since \(G \) is connected, there exists a simple chain from \(v \) to \(v' \). Let \(v = v_1, v_2, \ldots, v_p = v' \) be such a chain. Since \(v_2 \) is \(\Gamma \)-regular and \(v_1, v_2 \in \Gamma(v_2) \), we obtain \(q(v_2) = q(v_1) = q(v) = k \). Since \(v_3 \) is \(\Gamma \)-regular, we have \(q(v_3) = q(v_4) = s \). In general, \(q(v_{2r}) = s, q(v_{2r-1}) = k \) \((r = 1, \ldots, [p + 1])\). If \(k = s \), then \(q(v') = k \) and \(G \) is \(k \)-regular, where \(k^2 = m \). Let \(k \neq s \). If \(p \) is odd, then \(q(v') = k \), and since \(v' \leftrightarrow v_{p-1} \) and \(q(v_{p-1}) = s \), so by \(\Gamma \)-regularity of \(v' \) we have \(q(w) = s \) for each \(w \in \Gamma(v') \). Thus \(v' \) is adjacent only to \(k \) vertices having degrees equal to \(s \). Analogously, if \(p \) is even, then \(v' \) is adjacent only to \(s \) vertices having degrees equal to \(k \). Now it is enough to put \(V_1 = \{u : q(u) = k\} \) and \(V_2 = \{w : q(w) = s\} \) to see that \(G \) is a bipartite \((k, s)\)-regular graph and \(ks = m \). Thus the proof is complete.

Let \(m \) be a non-negative integer.

Theorem. A graph \(G \) is \(m-\Gamma \)-regular if and only if each of the components of \(G \) is either \(k \)-regular subgraph of \(G \), where \(k^2 = m \), or a \((k, s)\)-regular bipartite subgraph of \(G \), where \(ks = m \).

Proof. The proof of the sufficiency is obvious. The necessity follows from the Corollary and Lemma 2.

Reçu par la Rédaction le 24. 1. 1979