H^p spaces on bounded symmetric domains

by Kyong T. Hahn (Pennsylvania)
and Josephine Mitchell* (New York)

Abstract. Let D be a bounded symmetric domain in $C^N \,(N > 1)$ with Bergman–
Šilov boundary b and $H^p \,(p > 0)$ the Hardy space of functions on D. If $f \in H^p \,(p > 1)$,
a Fourier series expansion is obtained for f which gives Cauchy and Poisson integral
formulas for f. $H^p \,(p > 1)$ can be identified with the class $\tilde{f} \in L^p(b)$ whose
Cauchy and Poisson integrals are the equal. H^2 can be identified with the class $\tilde{f} \in L^2(b)$ whose
Fourier coefficients $a_{kp} = 0$ for $k < 0$. Several properties of weak convergence in H^p
are proved. In particular, if a bounded sequence converges pointwise on D, then it
converges weakly. D. J. Newman's result on pseudo-uniform convexity of H^1
for the disc is extended to D.

1. Introduction. Let D be a bounded symmetric domain in the
complex vector space $C^N \,(N > 1)$, $0 \in D$, with Bergman–Šilov boundary b, I' the group of holomorphic automorphisms of D and I'_0 its isotropy
group. It is known that D is circular and star-shaped with respect to
0 and that b is circular. The group I'_0 is transitive on b and b has a unique normalized I'_0-invariant measure $V^{-1} ds_b$, V the euclidean volume of b and ds_t euclidean volume element at $t \in b$. See [11], [17].

The Hardy space $H^p = H^p(D)$, $0 < p < \infty$, is the set of holomorphic
functions on D with

$$
\|f\|_p = \sup_{0 < r < 1} \left\{ \frac{1}{V} \int_b |f(rt)|^p ds_t \right\}^{1/p} < \infty.
$$

For $p \geq 1$ H^p is a Banach space and for $0 < p < 1$ a complete linear
Hausdorff space [6].

In Section 2 we derive a Fourier series representation for any holomorphic function in D. If $f \in H^p \,(p > 1)$ a better representation is obtained which gives Cauchy and Poisson integral formulas for f. The space H^p
can be identified with the class of functions $\tilde{f} \in L^p(b)$ whose Cauchy and
Poisson integrals are the equal (Theorem 2). Theorem 3 gives another
characterization of H^2. Theorem 4 proves that if a bounded sequence
in $H^p \,(p > 1)$ converges pointwise on D, then it converges weakly; thus

* This research was partially supported by NSF GP-11167.

Remarks.

1. The Bergman–Šilov boundary b is the smallest closed set in \overline{D} on which functions holomorphic on \overline{D} take their maximum [5], p. 215. The real dimension of b is $\geq N$. If $N = 2$ any bounded symmetric domain is biholomorphically equivalent to the bidisc $\{|x_1| < 1, |x_2| < 1\}$ or to the ball $\{|x_1|^2 + |x_2|^2 < 1\}$. Their Bergman–Šilov boundaries are $\{|x_1| = 1, |x_2| = 1\}$ of real dimension 2 and $\{|x_1|^2 + |x_2|^2 = 1\}$ of real dimension 3, respectively. If $N = 3$ an example of a bounded symmetric domain besides the polydisc and ball is $\{|x_1|^2 + |x_2|^2 < 1, |x_3| < 1\}$ with Bergman–Šilov boundary $\{|x_1|^2 + |x_2|^2 = 1, |x_3| = 1\}$ of real dimension 4 [5], p. 313.

2. Bergman and Weil have generalized Cauchy's integral formula for functions holomorphic on closed analytic polyhedra [2], [15].

