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The zeros of functions of finite order in C"

by LAWRENCE GRUMAN (Marseille)

Abstract. We study classes of holomorphic functions in C* whose zeros accumulate close
to certain real hyperplanes and present several applications to holomorphic functions which
arise frequently in analysis. These classes of holomorphic functions generalize the functions
of class &/, holomorphic functions in the half plane in C whose zeros lie close to the boundary.

Let z = (z;,...,2,)€C" and let [z =( ) [z/?)'* be the Euclidian
=1

norm. By a cone I' in C" we will always mean an open cone with vertex
at the origin; I' is an open set such that tzeI for all ¢t > 0 when zer.
A holomorphic function f is of finite order in I’ if there exists kK > 0
such that |f(z)] < Cyexp llzl|* for all zeI' and the order ¢ of f is the
infimum of all k for which this holds. A holomorphic function f of order
o is of finite type in I if, for some B > 0,|f(z)] < Cexp B||z|° for all zeTI.

In the study of entire functions of one complex variable (or more
generally functions holomorphic in the upper half-plane), a great deal of
attention has been paid to the so-called functions of class &/, those functions
of exponential type (ie. ¢ = 1 and finite type) in the upper half-plane
whose zeros lie close to the real axis. By close to the real axis, one
means that if r.e”* are the zeros of in the upper half-plane, then

sin 6,

) ; 1-r,

These functions generalize the idea of functions all of whose zeros are real.
Many characterizations of such functions exist (cf. Boas [2], Chapters VII
and VIII, Levin [7], Chapter V).

It is our purpose here to extend these ideas by studying those holo-
morphic functions f of finite order in cones I'e C" bounded by a finite
number of (2n— 1)-dimensional hyperplanes and whose zeros lie close to the
boundary of I'. We then give several examples of functions which possess
this property, functions which arise in quite a natural way in the theory
of entire functions. This will permit a rather fine characterization of their
zero sets.
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M
Let X, = {zeC": Re ({,z) > 0}. Suppose I' = ) X.. We will say
i=1

that a function f holomorphic in a neighbourhood of I is in class
Gof " (I') (generalized class o of order (u,v)) if the distance of its zero
set to the boundary of I is of the order ' (1+1log™ r) (log™ a = sup (log a, 0)).
In order to render this more precise, we need a measure of the zero set
of f. Since log|f| is R*" subharmonic in I', if 4 is the Laplacian in R?",

il 1 N
A=4Y 0%)oz;0z;, then ¢ = g Adlog|f|, taken as a distribution, defines
j=1

a positive measure in I". For n = 1, this is just the Dirac measure (with
multiplicity) of the zero set of f, while for n > 1 it is the (2n—2)-dimensional
area (with multiplicities) of the zero set of f (cf. Lelong [5], [6]). Then
the zeros of f lie close to oI of order (4, v) if

Re <(¢;, a) do(a)
(1+Hal>*=1*") (1 +1og" flally
For n = 1 and I the upper half-plane, this means that the zeros g, = rkew*
satisfy 3 sin 6,

v (1+r)(1+log™ ry)
functions in %79 (I) by (1).

We begin by developing an integral formula which gives necessary
and suflicient conditions for a function f holomorphic in a neighbourhood
of I' and of order ¢ in I' to be in 4.2/ (I'). From this, we will develop
several sufficient conditions which will be relatively easy to verify in practice.
We note that the criteria for the class 4.</%-")(I') can be applied with some
interesting results to entire functions of global order g strictly greater than pu.

Our first application is to Fourier transforms. Let £ = {¢9}M. | be a set
of vectors in R” such that any subset of less than n is linearly independent
and let K(5,¢&,) = {€eR": (&9, ¢—¢,> <0,j=1,...,M}. Let £ = {£(eK:
(=&, &Y =0, j=1,..,n—1, for some choice 4, < 4, < ... < Y
and I'(E) = {zeC": Rei{{,z) > 0,(eZ}. Let p = pu;+iu, be a bounded
complex measure on K such that for either j =1 or j = 2, u; is a positive

measure in a neighbourhood of ¢, and _[ du; > Ct* for some a,
B g.0nK

0<a< +m. Then if f(2) = t[exp—i({,z)du(f), e (I (&) for

every v > 2 and if « = 0, fe 4o (I (Z)) for every v > 1. Slightly better
results hold for n = 1.

