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Mean growth and Fourier coefficients of some classes
of holomorphic functions on bounded symmetric domains

by MANFReD StoLL (Columbia, South Carolina)

Abstract. Let D be a bounded symmetric domain in C" with Bergman-Silov boundary B
and OeD. Let N(D) denote the Nevanlinna class of holomorphic functions f on D for which
sup [log* |f(rt)di(t) < o, and let N, (D) denote the subspace of N (D) for which the family

O<r<l g

3
{log* |f(rt)): 0 <r <1} is uniformly integrable on D. If D = XD,, where each D; is irreducible
i=1
of dimension n;, let

k
M (fi() =sup {If (r 11, ..o retil: (€ X By

=1

Let F,(D) denote the space of holomorphic functions f on D for which
Iflle = [exp[—c [T (1=r) "M (f;(r))dr, ... dr, < @
PC i=1

for all ¢ > 0. In the paper it is shown that F_ (D) is a countably normed Fréchet space
containing N,(D) as a dense subspace. Furthermore, if D is irreducible of dimension n and

o ™M
f@=Y Y a(f)oun(2), then feF, (D) if and only if |a,(f) <exp[4,k¥** V] for some
k=0 v=1 .
sequence A, decreasing to zero. This result is then used to characterize the continuous linear

functionals on F, (D). The paper also contains results concerning the rate of growth of the means
M, of Poisson integrals of measures and of functions in the space N(D) and N, (D).

1. Introduction. For the unit disc U = {z: |z| <1} in C, the Nevanlinna

class N is the algebra of holomorphic functions f on U for which the
characteristic function

2z

1
T(.n=7" f log™* | f(re") dt

0

is bounded for 0 < r < 1. The Smirnov class N, is the set of functions feN
for which

2n 27
lim | log* |f(re")ldt = | log* |f*(e") dt,
r>»1 0 V]
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where f*(e") = lim f(re") ae. If one defines d(f, g) =|f—gll, where for
r—1
SeN,

2n

1 i
A1l = tim o | log(1+1f (e d,
ro1 £T
[«]

then d is a complete, translation invariant metric on N which induces a
topology stronger than that of uniform convergence on compact subsets of
U. The space N(U), especially some of its unusual topological properties,
has been investigated by J. H. Shapiro and A. L. Shields in [9]. The space
N, (U) and its containing Fréchet space F* has been thoroughly investigated
by N. Yanagihara in [14]-[16] among others.

For domains in C”, the spaces N and N, have been considered by K. T.
Hahn for star-shaped circular domains in [1] and the space N, has also
been considered by the author for bounded symmetric domains in [10], [11].
Analogues of some of the results of [9] have also been looked at in [7] for
the polydisc in C".

The purpose of the present paper is to extend a number of the one
variable results for the space N and N, to bounded symmetric domains in
C". In Sections 2 and 3 we introduce the necessary notation and include
some preliminary results about functions in N and N,. In Section 4 we
consider the rate of growth of the means M, (f;r) for feN and N,. A

classical result due to S. N. Mergeljan (see [8], p. 106) states that if fe N(U),
then

lim sup(1—=r)log™ M (f, r) < 0.

r—1
For functions in N, N. Yanagihara has shown in [16] that
(1.1) lim(1-r)log* M _(f,r)=0.

r—1

In Section 4 we obtain analogues of these results for products of irreducible
bounded symmetric domains by investigating the rate of growth of Poisson
integrals of measures.

In Sections 5 and 6 we consider the space F,, first for irreducible
domains in Section 5 and for arbitrary domains in Section 6. In the unit disc,
the space F, (F* in the notation of [15]) consists of all holomorphic
functions f on D-for which (1.1) holds. This is equivalent to

1
—c
”f”c= CXpl| —— Mw(f; r)dr<w
(1-r)

0

for all ¢ > 0. If D is an irreducible bounded symmetric domain of dimension
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n, then for functions fe N, (D), the analogue of (1.1) becomes
(1.2) lim(1—r)"log* M_(f, r) =0

r—1
and thus F, is defined as the space of holomorphic functions f on D for
which (1.2) holds. In Section 5, we show that this is equivalent to the
following integrals being finite for every ¢ > 0:

1
[exp[—c(1—r)""IM(f, rdr.
0

We also show that if f(z) has the series expansion f(z) = Zak, ¢, (2), where
k,v
the {¢,,} are a complete orthonormal system on D, then feF, if and only if
lay,| < exp[A4 k" 1]

for some sequence 4, decreasing to zero. For the case n = 1, this was proved
in [15]. This section also gives a characterization of the continuous linear
functionals on F,. Finally in Section 6 we indicate what modifications need
to be made in the definition of F, for products of irreducible domains.