2. Cauchy and Poisson formulas for functions of class H^p ($p \geq 1$). Let $Z_{k\nu}$ denote the monomial $x_1^{k_1} \ldots x_N^{k_N} (k = k_1 + \ldots + k_N, k_0 = 0, 1, 2, \ldots, \nu = 1, \ldots, m_k = \binom{N + k - 1}{k})$. From the set $\{Z_{k\nu}\}$ Hua constructed by group representation theory a system $\Phi_0 = \{\varphi_{k\nu}\}$ of homogeneous polynomials, complete and orthogonal on D and orthonormal on b [9]. For each k the sets $\{\varphi_{k\nu}\}$ and $\{Z_{k\nu}\}$ are in 1-1 correspondence so that to a set of constants $\{a_{k\nu}\}$ corresponds a set $\{A_{k\nu}\}$ with $\sum_{\nu=1}^{m_k} a_{k\nu} \varphi_{k\nu} = \sum_{\nu=1}^{m_k} A_{k\nu} Z_{k\nu}$ and conversely. Let f be holomorphic on D. Then f_q, defined by $f_q(z) = f(qz)$, $0 < q < 1$, is holomorphic on \overline{D} and has the series expansions

$$f_q(z) = \sum_{k\nu} a_{k\nu}(f_q) \varphi_{k\nu}(z) = \sum_{k\nu} A_{k\nu}(f_q) Z_{k\nu}$$

($\sum_{k\nu} = \sum_{k=0}^{\infty} \sum_{\nu=1}^{m_k}$), both series converging uniformly to f_q on compact subsets of D. Term by term differentiation in (1) gives

$$A_{k\nu}(f_q) = \frac{\partial^k f}{\partial z_1^{k_1} \ldots \partial z_N^{k_N}} \bigg|_{z_1 = \ldots = z_N = 0} (0) = \varphi_{k\nu}(f)$$

so that

$$f_q(z) = \sum_{k\nu} \varphi_{k\nu}(f) \varphi_{k\nu}(z).$$

To find $a_{k\nu}(f)$ set $z = e^t \bar{b} (t \in b, 0 < e^t < 1)$ in (2), multiply by $\varphi_{j\mu}(t)$ and integrate over b. This gives

$$a_{j\mu}(f) q^t = \int_{b} f(qt) \varphi_{j\mu}(t) ds_t = \langle f_q, \varphi_{j\mu} \rangle$$
(r = \varrho^s). Replacing \varrho^s by z in (2) gives

\[f(z) = \sum_{k,r} a_{k,r}(f) \varpi_{k,r}(z), \quad a_{k,r}(f) = \lim_{r \to 1} (f_r, \varpi_{k,r}), \]

which converges uniformly on compact subsets of D.

Theorem 1. Let \(f \in H^p \) (\(p \geq 1 \)) with boundary values \(f^* \) on b. Then \(f \) has a Cauchy integral representation

\[f(z) = \int_b S(z, t) f^*(t) ds_t \equiv (f^*, S_z) \quad (z \in D) \]

and a Poisson integral representation

\[f(z) = \int_b P(z, t) f^*(t) ds_t \equiv (f^*, P_z) \quad (z \in D). \]

Proof. By a theorem of Bochner on circular sets [3] if \(f \in H^p \) (\(p > 0 \)) there exists \(f^* \in L^p(b) \) such that \(\lim_{r \to 1} \| f_r - f^* \|_p = 0 \). Since \(\varpi_{k,r} \) is bounded independently of \(r \) on b, Hölder's inequality for \(p > 1 \) and (4) give

\[a_{k,r}(f) = \lim_{r \to 1} (f_r, \varpi_{k,r}) = (f^*, \varpi_{k,r}). \]

This also holds for \(p = 1 \). (5) follows from (4) and (7) and the fact that the series \(\sum_{k,r} \varpi_{k,r}(z) \varpi_{k,r}(t) \) for \(S(z, t) \) converges uniformly for z on compact subsets of D and \(t \in b \) [9]. (6) follows by writing (5) for the function \(g \in H^p \) defined by \(g(z) = f(\zeta) S(\zeta, \bar{z}) S(z, \bar{z}), \zeta \in D. \)

By (6) if \(f^* \) is real, then \(f \) is real on D, and a real holomorphic function is a constant. Thus

Corollary. If \(f^* \) is real on b and \(f \in H^p \) (\(p \geq 1 \)), then \(f \) is constant on D.

