On approximate solutions of a functional equation in the class of differentiable functions

by Kazimierz Dankiewicz (Kraków)

Abstract. In the paper, we have proved an existence theorem for the inequality $\|\varphi(x) - h(x, \varphi[f(x)])\| \le \varepsilon$ in the class C^m of functions fulfilling the system of conditions $\|\varphi^{(r)}(x) - \psi^{(r)}(x)\| \le \varepsilon$ for $r \in \{1, ..., m\}$, where f, h are given functions, φ is an unknown function and $\psi(x) = h(x, \varphi[f(x)])$.

Consider the functional equation

(1)
$$\varphi(x) = h(x, \varphi[f(x)])$$

with φ as an unknown function defined on a normed space X and taking values in a normed space Y, and the following problem: under what conditions, on the given functions $f: X \to X$ and $h: X \times Y \to Y$, for every $\varepsilon > 0$, does there exist a continuous function $\varphi: X \to Y$ such that the inequality

$$\|\varphi(x) - h(x, \varphi[f(x)])\| \le \varepsilon$$

holds for every $x \in X$? This problem was considered first by Buck in [3] in connection with the problem of approximation of continuous functions of two variables by those of the form A(x)+B(x'). Paper [2] by Baron and Jarczyk brings a general theorem which answers the above question. The aim of this note is to obtain a similar result for functions of the class C^m , where m is a fixed positive integer. As in [2], we base on two extension theorems. The first one is Lemma 2 being a corollary from a result of Sablik proved in [5] as Lemma 0.4 (Lemma 1). The second one concerns extending solutions of functional equations from a neighbourhood of a distinguished point (Lemma 3).

Our considerations concern in fact Banach spaces satisfying the following condition:

(C) There exist a functional $q: X \to R$ of the class C^{∞} , and a positive integer N such that

$$\bigvee_{c \in [1, +\infty)} \bigwedge_{x \in X} (||x||^N \leqslant q(x) \leqslant c ||x||^N),$$

$$\bigvee_{d \in (0, +\infty)} \bigwedge_{k \in [1, \dots, N)} \bigwedge_{x \in X} (||q^{(k)}(x)|| \leqslant d ||x||^{N-k})$$

and $q^{(k)} = 0$ for every positive integer k > N.

Condition (C) was found by M. Sablik to get an extension lemma quoted as Lemma 1. It has been also pointed out by M. Sablik that (cf. [5], \S 0, Examples): (1) every real Hilbert space (with the square of the norm as q) satisfies condition (C): (2) every space L^{2p} of real functions integrable with 2p-th power satisfies condition (C) (with $q = || ||^{2p}$).

LEMMA 1 (M. Sablik). Assume that X and Y are Banach spaces and let condition (C) be fulfilled.

If the function F, defined on a neighbourhood of the origin of the space X and taking values in the space Y, is of the class C^m and F(0) = 0, then, for every $\varepsilon > 0$, there exist $\delta > 0$, $\theta \in (0, 1)$ and L > 0 such that for every $\varrho \in (0, \delta)$ there exists a function $G: X \to Y$ of the class C^m and such that

$$G(x) = F(x) for ||x|| < \theta \varrho,$$

$$G(x) = F'(0) x for ||x|| > \varrho,$$

$$||G'(x)|| \le ||F'(0)|| + \varepsilon for x \in X,$$

$$||(G - F'(0))^{(r)}(x)|| \le L \sum_{i=0}^{r} \varrho^{i-r} ||(F - F'(0))^{(i)}(x)||$$

for $r \in \{1, ..., m\}$ and $||x|| < \varrho$; moreover, if F'(0) is a bijection and ε is small enough, then G is a bijection and $||(G^{-1})'(x)|| \le 1/(||F'(0)^{-1}||^{-1} - \varepsilon)$ for every $x \in X$.

In fact, Lemma 1 is not exactly the one stated in paper [5] as Lemma 0.4 but, in fact, the present stronger result was proved there.

From this theorem we shall derive the following corollary:

LEMMA 2. Assume that X and Y are Banach spaces and let condition (C) be fulfilled.

If the function F, defined on a neighbourhood of a point $\xi \in X$ and taking values in the space Y, is of the class C^m and if

(2)
$$F^{(r)}(\xi) = 0 \quad \text{for } r = 0, 1, ..., m,$$

then, for every $\varepsilon > 0$, there exists a function $G: X \to Y$ of the class C^m such that G(x) = F(x) on a neighbourhood of the point ξ and

(3)
$$||G^{(r)}(x)|| \le \varepsilon$$
 for $x \in X$, $r = 0, 1, ..., m$.

