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1. Fully controllable linear differential systems. Consider a linear control
system

(£) % = A(t)x+B()u

(note: x(t) = dx/dt) with state vector x and control vector u:

[ x!7] ul ]
x? u?
x= |- eR", u= eR™,
x" u™ |

at each time te ¢, where # is a prescribed open interval in R. Here the
coefficient matrices A(t)e LL.(#, R"*") and B(t)eL}.(#, R"*™), that is, the
corresponding entries

a;jit)y for 1 <i,j<n, and b;(t) for1<i<n I<j<m

are each integrable on every compact subinterval of #.

For each initial state x, e R", and controller u(t)e Lis.(#,, R™*"') for some
subinterval ¢, = [t,, t,] = #, there exists a unique (absolutely continuous)
solution or response x(t) on #,:

x(t) = X(t)xo+ X(1) i X (s)” ! B(s)u(s)ds.

to
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Here, X (t) is the usual fundamental solution matrix defined by
X0 =A0)X®), X(@o)=1I.

DErFINITION. The linear control system () for state vector xe R" and
controllers u(t)e L{2.(#,, R™*!) is called fully controllable in R" starting at
instant t,€.# in case:

for each pair of initial state x, and target state x € R" and for each positive
duration #, = [t,, T] < #, there exists a controller u(t) on t, <t < T
such that the corresponding response x(t) from x(t,) = x, is controlled or
steered to x(T) = x.

If (#) is fully controllable in R", starting at each initial instant ty€.#, then (%)
is called fully controllable on #.

We recall that the set of attainability from x,, on the duration [¢t,, T] < #
is the  subset of R"

K, (ty, T) = {X(T)xo+ ?X(T)X(s)“‘B(s)u(s)dsI

all controllers u(s) on t, <s < T}.

The corresponding set of attainability from the origin x, = 0, say starting at
initial time t, = 0 in #, is denoted K,(T). In this notation the linear system
(&) is fully controllable in R", starting at the instant t, = 0, in case

Ko(T)=R" for each T >1t, in S.

In the autonomous case, where A(t) = A and B(t) = B are constant, and
where .# = R, the classical necessary and sufficient condition [5] for (&) to be
fully controllable on .# is

rank[B, AB, A’B, ..., A" !B] =n.

However, in the case of time-dependent coefficient matrices A(r) and B(t), no
similar criterion 1s available — unless these coefficient matrices are assumed to
be highly differentiable [4], [5].

In this note, we present an appropriate sufficiency test for the full
controllability of (), under the hypothesis that (4(z), B(t)) have the format of
a Zettl-Everitt pair [2], [3], and hence (&) is equivalent to a scalar
quasi-differential equation (Q), as will be described in the next Section 2. An
extensive treatment of the general control theory of quasi-differential equations
can be found in [1], but our treatment seems more direct and elementary. In
Section 3 we present new results on bounded controllers-and on the bang-bang
principle for minimal-time optimal controllers.

2. Controllability of quasi-differential equations. One of the first prob--
lems of a first course in control theory concerns the controllability of the real
scalar linear differential equation
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(S) X" —an—1()x" "V =an-200)y" P — ... —ay(t)x = b(t)u,

with coefficients a,(t), b(t) in Lisc{.#) on a prescribed open interval # < R, and
with controllers u(t)e Lisc(.#,) for various subintervals #, < #. It is elemen-
tary to verify by direct arguments that (S) is fully controllable in the state space
R" (where the state is specified by x! =y, x> = y1), ..., x" = ¥~ 1, as usual),
provided b(f) # 0 a.e. on #. This is easily seen because we merely interpolate
a smooth function y(t) between the prescribed initial and final states in R"; and
use this response x(t) to compute b(t)u(t) and hence the desired controller u(t)
(then adjust the controller to be bounded by means of routine techniques
involving linearity and approximation).

In this paper we shall provide the control theory for the corresponding
linear system with time-varying coefficients; in fact for a more extensive and
generalized type of linear system where the coefficient matrices (A(t), B(t))
constitute a Zettl-Everitt pair, as defined next. For simplicity of exposition we
henceforth assume that t, =0 lies in ¥, and that only scalar controllers
u(t)e Lis:(#£, R) are involved, that is m = 1.