3. **Characterization of** \(H^p(D) \) (\(p \geq 1 \)). Set

\[S^p(b) = \{ \tilde{f} \in L^p(b); (\tilde{f}, S_z) = (\tilde{f}, P_z) \}. \]

Then

Theorem 2. For \(p \geq 1 \) \(S^p(b) \) is a closed subspace of \(L^p(b) \) which is isometrically isomorphic to \(H^p(D) \) under the correspondence \(f \to \tilde{f} \) given by \(f(z) = (\tilde{f}, P_z), \tilde{f} \in S^p(b). \) Also if \(f^* \) is the boundary value of \(f \), then \(f^* = \tilde{f} \) a.e. on b.

Proof. From Theorem 1, \(f \in H^p(D) \) implies \(f^* \in S^p(b). \) Conversely let \(\tilde{f} \in S^p(b) \) and set \(f(z) = (\tilde{f}, S_z). \) Then \(f \) is holomorphic on D. Since \(P(z, t) \geq 0 \) and \(\int_b P(z, t) ds_t = 1, \) from \(f(z) = (\tilde{f}, P_z) \) follows by Hölder's inequality for \(p > 1 \)

\[|f(z)| = |(\tilde{f}, P_z)| \leq |(\tilde{f})|^p, P_z |^{1/p}, \]

where
where \(|\tilde{f}|^p \in L^p(b)\). (1) also holds for \(p = 1\). Now \(h(z) = (|\tilde{f}|^p, P_z) \in \mathcal{S}(D)\) and \(f \in H^p(D)\) ([6], p. 521) and by Theorem 3 of [6] \(f \in H^p(D)\). Thus \(S^p(b)\) and \(H^p(D)\) are in 1-1 correspondence. For \(\tilde{f} \in S^p(b)\) set \(f(z) = (P_z, \tilde{f})\).

By [10], Proposition 2.5; \(\|f_r - \tilde{f}\|_p \to 0\) as \(r \to 1\) if \(p \geq 1\). By [3] there exists \(f^* \in L^p(b)\) such that \(\|f_r - f^*\|_p \to 0\) as \(r \to 1\). Hence \(\tilde{f} = f^*\) a.e. on \(b\).

Clearly \(\|\tilde{f}\|_p = \|f^*\|_p = \|f\|_p\) so that \(S^p(b)\) is isometrically isomorphic to \(H^p(D)\). Since \(H^p(D)\) is complete, \(S^p(b)\) is a closed subspace of \(L^p(b)\).

A second characterization of \(H^2(D)\) follows easily from Hilbert space theory. By Weyl [16] the orthonormal system \(\Phi_0\) can be extended to a complete orthonormal system of continuous functions on \(b\): \(\Phi = \{\varphi_{kr}, k = 0, \pm 1, \pm 2, \ldots; 1 \leq \nu \leq m_k\) if \(k \geq 0\), \(\nu = 0\) if \(k < 0\}, where the additional terms have been indexed by negative indices.

Set

\[
T^a(b) = \{f \in L^2(b); \quad a_{kr}(f) = (f, \varphi_{kr}) = 0 \text{ for } k < 0\}.
\]

Then

Theorem 3. \(T^a(b)\) is a closed subspace of \(L^2(b)\) which is isometrically isomorphic to \(H^2(D)\). If \(f^*\) is the boundary value of \(f\), then \(f^* = \tilde{f}\) a.e. on \(b\).

Proof. If \(f \in H^2(D)\), then \(f \to f \in T^a(b)\) by (2.4) and (2.7). Conversely let \(\tilde{f} \in T^a(b)\) and set

\[
f(z) = \sum_{k, r} a_{kr}(\tilde{f}) \varphi_{kr}(z) \quad (k \geq 0).
\]

From the Schwarz inequality and Bessel’s inequality follow that the series in (2) converges absolutely and uniformly on compact subsets of \(D\). Hence \(f\) is holomorphic on \(D\). By a calculation

\[
\|f_r\|^2 = \sum_{k, r} |a_{kr}(\tilde{f})|^2 \leq \sum_{k, r} |a_{kr}(\tilde{f})|^2
\]

so that \(f \in H^2(D)\). Also \(\|f\|_2 = \|f\|_2\). The rest of Theorem 3 follows as in the proof of Theorem 2.