Our second example applies to exponential polynomials. Let = = {£V}™
be a finite set of points in C" no two of which are co-lincar over R:

Let K(5) = {¢eC": Re<¢&,z) < supRe (&Y, z)VzeC"} and I; = {zeC":
i

> i

< o so the functions of class & are the
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M
Re (¢V—=¢®,2) > 0,k # j}. Let f(z) = Y P(z) exp (&Y, z) +5(z), where
=1

the p; are polynomials and s(z) = [ exp (¢, z)du(¢) for some bounded
K

measure p on K such that supp un {¢{P} = @. Then fe 4./ ®(I')) for
every v > 2. If the P, are all constants, then fe 4o/* (I')) for all v > 1.

Finally, we show that if f(z) = f, (z)+ f2(z) exp iz{ for p an integer and
fi and f, entire functions of order at most g, then f(z)e4o/“*(I')) for
p>@g=21o0rfor p=1>p¢, where I'; = z:-h(;—l)<argz,<% .
Thus, we can apply these ideas to entire functions whose global order can
be arbitrarily large.

We note that these results are capable of being generalized in the
direction of proximate orders (cf. [7]) with a greater generality of application
and -a slight improvement in the estimates but at a cost of greater compli-
cation, and hence greater confusion, in the calculations. We did not judge
the slight improvement in results worth the confusion in terms of ideas,
and so we leave this line of pursuit to the interested reader.

1. The integral formula. Let ' = {zeC": Re ({;,z) >0, i=1,..., M}.
The &; are of course only determined up to positive multiples, so we can
always assume without loss of generality that |&]| = 1; in what follows,
this assumption will always be made implicitly. Let I', = I'n {z: |z} < r}.

We let

1
3) Fuw(lzl) =

z)|“*2"~ ! (log |1 z|})'
Then 4 (x; Fy, . (IzI)) = x, F, ., (Iz]]), where

@ F,,(zl)

for |jz|| > 1.

1
llz{i**2"=* (log lizIl}

[(u+2n—l) (u=1)+ v(eu+2n-2) + v(iv+1) ]

log | z| (log [|z]}y*

By the rotational invariance of the Laplacian, it follows that
4(Re (¢, 2) Fy v (l211)) = Re (&, 2> F, ,, (lz]).

Let A' > 1’ F(la R) = FR_fi’ hg“"‘)(z) = Re <éi’ Z> [F(u,\')("z")—F(u,\')(R)]s Si
={zel: Re{¢,z) <Rel{,z),j+#i}and S;=58§n5nTI. We will de-
note by dt, the Lebesgue measure on p-dimensional Euclidian space. We
begin by collecting some facts essential for what follows.

LemMmA 1 (cf. Levin [7], p. 21). For n =1, let f(z) be holomorphic in
the circle |z| < 2eR, with f(0) =1, and let n satisfy 0 < n < 3e/2. Then
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inside the circle |z| < R but outside a family of excluded circles the sum
of whose radii is not greater that 4nR

log |f (2) > —(2+10g ;—:) log M (2¢eR),
where M (t) = sup |f (2).

llzli =t
LEMMA 2. Let f be holomorphic in a neighbourhood C of I'r. Then
log | f| is integrable on oI "B(0, R) and on S;; for every i,j.

Proof. Let xedI'. Then x is contained in a (22—1) real dimensional
face Y. Since the zero set of a holomorphic function is locally of finite
(2n—2) dimensional measure (cf. Lelong [5]), there exists a ball B(x,r) c ¢
and ye YN dr such that d(y,x) < r/3 and f(y) # 0. Lemma 2 implies that
log | f| is integrable in B(y, r/2)n YN dI', which contains B(x, r/6)n Y dr.
Thus, since oI’ n B(0, R) is compact in ¢, log|f| is integrable on this set.
The argument for S;; is identical. Q.E.D.

Let ae%Z(B(0,1) such that « depends only on |z, a =1 in
a neighbourhood of the origin, and [a(z)di(z) =1. We set a,(2)

= ei" a(—:—). If f is function which is locally integrable, we set f(z)

= fwa(z)={f(z—2)a(z)dA(z). I f is subharmonic in a domain Q,
then f, is € and subharmonic in Q, = {z: d(z,CQ)> ¢}, f, > f in Q,
and f, | f.

THEOREM 1. Let I = {z: Re ({;,2z) >0,i=1,....,.M} and h,,(2)
= infh#(z) in I'(A,R), A > 3. If [ is holomorphic in a neighbourhood

1
of F'and Q =I'nS,,_,, then if o, = A—2n—log|f|,

5 h(u,\') (Z) daf (Z)
r'(+,R)

1 .
= —— [ infRe (&, 2> Fy (I12])) 10g | (2)l d12q(2) +

T r¢,R)
1
+—=— .[ (F(u,‘.,(llzll)— F(y,\')(R)) log | f (2)ld73,-1(2)—
21 arngBoR)- RO
1

- I (FumUzl)=Fou(R)1E~&l log 1S (2) dtgn—y (2)+
2n (3 SynT(.R)

1 [m+m—n+ v
2nR* | (logRy  (log R} *!