DeriNITION. The pair of matrices, defined on the open interval .# c R,
A()€Lioc(F, R"™™ and B()eLb(#, R"™Y)

constitute a Zettl-Everitt pair in case they display the format

sa,® 0 00.. 0 0 ]
*  x  a,(00 .. 0 0
A= | ... BT T . B = |
* an—l.n(t) 0
* * | b(2)

In greater detail the conditions are:

aii+1{(t) #0 ae. on £ for 1 <i<n-1
and
aif(t)y=0 ae. on f for 1 <i<n-2,j=2i+2.
Remarks.

1. We say that A(t) is a Zettl matrix, A(t)e Z,(#), and note that this
format provides a generalization of the companion-form matrix arising from
the scalar differential equation (S).

2. In the notation of the quasi-derivatives y!§!(t) for 0 < s<n, for
a suitably differentiable real scalar function x(f), we can describe such

a Zettl-Everitt control system (%) by a scalar quasi-differential control
equation

(@ 1 = b(t)u.

Here the quasi-derivatives of x(t), constructed relative to a prescribed
matrix A(t) = (aij(t) € Z,(F), are defined as follows:

3 = x(2)
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which we also denote by x2)(t) = x'(¢),

10 = a0 {10 — a1, (xR )}
which we also denote by x4)(t) = x3(t), in accord with the first row of the
differential system (%) x = A(t)x+b(t)u with Zettl-Everitt pair (A(t), B(1)),
namely,
x! = a“x1+aux2 or x? = a, {x —a,1X }
Continue to define

X2 = azs (i — (a2, + a5, 70N}
which we also denote by y7(t) = x3(¢), in accord with

%% = a3 x' +axx% +a3;3%°,
and so forth

=10 = x().

We observe that if A(t) is the companion matrix corresponding to the scalar
differential equation (S), then these quasi-derivatives are merely the classical
derivatives,

@) =x9¢) for 0<s<n—1.

However, we define ¥!7(t), as based on a general matrix A(t)e Z,(F), to
include the information of the last row of the linear system (#). Thus we define

290 = 10— Y a0~ ()

s=1
or equally well
XE:](t) =Xx"— Apy (t)xl - an2(t)x2 T e T ann(t)xu'

In this notation the first (n— 1)-rows of the linear system (%) merely define the
quasi-derivatives ¥§(¢) for 0 < s < n—1, and the last row can be written as the
scalar quasi-differential control equation

Q) X9 = b()u.

In this sense the two differential control equations (%) and (Q) are merely
different notations for the same control system in R" (see [ 1] for further.details).
In this paper we shall usually employ the more familiar notation of the matrix
differential system in R", (&) with the Zettl-Everitt pair (A(t), B(t)).

THEOREM 1. Consider the linear control system (%) in R",on the open
interval # < R, where

AMeZ,(#), B)= | : | €Li(H),
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so (A(t), B(t)) constitute a Zettl-Everitt pair, and the controllers u(t)e L},.(#,)
for intervals ¥, < J.

If b(t) # 0 a.e. on .#, then (&) is fully controllable in the state space R",
starting at any t,ef.

Proof. Take x,=0 and fix t;=0 in .# for simplicity. The set of
attainability, for each T> 0 in .#, is then

Ky(T) = {}X (T)X ()" 'B(s)u(s)ds| all controllers u(s) on [0, T]}.
0

Clearly K,(T) is a linear subspace of R". We must prove that K,(T) = R".
Suppose to the contrary that dimK,(T) < n for some T > 0. In this case
there exists a constant row vector 7, # 0 so that n,K,(T) = 0. Now define
nr#0 by n,=%;X(T)"!, and then define the row vector function
n(t) = nrX(t)~ ', which is a nontrivial solution of the adjoint equation

0@ = —n@®A@®) from n(0) =y #0.

But then, for all controllers u(t) on 0 <t < T,
T
nr X(T) ' X(T) [ X(s)" ' B(s)u(s)ds = 0,
0

and hence the integrand must be zero:

n(s)B(s)=0 ae. on0<s<T

‘_0-
0

Recall that n =(n,, n,, ..., n,), B(t) = : so we conclude that

0
[ b(t) |
n(b(t)=0 ae. on0<et<<T."