2. Preliminaries. Let D be a bounded symmetric domain in C" with
Bergman-Silov boundary B and Oe D. The domain D is circular and starlike,
that is tze D whenever zeD, teC, |t| <1 [5]. Let G denote the connected
component of the identity of the group of holomorphic automorphisms of D,
and K the isotropy subgroup of G at the origin. The group G is transitive
on D and extends continuously to the topological boundary of D. The
Bergman-Silov boundary B is circular and invariant under G. The group K
acts transitively on B and B admits a unique K-invariant normalized
measure which we denote by 4. The domain D is irreducible if it cannot be
written as a product of domains D; of lower dimension.

The Poisson kernel P on D xB is given by

S , 2
P(z, 1) = 'S((zz—‘z’;

where S is the Szeg6 kernel (reproducing kernel of the Hardy space H?(D))
on D. By Proposition 2 of [4],

(z, )e D xB,

1—-rY 1+r\"
(2.1 (1 +r) < P(ru, 1) < (E)
for all u, teB and
(2.2) PG, 1) = (li)
: 1—r

For the classical Cartan domains of type I-IV, inequality (2.1) has also been
proved in [13].
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If 4 is a finite signed Borel measure on B, we denote by P,[du] the
Poisson integral of u, that is,

(2.3) P [du] = (P(z, t)ydu(t), zeD.
B

For an integrable function f on B, we set P,[f] = P,[fdA]. If p is a finite
signed Borel measure on B, or if feL'(B), then the function F(z) = P, [du]
(P,[f)) is harmonic on D in the sense that AF =0 for all G-invariant
differential operators 4 on D which annihilate constants. Such functions are
often referred to as strongly harmonic.

Finally, for a real valued function f on D, we let f* = max {f, 0}, and
for 0 <r <1, zeD, f,(z) = f(rz). For a signed measure p on D, |y, u*, and

p~ denote the total variation, positive variation, and negative variation of u
respectively.

3. Functions of bounded characteristic. In analogy with the one variable
case, as in [1], we define the Nevanlinna class N(D) as the algebra of
holomorphic functions f on D for which

sup [log™ |f(rt)ldA(t) < 0.

0<r<1 p
The subspace N, = N, (D) consists of those feN(D) for which the family
{log* |f: 0 <r <1} is uniformly integrable on B.

For completeness, we state the following result which was proved in
[10] as a lemma.

LemMA 3.1. (@) If feN(D), f #£0, then there exists a minimal Borel
measure p, on B such that

(3.1 log|f(2)l < P,[du;], zeD,
with dpfl= loglf*lld).+daf, where f*(t) = lim f (rt) a.e. on B, log|f* € L' (B),

r—1

and o, is singular with respect to A on B.
(b) If feN,(D), then 6, <0 and

(3-2) log|f(2) < P,[log|f*], zeD.

Furthermore,

(3.3) lim | log* [f|dA = {log™ |f* dA.
r-1 3 B

Note. Inequalities (3.1) and (3.2) remain valid if log is replaced by log*
and u, by uf. The measure u, is minimal in the sense that if v is any other
measure for which inequality (3.1) holds, then [@du; < [¢@dv for all non-
negative continuous functions ¢ on.B.

For fe N, we will refer to the measure u, as the boundary measure of
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log|f|. The measure u, is the weak star limit of log|fl, that is
h'ﬂll Jo () loglf(rt) dA(t) = o (t)du,(2)
r>1 B B

for all ¢ continuous on B. Similarly, u; is the weak star limit of log* |/l
As in the one variable case, for fe N(D) we set

Al = 111111 ,{ log(1+|£])dA.
Since
(34) log* x <log(l+x) <log 2+log™ x (x> 0),
feN if and only if |[f|| < co. By Theorem 2 of [11], if feN,, then
(3.3) WAl = ,{ log (1+f*)dA.