+A(f, 4, R),

+

] (J;IOB |f (Rw)| Sy (w)dty, - (@) +
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where 1 > S;(w) > 0 and |A(f;R, A} < C,; independent of R. (F,(||z]])
and F,, (||z|}) are defined by (3) and (4), respectively.)
Proof. We begin by supposing geé~ in I'(0,R). Let S;(4, R)
= S5;nT'(¥,R). Clearly { h. dgdt,, =Y [ h¥" Agde,,. We apply
r(i',R)

7 S A'",R)
Green’s theorem to each of these integrals. Here #; is the external unit

normal to d§;(4', R),

[ heAgde,, = [ gRe (&, 2> Fy . (Iz])dr,(2)+
Si(4",R) Si(4'\R)

dg (u,v) — d h) :I
+as{£ R)[ an, k" (2) dﬁ,.-} (2)9(2) [dr2,-1(2).

We note that on dB(0, R) and on oI n §;(4, R); h*" = 0, so
j h{#") Agdt,, = I g Re (&, z) F(u,\-)("Z”)deu(Z)"'

Si(A"\R) S{A'R)

1 (u+2n-1) v
R [ (log R) (log R)"*! :LS,(A’.R)!@B(O.R) Re (&, w) g (Rw)drz, - (0)+

+ I g(F(p,\')(”z”)_FOA,\')(R)) dty,_ (2)+

drAaS{AR)
dg dh@) ]
+ W ——— g |dty, -1 (2)+
j;{f[d,,_ ai, %@
+ ] [dg ) — d_, h?"“’g](l'w)).’z"“dtz,,_l(w)}.
asir.mnaso.) | dif; dan;
&—¢& -

We note that on S, #; = ,M; = —n; and Re (¢, z) = Re (&}, z);

€= ¢l

hence
d
T"i.,.‘— [Re <&, 2> (Fum (121)— F vy (R)] +d_'-ij [Re <&}, 2) (Fyuy (I21)~ F iy (R))]

= &~ &l (Fm (I21)~ Fyu(R))  on Sy

Thus, summing over i, we get

r(l"‘ h(“ v) Agdrz,, = ‘:!.R) g u‘lf Re (éis Z> F(p,v)("z")dTZA (Z)+

1 [(p+bl—l) Y
R* (log R)’ (log R)’'*!

+ § g(Fum(lzl)—Fy(R)dts,_y (2)—
Ar[BO.R)- B0.1Y]

] f inf Re <&, @) g (Rw)dtz, -1 (@) +
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- ;} — JJ) oAy I1€i= Sill [Fm Uz = F oy (R)] gd73, -1 (2) +

+§ [qd.- hyyy (X @) g (X w) 1’21 —i— g(A @) hy vy (A @w) A"~ l]d‘tz,,_ 1 (@),
el dl 4 ’

where ( is the exterior unit normal to B(0, A'). But

d
(5) 7"5 [9(F @) E*" i (' 0) = 5 [0 @) 22" gy (X )]~

—gX @) (2n— 1) A" 2 hy (X @)= g (X @) A2 o by (3 00).

d
dat
We now integrate from 1/2 to A and use (5) to get
(6) }. h(u,v) Agd‘th = I[ g lﬂ.f Re (éj, Z> F(u,v)(llzll)d‘tZu (Z)+

rd.r) rd,py i
1 (u+2n-1) v
R* (log R)’ (log R)

+ I g(F(u,v)("z")‘F(p,v) (R)) dty,—,(2)—

ar~[B(0,R)- B(0,)]

-2 { | 1e—= &l (Fum (121) = Fiu ) (R)) dg2,— 1 (2) + A(g, 4, R),

i<j 5;jnlB(0,R)— B(0,A)

- (jz i}}f Re {£;, 0 g (Rw)dty_; (0)+

where
i
&AA(Gv )*, R) = = _“ ( j h(p'r) Angzn)d)."f‘

Af2 T(0,A)-T(0,4)

A

+J f ginfRe (&, z) Fi, ., (Iz]) dry,dd +
A2r@©.n-roiry i
A

+ § g(Fum(lzl) = Fy . (R)dra, - dX' —
312 orTB04)- BO.1)]

A
—.-ZJ J.',‘z 5;nBO Aj;— B(0.A)] 6= &5l (Fou (121) = Fuy (R) gt 29 - 1 (2) 42"+
A d