Proof. Fix an $\varepsilon > 0$, define the function F_0 on a neighbourhood of the origin putting

$$F_0(x) = F(x + \xi)$$

and, making use of Lemma 1, fix numbers $\delta > 0$, $\theta \in (0, 1)$ and L > 0 such that for every $\varrho \in (0, \delta)$ there exists a function $G_0: X \to Y$ of the class C^m and such that

(4)
$$G_0(x) = F_0(x) \quad \text{for } ||x|| < \theta \varrho,$$

(5)
$$G_0(x) = 0 \quad \text{for } ||x|| > \varrho$$

and

(6)
$$||G_0^{(r)}(x)|| \le L \sum_{j=0}^r \varrho^{j-r} ||F_0^{(j)}(x)|| \quad \text{for } r = 1, ..., m, ||x|| < \varrho.$$

Now, let us choose a positive number $\varrho < \min \{\delta, 1\}$ such that

$$||F_0^{(m)}(x)|| < \varepsilon/(m+1) L$$
 for $||x|| < \varrho$

and let $G_0: X \to Y$ be a function of class C^m and such that conditions (4), (5) and (6) are fulfilled. Putting

$$G(x) = G_0(x - \xi)$$
 for $x \in X$,

we see that

$$G(x) = F(x)$$

whenever $||x-\xi|| < \theta \varrho$ and

$$G(x) = 0$$
 whenever $||x - \xi|| > \varrho$.

We shall show that

$$||G^{(r)}(x)|| \leq \varepsilon$$
 for $||x-\xi|| < \varrho$, $r=0, 1, \ldots, m$.

To this end let us observe that if $||x|| < \varrho$, then

$$||F_0^{(m-1)}(x)|| = ||F_0^{(m-1)}(x) - F_0^{(m-1)}(0)||$$

$$\leq ||x|| \sup \{||F_0^{(m)}(x')||: ||x'|| < \varrho\} < \varrho \cdot \varepsilon / (m+1) L$$

and, by induction,

$$||F_0^{(j)}(x)|| < (\varepsilon/(m+1)l)\varrho^{m-j}$$
 for $||x|| < \varrho, j = 0, 1, ..., m$.

Hence and from property (6) of the function G_0 we infer that

$$||G_0^{(r)}(x)|| \leqslant L \sum_{j=0}^r \varrho^{j-r} \frac{\varepsilon}{(m+1) l} \varrho^{m-j} = \frac{\varepsilon}{m+1} \sum_{j=0}^r \varrho^{m-r} \leqslant \varepsilon$$

whenever $||x|| < \varrho$ and $r \in \{1, ..., m\}$, i.e., $||G^{(r)}(x)|| \le \varepsilon$ whenever $||x - \xi|| < \varrho$, then

$$||G(x)|| = ||G(x) - G(\xi)|| \le ||x - \xi|| \sup \{||G'(x')|: ||x' - \xi|| < \varrho\} < \varrho \varepsilon < \varepsilon.$$

Lemma 2 is proved.

Passing to equation (1), we assume the following:

- (i) The Banach space X fulfils condition (C), U is an open subset of the space X and ξ is a given (and fixed) point of the set U.
- (ii) The function $f: U \to U$ is of the class C^m , each neighbourhood of the point ξ contains a neighbourhood $W \subset U$ such that $f(W) \subset W$ and $\lim_{n \to \infty} f^n(x) = \xi$ for every $x \in U$.
- (iii) Y is a Banach space and the function h: $U \times Y \to Y$ is of the class C^m .
- (iv) The (fixed) function φ_0 , defined on a neighbourhood of the point ξ and taking values in the space Y, is of the class C^m and $\psi_0^{(r)}(\xi) = \varphi_0^{(r)}(\xi)$ for every $r \in \{0, 1, ..., m\}$, where the function ψ_0 is defined in a neighbourhood of the point ξ by the formula

$$\psi_0(x) = h(x, \varphi_0[f(x)]).$$

The function φ_0 may be considered as a formal solution of equation (1) (cf. [5], Definition 1.1 and Remark 1.1).

The following lemma is well known (cf. [1], Chapter 3; also [4], Theorem 4.2; in the case X = Y = R).