This implies that 7,(f) =0 ae. on 0 <t < T.
Next examine carefully the structure of the adjoint differential equation:

M = —May;—N8;,— ... — Nniny
o= —MN1Q1,— N5, — ... —NnGn2
iy = —N833— ... —NaGny
ﬁn—l = —"n—Zan—Z.n—l—ﬂn~1an'-1.n—l_’1;;an,n~1
’iu = —MNa-18p—1,n —NyGnn-
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We note that n,(t) = 0 a.e., so its derivative is zero, #,(t) = O a.e. on [0, T]. But
then

~Np—1(t)apn-1,(t) =0 ae, so n,_,(t)=0 ae. on [0, T].

Since #,-1(t) =0 a.e., so its derivative is zero, #,-,(t) =0 ae. on [0, T].
From this result, and the (n—1)-row of the adjoint differential equation, we
deduce 7n,-,(t) =0 ae.
Continue in this way to show that

n,0)=0, n,-,0)=0,....,n,(t) =0 ae. on [0, T].

From these results, and the second row of the adjoint differential equation, we
deduce n,(t) = 0 a.e. But this implies that the vector #n(t) = 0 a.e. on [0, T],
which contradicts our earlier assertion that n(t) is a nontrivial solution of the
homogeneous differential equation # = —nA(t) on 0<t < T.

Hence we conclude that (.#) is fully controllable in R", starting at any
instant t,e.#, as required. m

In the notation of quasi-differential equations the conclusion of Theo-
rem 1 takes the following form.

CoROLLARY. The scalar quasi-differential equation (Q) on # < R with
A(t)eZ,(#) and b(t) # 0 a.e. on F, is fully controllable in the state space R",
starting at any initial instant toe.f.

3. Minimal-time optimal control of quasi-differential equations. In this final
section we turn to the problem of minimal-time optimal control of an initial
state x, # 0 to the origin in R", with bounded controllers u(t) in the linear
system (%).

Again we assume that the coefficient matrices
-0 ]
0

AWeZ(F), BM)= | : | eLh(#) (b(t) #0 ae. on )

0
| b(r) ]

constitute a Zettl-Everitt pair on the open interval .# < R. Also for simplicity
we assume t, =0 lies in .#, and the control restraint is defined by

@i <1 (so u(t)e Lig.(H)).

Under these circumstances it is known [5] that the set of attainability
K,(T), from the origin in duration [0, T7], is a compact convex subset of R",
and furthermore that K,(T) varies continuously with T > 0 (say, in terms of
the Hausdorff metric). In addition the controllability asserted in Theorem 1
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guarantees that K,(7T) has non-empty interior, so K,(T) is a compact
convex-body in R".

For the given linear control system (%) fix an initial state x,eR” and
consider the corresponding set of attainability K, (7), from x, on 0 <t < T,
using the controllers restrained by |u(f)] < 1. Then

K, (T)=X(T)xq+Ky(T) (vector sum),

so K, (T) is merely a translate of Ky(7T) in R".

If a controller u(t) on 0 <t < T, with |u(t)] < 1, steers x,, to a point x(T)
on the boundary dK, (T), then u(t) is called an extremal controller, and the
corresponding response x(t) on 0 <t < T, is an extremal solution of the
control system (&), see [5]. A necessary and sufficient condition that u(t) on
0 <t < Tis an extremal controller is that the Pontryagin Maximal Principle
holds — namely:

there exists a nontrivial solution n(t) of
= —nA()
for which
n(t)B(t)u(t) = max n(t)B(t)u a.e. on [0, T].

lu| €1
But since b(t) # 0 a.e. on #, we note that
n(OB(1) =n,0b(t) #0 ae. on [0, T],

for otherwise, by the same argument as before, the vector n(t) = 0 on some set
of positive measure.