For feN, we have the following
ProposiTiON 3.2. Let feN with boundary measure p;. Then

(3.6) Al = [ log(1+|f*)dA+af (B),
B

where o, is the singular part of p,. Furthermore

(3.7 lintl)llafll =a; (B).

Proof. Since sup [log(l+|f])di < oo, by Theorem 1 of [10], there

O<r<l B
exists a nonnegative Borel measure v on B, with dv = log(1+)f*)di+dp
where B is singular, which is the weak star limit of log(1+|f)). If ¢ is
continuous and nonnegative on B, 0 <r < 1, then by (34)

(o log" |fldA < [olog(l+]|f])di < [@(log 2+log™ |f])dA.
B B B

Letting r -1 we obtain

f@log* |f*di+[oda}
B B
< [ log(1 +|f*)dA+ [odf < [p(log 2+log* |f*)dA+ [ edo;.
B B B b

Since this inequality holds for all nonnegative continuous functions ¢ on B,
the same inequality must hold among the respective measures, and therefore
among their singular parts. Hence § =6/ and thus dv =log(1+|f*)dA+
+do; which proves (3.6).

To prove (3.7), we first show that for a # 0, the singular part of the
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boundary measure y,, of log|af| is precisely o,. As above, if ¢ is continuous
on B,

[ @dite; = lim [ (2)loglaf (o)} dA(9) = [(log|af *) 9 ()di+ [ @ () do;.
B r~1 3 B B
Since this holds for all ¢ continuous on B,

dy,e = loglaf*|di+do,.
Thus by (3.6)

lafl = {log(1 +laf*)di+a} (B).

By the Lebesgue Dominated Convergence Theorem,
lim | log(1+|af*))dA = 0.
a=0 B

Hence lim |jaf|| = o (B), which completes the proof.
a—0

For functions f in N,, of =0 and thus (3.6) reduces to (3.5). Another
immediate consequence of (3.7) is that scalar multiplication is not continuous
in N (D). Consequently N (D) is not a topological vector space. However, as
in the one variable case, we do have the following

ProrosiTiIoON 3.3. N(D) with the translation invariant metric d(f, g) =
llf—gll is a complete metric space whose topology is stronger than that of
uniform convergence on compact subsets of D.

The proof is identical to the one variable proof and follows immediately
from the inequality.

og(t+15 a0 < (12171
for allr, 0 <r < 1, ze D. The above follows from the fact that log(1+]£,(2)))
is plurisubharmonic on D.

As was shown in [11], the space N,(D) is a topological vector space
with a complete translation invariant metric in which multiplication is also
continuous. For the unit ball in C* and the polydisc it is known that
N, & N. Whether this is true for all bounded symmetric domains is still not
known.

4. Rate of growth of Poisson integrals. Throughout this section we will
assume that D is the product of k irreducible bounded symmetric domains
D;,, i=1,..., k. Then the Bergman-Silov boundary B of D is given by B

k
= X B,, where B is the Bergman-Silov boundary of D;, and the Poisson
i=1
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kernel P on D xB is given by

k

P(Z, t) = P((zla “eey zk)a (tl’ [RRE} tk)) = l_[ Pl'(zia ti)a

where P; is the Poisson kernel on D; x B;.

For0<r<1,i=1,..., k, we will denote by (r) the vector (ry, ..., i),
and, for u = (uy, ..., u,)e B with y;e B;, we denote (ryu,, ..., r,u) by (r)u.
Then by (2.1), for all ¢, ueB

. K (1—-r\" K (1+r;
4.1) i]=_[1(1+ri> < P((Nu, )< U( )

and

k
4.2) P«ﬂn:y.[](l+r>

where n; = dim D;. Also, if f is a continuous function on D, we set

4.3) M (f;()= sup [frity, ..., mte)l-
(T q-.0p)eB

For r; =r for all i, this becomes

(4.4) M, (f; r) = sup|f(r1)].

teB

For the proof of Theorem 4.2, we need the following lemma.