+2 I 5 d_Z h(".v). (A w)g (A w) A1 dton-, (w)dA'—

ay2 Tn3BOY)
- (g (Aw) 22~V ) (Aw) — g (3 A) (3 AP~V gy oy (3 A0)] itz (0)+
A
+§ [ gGo)@n—1)A""2hy, . (X 0)dTsp- (@) dA'.
A/j2 Q

Since log | f| is a subharmonic function, it is locally integrable. Further-
more, it is integrable on every set 4; = I'ndB(0, ). To see this, we note
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that, if f(yo) # 0, [ logif(x)P(x,y)dS(x) > log|f (yo)l, and since f is
b

bounded above, log |f (x) is integrable. But there exists a domain D with
%? boundary in O such that 4, = 6D, which proves the assertion.
1
We now apply (6) to g, = Elog |fl*a, and let ¢ - 0. We note that
there is a constant A such that 4 > g, > log|f|, so all the integrals
converge by the Lebesgue dominated convergence theorem. Q.E.D.

CoroLLARY 1. Let f be holomorphic in a neighbourhood of I' and of
order p in I'. Then a sufficient condition for fe¥%s/*"(I) is that for
some A > 3, there exists M, such that

_jm log |f (z) inf Re <&;, 2) Fyu ) (I211) dr2a(2)+

T4,

+ J 1og | f (2} (Fiuy (121) = Fiy ) (R) T35 —

2r~[B(0.R)- Bi0,A)]

log |f @) 18— &l (Fumy (121) = Fu 0y (R) dt 3, (2) < Mg s

i<j Suf\;()-.R)
for all R.

We now state a more restrictive condition, which in practise is actually
what we shall verify. We set log™ a = sup (—log a, 0).

CoRroOLLARY 2. Let f be a holomorphic function in a neighbourhood of I
of order p in I'. Then a sufficient condition for f to be in 9*(I')

is that

r(Jm log* |f ) inf Re ¢, 2) Fu Izl dry (2)+

+ § log™ |f (2} Fyuy(llzll) dr2p— 1 (z) +
ar nIBO.R)~ O]

+Y [ 1087 If @) Fyy(izl)dts-y(2) < + 0,
i<j SynT(A.R)
where we take the + sign in the first term if u > 1 and the minus sign
if u<l.

2. Fourier transforms. It is well known that a function bounded on the
real axis and holomorphic and of exponential type in the upper half-plane
is in class &/ (this follows, for instance, from Corollary 2) so that the
Fourier transform of a bounded measure with compact support is in class
& for n = 1. But with some rather mild supplementary hypotheses, one can
conclude much more.

THEOREM 2. Let n=1 and let u = p,+iu, be a bounded complex
measure on the interval A = {—© < y < a < +b} with real part p, and
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imaginary part p, such that for some «,0 < o < +00 and some 6 > 0 one

of the following holds: + |  du,()=Cr, — | du, (t) > Cr*,

Hy—al<tind Hy~alZtinA

+ _f du,(t) = Ct* .or — j' du, (t) = Ct* for t < 9.

Hy—alztin A Hy—al<ttnA

Let f(z) = | exp—iztdu(t). Then fe%/(y > 0) for every v > 2.
If a =0, then _feff/’.cx/‘d"')(y = 0) for v>1.

Proof. We consider the function

g(z) =f(z)expiza = | exp—iz(t—a)du(l)
which has the same zeros as f(z). We note that

| __[ exp y(t—a)du(t)| < Cexp—3dy.

Let pu(r) = {du(t),t < a. We assume that a—3 is a point of continuity

for u(t). Since there are at most a countable number of discontinuities for
u(t), we lose no generality. Let p, = lim p(t). If u, # 0, then

| § expy(t—a)du@)] = C > 0.

Assume that u, = 0. Integrating by parts, we find that

Lem y(t—a)du(t) = [—exp y(t—a) p()]i-s+y [6 exp y(t—a)u(s)dt
= pu(a—o)exp—yd+y f exp y(t—a)du(t)dt
a—a

and it follows from the hypotheses that

y C
j exp w- WadW>T;
y

: C
| § expy@-ayu@di] >~
a—a

so for y sufficiently large, loglg(y) = —ialog|y|—C".
Since |g(z)| is bounded on the x-axis, it is enough, by Corollary 2

to Theorem 1, to show that

y log lg (x +iy)ldt,(2)
{i 2.
J (1+0c +yH)* (1 +log* (x> +y?) < to lorv>

»20
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But since we may assume that |g(z)] <1 for y > 0,

ylog lg(x +iy) dz,(2)
2o (1+063+y%)° (1+1log* (x* +y*))

i y log |g (x +iy) dr,(z)
so L+y)(1+log™ y) (x2+y?)