Schmid obtained an analogous characterization of \(H^2(D)\) when \(D\) is a non-compact hermitian symmetric space by using Lie group theory [14].

4. **Convergence in** \(H^p\). The following properties of weak convergence are known or are easy to prove:

If \(f_n \to \gamma f\) in \(H^p\), then \(f_n \to f\) uniformly on compact subsets of \(D\) for every \(p > 0\) ([6], Theorem 9). If \(f_n \to f\) strongly in \(H^p (p > 0)\), then \(f_n \to \gamma f\) in \(H^p\).

This follows from the inequality \(|\gamma(f_n) - \gamma(f)| \leq \|\gamma\| \|f_n - f\|_p (\gamma \in (H^p^*)^*\).

Since \(H^p (p > 1)\) is a Banach space, the norms of the elements of a weakly convergent sequence are bounded. Let \(\{f_n\}\) be a bounded sequence in \(H^p (p > 0)\). Then \(f_n \to f\) pointwise on \(D\) if and only if \(f_n \to f\) uniformly on compact subsets of \(D\); also \(\gamma f \in H^p\).
Proof. By Lemma 3 of [6], boundedness of \(\{f_n\} \) in \(H^p \) implies that \(\{f_n\} \) is uniformly bounded in compact subsets of \(D \). Then by Lemma 4 of [6] \(f_n \to f \) pointwise on \(D \) implies uniform convergence of \(\{f_n\} \) to \(f \) on compact subsets of \(D \). The converse is trivial. Since \(\{f_n\} \) is bounded in \(H^p \) and \(f_n \to f \) uniformly on \(b_r = \{ rt : t \in b \} \), \(0 < r < 1 \), \(\|f_n\|_p \) is bounded independently of \(r \) so that \(f \in H^p \).

The next theorem generalizes to bounded symmetric domains a result of Rudin [13] for the disc.

Theorem 4. Let \(\{f_n\} \) be a bounded sequence in \(H^p \) \((p \geq 1) \). If \(f_n \to f \) pointwise in \(D \), then \(f_n \to f \) in \(H^p \) for \(p > 1 \) but not for \(p = 1 \).

Proof. See [13] for a counter-example when \(p = 1 \). Assume that \(\|f_n\|_p < 1 \) for all \(n \). By Lemma 3 of [6] the boundedness of \(\{\|f_n\|_p\} \) implies that \(\{f_n(z)\} \) is bounded independently of \(n \) and \(z \) on \(D_r(0 < r < 1) \). Hence by Vitali's theorem [6] \(f_n \to f \) uniformly on compact subsets of \(D \). Thus \(f \in H^p \) and we may assume that \(f = 0 \). Show that \(f_n \to 0 \) in \(H^p \).

\(f_n \in H^p \) has the series representation (2.4) with Fourier coefficients \(\varphi_{b_\nu}(f_n) \) given by (2.3). Since \(\{f_{r,n}\} \) converges uniformly to 0 on the compact set \(b, \) (2.3) gives \(\lim \varphi_{b_\nu}(f_n) = 0 \) for all \(k \geq 0 \) and \(n \). Hence by (2.7) \(\lim \varphi_{b_\nu}(f_n) = 0 \) for all \(k \geq 0 \). In (2.4) with \(f = f_n \) set \(z = rt \), multiply by \(\varphi_{b_\nu}(t) \) \((k < 0)\) and integrate over \(b \). By orthogonality of \(\Phi \) \((f_{r,n}, \varphi_{b_\nu}) = 0 \) for all \(k < 0 \) and \(n \). Since \(\varphi_{b_\nu} \in C(b) \) as in (2.7) \(\varphi_{b_\nu}(f_n) = \lim_{r \to 1} (f_{r,n}, \varphi_{b_\nu}) = 0 \) for \(k < 0 \). Hence

\[
\lim_{n \to \infty} \varphi_{b_\nu}(f_n, P(\Phi)) = 0,
\]

where \(P(\Phi) \) is any linear combination of the \(\varphi_{b_\nu} \).