LemMA 4.1. For each bounded symmetric domain D, there exists a constant
p, depending only on D, such that:

(a) For each ue B and each neighborhood % of u, there exists a constant
M such that for each te B\%

lim sup(1—-r)PP(rt, yy < M
r—1

(b) For each q < p, there exists t # u such that
lim sup(1 —r)? P(rt, u) =
r—1

If D is irreducible of dimension n and rank | (as a symmetric space), then
p— n—2n/l

For the classical Cartan domains of type I-1V, this result was first
proved in [12]. For arbitrary bounded symmetric domains the result has
recently been proved by M. Lassalle in [6].

k
THEOREM 4.2. Let D= X D; be the product of irreducible bounded
i=1

symmetric domains D;, each of (complex) dimension n;.
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(@ If F(z)=P,[f), feL(B), then
k
4.5) Jim ([10=r)")Mo(F, () = 0.
n=(1) i=1

(b) If u is a complex or finite Borel measure on B and F(z) = P,[du],
then for all teB,

k
(4.6) lim ([T (A—r)")F((n)t) = 2" ({t}),
n-1) i=1

where o is the singular part of u (with respect to A) and n=n;+...+n,.

(¢) If in addition p is continuous on B, that is, u({t}) = 0 for each teB,
then

k
4.7) lim ([T =r)*)M,(F; () =0.

n-Q1) i=1

Proof. (a) Suppose F(z) = P,[f] with feL'(B). Let £ >0 be given.
Choose g bounded on B with 0<g<|f| and [(f|-g)di <& Then for
B

ueB, r=(ry, ..., 1),
|F((nu) < ;P((r)u', (S Wl—g(®)di®)+ ‘Il P((r)u, t)g(1)dA(r),

and by (4.1)

k(14T
P <o T (75) +lalle [P, Ddac

Since (P(z, t)dA(t) =1 for all zeD.
B

g

M (F, (r))sz[(

from which (4.5) now follows.

(b) Suppose u is a complex Borel measure on B. By linearity it suffices
to assume that g is a nonnegative finite Borel measure. Let o denote the
singular part of p in the Lebesgue decomposition of p with respect to 4, i.e.
du = fdi+da, feL'(B). By (a), it suffices to show that

1+r\*
- ‘) +ligll s

k
lim ([ (1=r)¥)F,(()u) = 2" ({u}),
) —=(1) i=1
for every ueB, where F, = P[do].
Fix ueB. We first consider the case where o({u}) =0. Let ¢ >0 be
given. Then there exists a neighborhood # of u such that ¢(%) <e¢. Let r
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=(ry, ..., ) wWith 0<r; <1. By (4.1)

1-r,

4.8) F ((r)u) <o (%) fl (l +r‘) i+ { P((nu, ndo ().
i=1 B-w

Let P; denote the Poisson kernel on D; x B;. By (4.1), for each i,
(A=r)" Py(ryu;, ) < 2%
for all w;, t,eB;, and by Lemma 4.1, for t; # u;,
lim (1 —r)™ P;(r,u;, t;) = 0.

r,--'l

Hence for all t # u,

lim (ﬁ (1—r)"¥)P((r)u, t) = lim ﬁ (1—=r)" P,(r;u;, t;) = 0.

N—(1) i=1 n—=1)i=1

x
Therefore lim [[(1—r)" [ P((r)u, t)do(t) = 0, and hence by (4.8),
B—¥

®~(1) i=1
k
lim sup ([T (1 =r)")F((r)u) < 2,
n=(1) i=1

where n =n;+...+n,. Since ¢ > 0 was arbitrary,

lim ( f[ (1—r)")F((r)u) = 0.

N=(1) i=1

Now suppose o({u}) =a >0. Let v be the measure defined by v =
o —ad,, where §, is point mass at u. Then v is a nonnegative Borel measure
with v({u}) = 0. Hence if H(z) = P, [dv],

k
lim ([T —r)")H((r)u)=0.

n—-(1) j=1

But H((r)u) = F,((r)u)—aP((r)u, u), and by (4.2),

lim (ﬁ (1=r)")P(Pu, u) =2,

(n-) i=1
from which the result now follows.

(c) Suppose u({t}) =0 for each te B. By considering the total varia-
tion measure |y, which is also continuous, we may assume yu > 0. Let
F(z) = P.[dp].

Let A denote the limit superior in (4.7), which is clearly finite. Then for
each i, 1 <i <k, there exists a sequence {rym}iz; With ry, — 1 such that

k
(l=—[1 (1- rl'(n))n') M, (F, (ri(u))) —A.