By the Poisson Integral Formula for the upper half-plane, since log|g| is
a subharmonic function, we have

2
y

log lg(x+iy) dx ,
(2 g(fz”,)”) > log |g(2y) > —c log |yl —c

and since

log |yldy

— < +00 forv>2,
yz2 (L+y)(log y)

the conclusion now follows. For a = 0,log|g(y) = C > — oo and the proof
1s similar. Q.E.D.

We now prove a higher dimensional version of the same theorem (with
minor modifications).

Let £ = {¢V})L, be a system of vectors in R" with M > n such that
any subset of at most n vectors forms a linearly independent system. Let
K(Ev 60) f {éERu:_<£U)’ ¢_§0> < 07 .I =il 1’ !M}

Let £ = {¢eK: & =1,{(—&0, D) =0,j=1,..,n—1 for some
choice 4, < 1, <...< 4, ,}.

Note that if M = n there are exactly n vectors in Z.

Set I'(Z) = {zeC™: Reil&,z) > 0,6eE}. If & < E, then K(Z,¢&,)

Q

< K(&, &) and so for (€ K(5,¢&,) we can write £ = ) ¢;(&;— &) with

j=1

¢; 20 and £;eZ so I'(E) = I'(8).

THEOREM 3. Let u = u, +ip, be a bounded complex measure on K (Z, &)
for £ ={EML, (M = n as above) with real part p, and imaginary part
U, such that for some a,0 < & < + o and some & > 0 one of the following

holds: p|peosnk is @ positive measure and | dp,(§) = Cr* for t < 6
B(:O,!)r\’(

Or Uslacy.snk IS @ positive measure and | du,(§) = Ct* for t < 8.
B g.00NK
If f(2) = i{exp—i(&f,z) du(£), then fe 44V (I (E)) for every v > 2
ifa#z0and v>1if a =0.

Proof. We consider the function

g(@) = f(D)expicfo, 2> = IIKCXP—i<€—Co,Z>dﬂ(€)

5 — Annales Pol. Mathematici XL. 2
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which has the same zeros as f(z). We remark that g(z) is lzounded in
rE) for f zel(2), then Rei{(,z) >0 for some (eZ and so

sup Rei{&,z) > 0 since the supremum is attained at an extremal point.
Bo.1y K

Thus Re—i{¢&, z) < 0. We assume without loss of generality that |g(z) < 1.
Furthermore, if Z' is any subset of £ with only n elements, then
I (Z) < I'(&) and since T'(Z) = |J I'(Z’(0)), where the umnion is taken over

all possible subsets o of £ with n elements, if we can prove the theorem
for £ with only n elements, the general result will follow. Thus we assume
without loss of generality that M = n.

Let &; be the elements of E, j=1,..,n. Since {(&—&,,2) =
—1&E=&oll zNl, f iy = (iy,, .., iy,) € [ (£), then one shows as in Theorem 2 that

)] lg (iy)l = cexp—dmin ({;, y>+c [yl ™.

We choose as local coordinates, in I'(Z), w = (wy,..., w,), w; = (&, z) and
we write w; = u;+iv;. Then I'(E) = {w: Imw; 2 0,j = 1,...,'n}.
If we can show that

log |g (W)l d5, (W)

8 - — < 4+
®) e, T wIP" (1 +log* )
and
log lg (W)l d,— ; (w) o
©® - = —— < +o0 for every pair i,j,
s’ (L+[wlP ) (1 +log™ [wl) Y PAl L
ij

where §; = {(wel'(5): Imw; = Imw;}, then the result will follow from
Corollary to Theorem 1.
We begin by proving (8). Then for some positive constants

log g dinl) dv, ... dv, ol x
riny 1+ WD (L+Tog* Wiy ~ ' .1, (T+0oly(1+log” o]}
llell= 2

log g (uy, vy, ..., u,, v,) duy ... du,
x § ;
11 @ +101?)

-C,

dv, ...dv L

>C 2 —log |g(0, vy + v, ..., 0, v, +v])] - C

‘ .,,io AT TolP (L +Tog™ ol B 190 0s + 1ol ohl=C;
llvll = 2

by repeated application of the Poisson Integral Formula for the half-plane
to g, and it follows from (7) that the integral on the right converges for
a#0and v>1. '
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We shall prove (9) only for S,,, the other cases being proved in
a similar manner. Let w = (wy,...,w,) with w) = w,—w, and w; = w;,,
j> 2 Then S, = {w: Imwy.=0, Imwj >0,j> 2} If we let

—log |g(w)l dty,— (W)
Bo.ns,, (L+IWIP" " (1 +log™ W)’
then it suffices to show that lim A(r) < + . Let

r— o

A(r) =

o(r) = ,[ —log lg (W)l dt,— 1 (W).