THEOREM 2 (Bang-bang). Consider the linear control system (¥) in R", on
the open interval # — R, where

AeZ,(#), B@)= : eLl.(#) (b(t) #0 ae. on ),

| b(t) |

so (A(t), B(t)) forms a Zettl-Everitt pair. We use controllers u(t)€ Lj5.(#,) for
intervals ¥, < #, subject to the restraint |u(t) <1.

If a controller u(t) on 0 < t < T steers an initial state x, € R" to the boundary
0K, (T), then there exists a nontrivial solution n(t) of

n= —nA()
so that the extremal controller u(t) satisfies
u(t) = sgn[n,(t)b(t)] ae. on 0<t<T
Thus |u(t) = 1 a.e., which means that u(t) is of bang-bang type.
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Proof. The proof of Theorem 2 follows immediately from the Pontryagin
Maximal Principle. Since

u(t) = sgn[n,(t)b(t)] ae on 0<t<T,
and since 7,(t)b(t) # 0 a.e, we conclude that
lu®)) =1 ae. on [0, T].
This asserts that an extremal controller u(f) must be of bang-bang type. m

Theorem 2 asserts that an extremal controller u(t) of system (#) assumes
only the extreme values + 1 (a.e.), and moreover, u(t) is thus determined by #(¢).
It is known [5] that under such circumstances the attainable set K, (T) is
a strictly convex body — that is, each supporting hyperplane meets K, (T) in
precisely one point. Furthermore each point on the boundary 0K, (T) is
attained by means of a unique (a.e.) extremal controller.

For an extremal controller u(t) on 0 <t < T, with

u(t) = sgn{n,()b(1)]

there can be an infinite number of switches for u(t) between the values +1 and
— 1. But if, in addition, the coefficient matrices A(t), B(t) are real analytic on .#,
then there are only a finite number of switches for the extremal controller u(t)
on 0<t<T

We next apply these considerations to the minimal-time optimal control
problem, where we seek to steer x, # 0 to the origin in R", in the minimal
possible time T* > 0 by an admissible controller u(t) on 0 < t < T*, subject to
the restraint |u(t)| < 1. This minimal time T* will correspond to the first instant
when the compact set of attainability K, (T) hits the origin. Thus
T* =inf{T| 0e K, (T)} is attained at a minimal-time by an extremal control-
ler u*(t) on 0 <t < T* with the extremal response x*(t) steered from
x*(0) = x4 to x*(T*) = O (provided the control of x, to the origin is possible in
a finite duration). Since the first time T7* > 0 when K, (T) hits the origin must
occur when 0e€JK, (T), we conclude that a minimal-time optimal controller
u*(t) on 0 <t < T* must be an extremal controller. We summarize these
conclusions in Theorem 3.

THEOREM 3. Consider the linear control system (£) in R", on the open
interval  c R, where (A(1), B(t)) form a Zettl-Everitt pair with b(t) # 0 a.e. on
F, as before. The controllers u(t)e Li5.(#,) for intervals £, c #, satisfy the
restraint

lu(e)f < 1.

If xg #0 can be steered to the origin of R" by some admissible controller,
then there exists a minimal-time optimal controller u*(t) on 0 <t < T* for the
minimal-time T* > 0. Moreover, u*(t) is unique (a.e.), and u*(t) is necessarily of
bang-bang type.
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The next two corollaries give the interpretation of Theorem 3 for scalar
differential, and quasi-differential control systems — which are merely nota-
tional reformulations of system (%).

? CorOLLARY 1. Consider the scalar control system (S) with coefficients a,(t),
b(t) in I}..(#) and b(t) #0 a.e. on the open interval ¥ < R. Controllers
u(tye Ls.(F,), on various intervals S, < ¥, satisfy the restraint |u(t) < 1.

If an initial state (x} = ¥(0), ..., x = ¥~ 1(0)) can be steered to the zero
state in R", then there exists a unique (a.e.) minimal-time optimal controller u*(t)
on 0<t < T*, and u*(t)l =1 a.e., so u*(t) is of bang-bang type.

COROLLARY 2. Consider the scalar quasi-differential equation (Q), where
A)eZ, (F) and b(t) #0 ae. is in LL(F), on the open interval # < R.
Controllers u(t)e Lig.(#,), on various intervals ¥, c £, satisfy the restraint
lu(®)] < 1.