LEMMA 3. Let hypotheses (i)—(iii) be fulfilled and let $W \subset U$ be an open neighbourhood of the point ξ such that $f(W) \subset W$.

If $\varphi: W \to Y$ is a solution of equation (1) of the class C^m , then there exists exactly one solution $\Phi: U \to Y$ of this equation which is an extension of the function φ . The solution Φ is of the class C^m .

THEOREM. Assume (i)-(iv).

Then, for every positive real number ε , there exists a function $\varphi: U \to Y$ of the class C^m which coincides with φ_0 in a neighbourhood of the point ξ and is such that

$$\|\varphi^{(r)}(x) - \psi^{(r)}(x)\| \le \varepsilon$$

for every $x \in U$ and $r \in \{0, 1, ..., m\}$, where the function $\psi \colon U \to Y$ is defined by the formula

(7)
$$\psi(x) = h(x, \varphi[f(x)]).$$

Proof. Fix an $\varepsilon > 0$ and put

$$F(x) := \varphi_0(x) - h(x, \varphi_0[f(x)])$$

for x from a neighbourhood of the point ξ . The function F is of the class C^m

and condition (2) is fulfilled. Thus, by Lemma 2, there exist a neighbourhood W of the point ξ and a function $G: X \to Y$ of the class C^m such that G(x) = F(x) for every $x \in W$ and condition (3) holds. We may assume that $f(W) \subset W$. Put

$$h_0(x, y) := G(x) + h(x, y)$$

for every $(x, y) \in U \times Y$. Then the function h_0 is of the class C^m and for $x \in W$ we have

$$h_0(x, \varphi_0[f(x)]) = \varphi_0(x),$$

i.e., $\varphi_0|_W$ is a solution of the equation

$$\varphi(x) = h_0(x, \varphi[f(x)]).$$

Making use of Lemma 3 we may extend uniquely the solution $\varphi_0|_W$ to a solution $\varphi: U \to Y$ of this equation, and this solution φ is of the class C^m . Now, defining the function $\psi: U \to Y$ by formula (7), we see that

$$\varphi(x) - \psi(x) = h_0(x, \varphi[f(x)]) - h(x, \varphi[f(x)]) = G(x)$$

for every $x \in U$, and it follows from condition (3) that the function φ has all the required properties.

At the end let us observe that the above presented approach is a little bit different from that presented by Baron and Jarczyk in [2] (where, roughly speaking, a restriction of the function of two variables $\varphi_0(x) - h(x, y)$ was extended rather than a restriction of the function of one variable $\varphi_0(x) - h(x, \varphi_0[f(x)])$). By this approach our theorem may be stated also for equations of the form

$$\varphi(x) = h(x, \varphi \circ f(\cdot, x))$$

without any restrictions on their order. On the other hand, this approach does not allow us to obtain a full counterpart of Theorem 1 from paper [2], although we have the following corollary from the above-proved theorem.

COROLLARY. Assume (i)-(iv).

Then, for every positive real number ε , there exists a function $H: U \times Y \to Y$ of the class C^m such that the equation

$$\varphi(x) = H(x, \varphi[f(x)])$$

has a solution $\varphi: U \to Y$ of the class C^m which coincides with φ_0 in a neighbourhood of the point ξ and

$$||h^{(r)}(x, y) - H^{(r)}(x, y)|| \le \varepsilon$$

for every $(x, y) \in U \times Y$ and $r \in \{0, 1, ..., m\}$.

Proof. If $\varphi: U \to Y$ is a function obtained via the theorem, then it is enough to put

$$H(x, y) = h(x, y) + \varphi(x) - h(x, \varphi[f(x)]), \quad (x, y) \in U \times Y.$$

References

- [1] K. Baron, Functional equations of infinite order, Prace Naukowe Uniwersytetu Śląskiego w Katowicach 265 (1978).
- [2] and W. Jarczyk, On approximate solutions of functional equations of countable order, Aequationes Math. 28 (1985), 22-34.
- [3] R. C. Buck, On approximation theory and functional equations, J. Approx. Theory 5 (1972), 228-237.
- [4] M. Kuczma, Functional equations in a single variable, Monografie Matematyczne, tom 46, PWN, Warszawa 1968.
- [5] M. Sablik, Differentiable solutions of functional equations in Banach spaces (submitted for publication).

Reçu par la Rédaction le 16.03.1987