B(O,r)nSl 2

Then after an integration by parts, we obtain for r > 1

~ a(r) 3 r a(t)dt
10 A0 = T rariesy T PV TrP AT g
! o(t)de
+Vi'., (1+t)2"(l+10g [)\‘+l +C.
Let

r r +r
QN =[x ... xfdvy..dv, | x ..x
0 0 -r

+r
x | (—log lg(uy, 0, uy, v, .., uy, vp)) ity ... du

so that Q(r) = a(r). By repeated applications of the Poisson Integral For-
mula for the half-plane, we obtain

O0) €y Ix oo x [ dtyodtl, [ x o x | ]‘[ S —
r 0 0 -r -r j= [(u]) +r]
x(—log |g(u’1’0’ u'Z: v27---,unav1)|)dul du:l
r r + o +o® n
<C Ix ... dv), ... dv],
e dido § o [T [(u)2+r2]

x (—1log lg (v}, 0,u%, v, ..., ul, v,)) du ... du,

r. r + o r
<Cy % .. xfdvy...dv, | ———r
) xfddydo | e

x(—log lg(u,,0,0,vh+r,..., 0, v,+r))du;

+ o

r r r
<C ... di _—
' _gx >-<(_!'dv2 0, -‘L P x

x(—~loglg(uy,v,+71,0,v,+r,0,...,0,v,+r))du,
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< C a.,. X .. X '(E dv, ... dv,(—1log |g(0, v;+2r,0,0,+r,0,...,0,v,+7))

< Cyalogr-r~! for a # 0 by (7) for r large,
<

C,r1 for « =0,
)

o(r) < Cyr™* lalogr for a # 0,
o(r) < Cpr*" ! for « = 0,
which shows by (10) that lim 4A(r) < +0©. QE.D.

We compare the results of Theorem 3 to conclusions that we could draw
from other methods.
"If I is a connected cone in C" and f(z) is holomorphic of order g

in I' and finite type, we define the indicator function of f (with respect
to order g) by

) = T i 1B

z1

it is pluri-subharmonic and positively homogeneous of order ¢ in I.

Let ¢ be any positive number. Then if g(z) is the function considered
in Theorem 3, h}(z) < 0 since g(z) is bounded in I'(E), and, since by (7),
hg(zo) = 0 for at least one point in I'(E),h}(z) =0 in I'() by the
maximum_principle. It then follows from [4] that g(z) is of completely
regular growth in I'(Z) since by (7) it is of regular growth along one ray
and h}(z) is pluri-harmonic. Thus by [3], if I = I'(E) such that I'|n T (5)
= {0}, then, for e >0, | 4 l—Iog lgl ) < er*”~2*¢ for r > R,,. We

Bl 2n

note that this technique says nothing about how the zero set approaches

the boundary of I'(E) and gives even weaker results in cones contained
in the interior of I'(Z).

3. Exponential polynomials. Let = = {¢{P})L, be a finite set of points
in C" no two of which are colinear and set K(Z) = {{eC": Re ({,z)
<supRe (¢, 23V zC"}, Ij(E) = {zeC": Re (V=W 2> > 0,k # j}.

J

M\
THEOREM 4. Let f(2) = ) P;(z) exp <&V, z) +5(2) for polynomials P;(z)
Jj=1 ’

and s(z) = lexp (&, z>du(E) for some bounded complex measure p on K

such that supp un {(P} = {@}. Then fe% OV (T)) jor every v > 2. If the
P are all constani, then e %/ () for all v > 1.

Proof. Let g(z) = f(z) exp— (&P, z) = P(z)+2Pk(z)exp<c‘*’—~f°’ D+
+s(z) exp— (6‘” z>. Then |s(z)exp—{&D, 2| < Cexp =d|lzll in I;. We
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shall apply Corollary 2 to Theorem 1 to g(z). First we note that
log lg(z)| < C;+C; log* |jz|l on 4T so

 log* jg(z)|dra,-4 (2) <T Cs
o, (L+JzIP"~ (og™ [z +1) ~ 5 (1+1)(log¥ t+1)'~?

dt < +®

if v>2.

Let S, = {zeT;: Re ((W—¢9, 25 = Re (P —¢Y), z) > Re (&M —¢U), 73,
m# k,I} tor k # | # j, and let 4, = S;;ndB(0, 1). Then

,‘ log~ lg_(z)l dT30-1(2) < f |log lg (_Z)”dTZn—l(Z)

su (L+lzIP""t(og® |zl +1) s, (1+1izll)*"~* (log* lzlf+ 1)

< | [ lloglatto)]dr
iy o (1+0)(log™ t+1)

and we shall show that this last integljal is bounded for all k, I.