Let \(\gamma \in (H^p)^* \). Since \(H^p \) is a closed subspace of \(L^p(b) \) by the Hahn–Banach theorem every bounded linear functional on \(H^p \) can be extended to \(L^p(b) \). Then by a well-known representation theorem for \(p > 1 \) [7] there exists a function \(g \in L^p(b), 1/p + 1/q = 1 \), such that \(\gamma(F) = (F, g) \) for all \(F \in L^p(b) \). In particular \(\gamma(f_n) = (f_n^*, g) \). Now approximate \(g \) in \(L^p(b) \) by a continuous function \(h \). By [16] \(h \) can be approximated on \(b \) in the norm by a linear combination \(P(\Phi) \) of \(\varphi_{b_\nu} \)'s. These approximations along with Hölder's inequality and the equality \(\|f_n\|_p = \|f_n^*\|_p \) give \(\lim \gamma(f_n) = 0 \), which proves the theorem.

5. Pseudo-uniform convexity of \(H^1(D) \).

Theorem 5. Let \(f_n \to f \) uniformly on compact subsets of \(D \) and \(\|f_n\|_p \to \|f\|_p \) as \(n \to \infty \), where \(f_n, f \in H^p(D) \) \((p \geq 1)\). Then \(\|f_n - f\|_p \to 0 \) as \(n \to \infty \).

Proof. For \(p > 1 \) the result follows from Theorem 4 and the local uniform convexity of \(H^p \) ([7], p. 233). \(H^1(D) \) is not locally uniformly convex but a proof due to L. D. Hoffman [8] in case \(D \) is the unit polydisc or ball in \(C^N \) can be extended to all bounded symmetric domains in \(C^N \).
If \(f \in H^1(D) \), then the function \(f_t \), defined on \(D^1 = \{ z : |z| < 1 \} \) by \(f_t(z) = f(tz) \) for any \(t \in b \), belongs to \(H^1(D^1) \) for almost all \(t \in b \) and

\[
\|f\|_1 = \frac{1}{V} \int_b \|f_t\|_{1,t} ds_t,
\]

where \(\| \cdot \|_{1,t} \) is the \(H^1 \) norm on \(D^1 \).

Proof. Since \(f \in H^1(D) \) and the rotation \(t = t'e^\theta \) preserves \(b \) and the measure \(V^{-1}ds_t \)

\[
(1) \quad \|f\|_1 \geq \|f_t\|_1 = (2\pi)^{-1} \int_0^{2\pi} d\theta \|f_r\|_1 = V^{-1} \int_b ds_t I_{r,t}
\]

by Fubini, where \(I_{r,t} = \|f_r\|_{1,1} \) so that

\[
(2) \quad \sup_{0 < r < 1} \frac{1}{V} \int_b I_{r,t} ds_t \leq \|f\|_1.
\]

(2) implies that \(I_{r,t} \) is bounded independently of \(r \) for \(0 \leq r < 1 \) and almost all \(t \in b \). Since also \(f_t \) is holomorphic on \(D^1 \), \(f_t \in H^1(D^1) \) for almost all \(t \in b \). Thus \(I_{r,t} \) is monotone in \(r \). Interchanging sup and \(\int \) on the left-hand side of (2) gives \(V^{-1} \int_b \|f\|_{1,1} ds_t \). By the transformation in (1) the left-hand side of (2) equals \(\|f\|_1 \). Similarly \(f_{t,n} \) has these properties.

It follows as in Hoffman's paper by means of his lemma in integration theory and D. J. Newman's theorem [12] for the case \(N = 1 \) that \(\|f_n - f\|_1 \to 0 \) as \(n \to \infty \).

Professor Charles Chui independently obtained the same proof of Theorem 5.

References

THE PENNSYLVANIA STATE UNIVERSITY
and
STATE UNIVERSITY OF NEW YORK AT BUFFALO

Reçu par la Rédaction le 24. 6. 1972