FINITE SUBGROUPS OF LOCALLY COMPACT GROUPS

BY

S. ŠWIERCZKOWSKI (CANBERRA)

The aim of this note* is to solve a problem of J. Mycielski ([4], P 316, p. 137) and another one put forward by S. Hartman and J. Mycielski ([2], P 214, p. 169).

Mycielski conjectured in [4] that the infinite alternating group (i.e. the group of all even permutations of a countable infinite set) cannot be a subgroup (closed or not) of any locally compact connected group. This is so, by the following

THEOREM. Every simple and periodic (not necessarily closed) subgroup K of a locally compact connected group G is finite.

Proof. If G is a Lie group, the lemma is a consequence of the known fact that

(*) every infinite, periodic subgroup of $GL(n, R)$ contains an infinite abelian normal subgroup ([1], 36. 17, p. 260, and 36. 11, p. 257).

Indeed, let K be simple, periodic and contained in G, and let $a: G \rightarrow GL(n, R)$ be the adjoint representation of G in its Lie algebra, where $n = \dim G$. Since $\ker a \subseteq$ Centre G, it follows that $K \cap \ker a = \{1\}$ and thus the composite $K \subseteq G \rightarrow GL(n, R)$ is a monomorphism. Thus, by (*), K cannot be infinite.

In the general case, when G is any locally compact connected group, we apply Yamabe's theorem ([5], Th. 5', p. 364) by which G has arbitrarily small normal subgroups N such that G/N is a Lie group. Since $K \cap N$ is either $\{1\}$ or K, there must be some N for which $K \cap N = \{1\}$. For such N, the composite $K \subseteq G \rightarrow G/N$ is a monomorphism, moreover, G/N being a Lie group, the image of K in G/N is finite, by the above. Thus K is finite.

The problem put forward by J. Mycielski and S. Hartman in [2] was to prove the following

* Research supported by a grant from ZWO while the author was staying at the University of Leiden (Holland).
Theorem. Every periodic discrete subgroup of a connected locally compact group G is finite.

Proof. Note first of all that, by the quoted theorem of Yamabe, the general case reduces to the one where G is a Lie group. In that latter case the lemma is a consequence of (\ast) and another known fact that

($\ast\ast$) every abelian discrete subgroup of a connected Lie group is finitely generated ([3], Th. 1', p. 250).

Indeed, let Γ be a discrete, periodic subgroup of the locally compact, connected G. Denote the centre of G by Z. Then $\Gamma \cap Z$ is finite, by ($\ast\ast$). Let $G_1 = G/(\Gamma \cap Z)$ and let Γ_1 be the image of Γ in G_1. Then Γ_1 is still discrete in G_1. Moreover, the adjoint representation of G_1 on its Lie algebra is faithful on Γ_1. Hence Γ_1 is isomorphic to a subgroup of $GL(n, R)$, where $n = \dim G_1$. If Γ_1 were infinite, then it would contain an infinite abelian subgroup, by (\ast). This group would then be a subgroup of G_1 which is discrete, periodic, infinite and abelian. But such a group cannot exist, by ($\ast\ast$). Thus Γ_1 is finite and from $\Gamma_1 \cong \Gamma/(\Gamma \cap Z)$ we infer that Γ is finite.

References

Australian National University

Reçu par la Rédaction le 14. 1. 1969