é“‘)— ,:'U)
Let g, = = _°
T w0
an orthonormal system and let o' = (v}, ..., w,) with @} = {n;, >. There
exists a constant « > 0 such that, for weAd,, Re((™—{¢9 o) <
aRe (&M —¢D @) <0 for m # j. Let A’ = Rew,. Then for A’ > 0 fixed

dty,- 2 (w)

and #,,...,n, be such that the vectors {n;} form

(11) lg(tw')—P,(tw’)] < Cexp(—al't+clog™ ).
— l - ny’
Set v = ! 21 and t; = (ia—gﬂ+co, where C, is a constant to be

fixed later. After an integration by parts, we obtain

‘}' lloglg(te)|dr "¢ |log lg(ew')| dt
o (I+0(og* t+1) — § (1+t:)(log* tr+1)

A 1 v
1 "l d dr.
+£ £'°g lg (s s[(1+t)2(log+ 1) T (+17(log” t+l)'+1:| t

Since g(z) is of order 1 and finite type, it follows from Lemma 1 that

ey

| |log lg(se')l|dt < C,¢? for ¢ > 1 so that
0

I loglg@alde  _  Cptx G
3 (A+o(og* t+1) — (og* tyr+1)  N(og” X+1)~"

and since for A’ <} we can choose A’ as a local coordinate on 4B (0, 1),

| A@)dty,- 1 (@) < © for v > 2.
dB(0,1)

= A()

We assume without loss of generality that P;(0) # 0 (for if P;(0) = 0,
we choose a point z,¢I'; such that P;(zo) # 0 and I'; = Pj =T ;+z0—
the translation of I'; by z, — and we prove the theorem for I'; which then
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implies the theorem for I'). Let y be such that P;(z) # 0 for [zl <y <1
and; let d' be the degree of P;(z). We claim that in every complex line
1z, teC outside a set of d circles the sum of whose radii is 4’ that
|P;(2)| = |P,-(0)|/y"'. To see this we let P,(r) = P;(zt). Then |P,(7)

= lP,(O) [l (1—

and if |t—c;(z)] > 1, then

| P.(0) 1P, (0)]

IP()l/'T[('(Z) ‘)r'd

We further assume that |P;(0)/y* > 2 (if necessary, we multiply g(z) by
a constant). Suppose that ¢ > t;.. Then it follows from (11) that |g(tw')—
—P;(tw) < 1 if we choose C, sufficiently large (depending on the P,(z),
k # _]) and so when |P;(t) = 2, |g(te)] = 1. If ¢ > ¢; belongs to one of
the exceptional circles c;, then there is a point t = t;- such that It -t <

and lg(fw)l > 1. Furthermorc ¢; c {10 |t —t| < 2q} and {t0": Jta) -
—t; ;o) < 2eq} crI;(if Cyis suﬁictcntly large depending on d’). Then by
Lemma 1 [loglg(tw )|dt < C,qlogt; so

to’ ECJ

X loglg teylds < G2 log g < 4%
7 we; (1+10)(log™ t+1) (1+1¢,) (log™ t,+1)

In a similar straightforward calculation, one shows that

lo dt,,
j' I gIZg(Z)|| :2 @ — < +0 for v>2
r; (1+[z[)*"(log™ |lz| +1)

which completes the proof. The case of an exponential sum (i.e. P;(z) = const
for all j) is similar and technically even easier so we do not present
it. Q.E.D.

We note that Berenstein [1] has shown that for an exponential polynomial
and any cone I = I'; (as above) such that ' nTI'; = {@} then

§ _4aQoglf),
-V B(Or)ul’
lim

< k.
r~o " Zlogr k

His method could not, however, measure the rate at which the zero set
tended towards the boundary.

THEOREM 5. Let f(z) = f,(z2)+f,(z)exp iz} for p a positive integer and
fi(z) and f,(z) two entire functions of order at most @. Let T}

1 2
=9z: G- < arg z, <——::i} Then for all j, fe94%“T;) for
P

u>g=2loru=1>p.
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Proof. If g(z) is any entire function of order ¢ in C”, then (cf. [6])

[ 4(oglgl) < Cyrr*?""2  for ¢ > g.
B(0,r)
Hence we may assume without loss of generality that u < ¢ and f,(z) # 0
for otherwise, we are through. Furthermore, we assume that Re iz < 0 in
I'; for otherwise we consider f(z)exp—izf.
Let ¢’ be such that u > ¢’ > ¢. Then log* |f(z)] < ¢;+¢, |z[¢ and so