If an initial state (¥101(0), ..., %~ '40)) can be steered to the zero state in R",
then there exists a unique (a.e.) minimal-time optimal controller u*(t) on
0<t<T* and lu*(t) =1, so u*(t) is of bang-bang type.

As interesting applications of Theorem 3 we relate our theories of
controllability to some particular scalar differential equations. In these
examples special problems arise in demonstrating the global controllability of
an initial state x, € R" to the zero state, with controllers subject to the restraint
u(t)l < 1.

ExampLE 1. Consider the linear control system in R”
(Z,) X =A{t)x+B({t)u on . =R,

where (A4(t), B(t)) form a Zettl-Everitt pair, with b(f) # 0 a.e. Use controllers
u(t)e L5.(R) satisfying the restraint |u(f)] < 1. In this example assume the
periodicity conditions,

A(t)= A(t+1), B(@)=B@+1)

and that the corresponding Floquet (Lyapunov) characteristic roots of the
system X = A(t)X all lie in the left-half complex plane, so that the free
(u(t) = 0) homogeneous differential equation is asymptotically stable towards
the origin.

Under these circumstances each initial state x, # 0 can be steered to the
origin in R" in some finite duration. To show this null controllability of -(# )
consider the set of attainability K, (T), which is merely a translate of K,(T).
Now note that K,(T) covers a closed ball B,(g), centered at the origin in R"
and with some radius ¢ > 0, uniformly on 1 £ T < 2. Start from initial state
X # 0 at t, = 0 and observe the free trajectory x(t) = X(t)x, (corresponding to
u = 0) for a suitably long duration 0 < ¢t < N. Take the integer N so large that
X (t)x, lies within the ball B,(¢/2) for all t > N — which is possible since the
free motion is asymptotically stable towards the origin.
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Next consider the set of attainability K,,(T) for 1 < T < 2. Because of
the periodicity of the coefficients of (&), K,n(T)< K, (N+T). Thus
K. (N + T) contains the ball B(g/2), and hence x, can be steered to the origin
in some minimal-time 0 <t < T*, where T* < N+2.

ExampLE 2. Consider Hill’s differential equation
X+pt)x =u

for p(t) = p(t+1)eL} (R), and for controllers u(t)e LS (R) satisfying the
restraint |u(t)] < 1. We assume that the Floquet (Lyapunov) characteristic roots
are purely imaginary (stable case), so that each solution of the free Hill’s
equation (with u = 0) is almost periodic in R?, see [6]. In this case we shall
show that each initial state x, = (x(0), X(0)) can be steered to the origin of R?
in a finite time duration.

As before, note that K (T) covers a closed ball B,(g) about the origin in
R?, uniformly on 1 < T < 2. Suppose first that the initial state x,, at the initial
instant t, =0, lies within the ball B,(¢/4). Consider the almost periodic
solution x(t) = X(t)x, of the homogeneous (¥ = 0) Hill’s differential equation.
Give ¢ = ¢/4 and then there is a very long ¢-almost period L, so that X (L)x,
again lies in By(g/2). Then take a positive integer N so that 1 < L,—N < 2,
and start to apply the controller u(t) at the instant ¢t = N. Then
Ko(T)c K4(N+T) for T=L,— N so the set of attainability for x,

K. (N+T)=X(L)xo+Ko(N+T)

must contain the ball By(g/2). Therefore x, can be steered to the origin in
a finite time T* < N+ T=1L,.

Finally take any x, # 0 in R%. By the same type of argument, after some
long e-almost period L,, the attainable set K, (L,) contains a state yx, for some
positive constant y < 1 which depends only on K,(L,). Repeat this process
several times (note, y < 1 is unchanged when |x,| decreases) until the initial
state x, is steered into the ball B,(g/4). Then use the first argument to steer the
subsequent trajectory precisely to the origin in a finite time duration.

Therefore each initial state x,e R> can be steered to the origin in a finite
duration of time. Hence there exists a minimal-time optimal controller u*(t) on
0 <t < T*, steering x, to the origin of R%. As asserted in Theorem 3, u*(t) is
unique (a.e) and satisfies the bang-bang principle.
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