[ log" /)
A (AF 2T

dt,,_1(2) < + @

and

[ log* |f (2)

P tpappren @ < 4
J

Thus, in order to apply Corollary 2 to Theorem 1, it suffices to show that

[ log™ |f () (i-%)21t}
5, (L4 |z|pn=t*e P

dt;,(z) < + 0, where §; = {z: argz; = 6, =

Let z = (z,,2'),ze C*" . We shall show that

°j° log|f (te"72)|
o (L+t+ ]z (14222

dtdz,,_,(z') < + .
cn-1

Suppose that f, (z)+f;(z) = 0. Then f(z) = f;(2)[1—expizf] and f;(z)
is in 9/%“-%(I') since ¢ < p and so is g(z) = 1—exp izf since it is bounded
in I'; and satisfies (12). Thus, we suppose f;(z)+f,(z) # 0 and hence there
exists Z; such that |Z,| <} and h,(2) = f,(Z;,2)+/2(2,,2) #0 in C"71.
Furthermore, since f,(z) # 0 we- can write f;(z) = z4 fi(z) for q some
non-negative integer and f, (z) an entire function of order at most g such
that f,(0,z") # 0. Let h,(z') = f, (0, 2). "

There exists a constant ¢, > 0 such that (w,z) = I'; f.. lw—e 7| < c,.
We assume ¢, < 2. By Lemma 1, if h,(z') # 0, then

1f1(se™7, 2} = exp—c, [[log|hy )| + 5t + 12'1)¢ +c4)
for s < 2t,t > t,, except perhaps on a set of measure at most ¢ t/2e Thus,
there exists a constant c, such that, setting t(z) = [c” llog lhy (2’ )||
+ellZle+1)]° if = 1), |falte”,2) exp—t?] <} exp—c,[|log Ih, (2)]| +
+c3(t+||z'[l)"+c4] and so for t(z)) <t < 2t except perhaps on a set
measure c,t/2e

(12) |1 (te™, 2) = Yexp—c}[[log |hy ()l +c5(e+ 1 Z11¢ +¢c4].
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Now

'(}" llog| £ (2", 2')|| de
o (+e+(zpt**
1(z') 0 Wz') 1t 0
(j) [log|f (te", z')|| dt g ( g |log|f (s, z')|| ds)dt
+(u+1
(1+tE@)+2[) w+D (A+e+(2])>**

and since by Lemma 1,

‘ 2
| [log |/ (se™, 2'}|ds < t[cs|log Ihy, (2| +cs(t+1i2' 1) +¢,]  for t>2
(1]

it follows that

) llog|f (te", 2')|
o (I+t+]z'ht+*

flog |y )], Jlog | @)
8 ' 9 ’
(L +121y (L+ )2’y

Let t, = (14+cp/2e)’. Then if t, > t(z'), by (12) there exists ¢, with t, < ¢,
< (1+cp/2e)t, such that

+erot+HZ1) T +eyy.

~=

log |f (tye"™, )| > }exp—c, [|log [hy ()] +¢5 (¢ + 12']1°+ 4]

and since {(w,z'): w—rt.e" < twe,} < I'; and log If (te”, 7)) < ¢y, +

+c3(t+ 2’19 in Ty, it follows by Lemma 1 that

Int1

[ [log 1f (te™, 2)l|dt < t,[cra(e+ 121 +cy5 [log Ihy ()] +c16]

SO
? lloglr e, )dr _ crgtersflog i@l & 1
) 1 myp+t 1 |y +er2 z =/ T
w) L+ A+121y "= (Hg)
2e
2 1 Jlog 1k, ()]
— & ; .
o (1+_C£)("_w e T
2e

Since ¢’ < u,

L+l "
et (L+ iz’ )2

dtz,—5(2') < +00.

We assume without loss of generality that h(0) # 0, j = 1, 2 (for otherwise
we choose a different origin). Then by the sub-median property for sub-
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harmonic functions

log™ |h;(z')dt,,— (2 log™ |h;(z)d%,,—3(2
Can_y 108 Ih,-(o)l < I g |y zn—sz 3 )_ j- 4 |J(t23|-32 3(2)
Izl =t t 2]l =t
SO
log™ |h;(2") d75,- log™* |h;(z') dty,— (2’
Can_, log Ih;(0)|+ 4 12(”_3 2n-3 < J- g |h; zn)’-az 3(Z)
Nzl =t t Nzil=1 t
< to‘—2n+3.
Hence
Jlog 1h; ()| d2,-2 (=') T 1
I (1+“Jz,")2n_2+“+01/2 < Clg+C20 '([ tl+"_0,/2 dt < 4+ 00.
Q.E.D.
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