5 — Annales Polonici Mathematici 45.2
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By continuity of F and compactness of B,, for each i(n), there exists u;, € B;
such that

M co(F , (7 i(nl)) = F(rimUym> > T X(n) Y(n)) -

Let u™ = (uy, ..., tyn). Since B is compact, by choosing subsequences if
necessary, we may assume that 4™ —ueB. Since u is continuous at u, the
proof of part (b) shows that

k
lim I [Ta —".'(n))"i P (Fign Uimy» t:)dp(t) = 0.
R~ Bi=1
Thus A = 0, which proves (4.6).
We now apply the results of Theorem 4.2 to functions in N(D) and
N, (D).
k
TueoreM 4.3. Suppose D = X D;, where each D; is irreducible of dimen-
: i=1
sion n;.
(@) Let feN(D) with boundary measure p;. Then for every teB,
k

(4.9) li(n)l S(:I)p(ﬂ (1=r)")log* |f((n 1) < 2"af (i1}),
)~ i=1
and
k
(4.10) lim sup([] (1—r)")log* M (f; () < 2"} (B).

(1) i=1

(b) If feN,(D), then

k
4.11) lim ([T (1—r)%)log* M, (f; () =0.
" ~(1) i=1

The proofs of (4.9) and (4.11) is an immediate consequence of Theorem
3. Inequality (4.10) follows immediately from (3.1) with log™ and pu; replac-
ing log and u, and (4.1).

Remark. If D= U" is the unit polydisc in C" then by Proposition 4.2
of [7], equality holds in (4.9). For arbitrary bounded symmetric domains,
even the unit ball, the question of whether equality holds in (4.9) is still
unresolved. It certainly holds if f(z) is nonzero in D.

5. The space F_ for irreducible domains. In this section we consider the
space F, which contains N, as a dense subspace. We first consider the case
where D is irreducible of dimension n (n > 1). By Theorem 4.3, if fe N,(D),
then

(5.1 lim(1—-r)"log* M_(f;r) =0,

r—1
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where here M_(f;r) is given by (4.4). Using the results of {15] as moti-
vation, we define F,(D) as the class of holomorphic function f on D for
which (5.1) holds.

If f is holomorphic on D, then as in [2], [3], f has a Fourier series
expansion

o Mk
(52) f(Z) = Z Z akv(f) (pkv(z)’
k=0v=1
k—
where (@, (2)}, k=0,1,2,..., v=1,..., m = (”+k 1), is a complete

orthogonal system of homogeneous polynomials on D which are normalized
with respect to the measure 4 on B, and

(5.3) a,(f) = }l:l} ,{f (rt) uy (1) dA(2).
The series (5.1) converges absolutely and uniformly on compact subsets of D.
The following theorem characterizes F, both in terms of an integral
condition and also in terms of the Fourier coefficients a,,(f).
THEOREM 5.1. Let D be irreducible of dimension n. Then for f holo-
morphic on D, the following are equivalent.

(a) feF, (D).
(b) For all ¢ >0,

(54) I|f||¢=}exp[—C(l—")'"]Mm(f; rdr < .
) If f(z)is givenoby the series (5.2), then

(5.5) | (N < exp[A kM), v=1,...,m,

for some sequence A, decreasing to zero.
(d) For any ¢ >0

o M

(5.6) Y Y 1ay (/) exp[ —ck"™* 1] < oo,

k=0v=1

Proof. (i) Suppose feF,(D). Let ¢ >0 be arbitrary. Then by (5.1),
there exists R, 0 < R < 1, such that

M (f; r)<°XP[(1f,).]

for all r > R. For r <R, M_(f;r) < M_(f; R). Therefore

R 1
Ifll2e < Mo (f; R) f exp[—2c(1—r)7"] dr+'{ exp[—c(1—r)""1dr
0

which is finite for all ¢ > 0. Thus ||f]|. < oo for all ¢ > 0.
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(i) We now show that (b)=(a). For R <1 and ¢ >0, set
1
I(R;¢c)= [exp[—c(1—r)""IM(f; r)dr.
R

Since M _(f;r) is nondecreasing as a function of r,

1
(5.7 I(R;¢0) 2 M (f; R) [ exp[—c(1—r) "]dr.
R
By the changé of variable t =(1—-r)"",
1 @
1
j exp[—c(l—r)""]dr = p j exp (—ct)t™vdt,
R T

where T = (1—R)™"and y = (n+ 1)/n. The function " exp[ —ct], te(0, c0), has
a maximum at t = y/c. Thus

" exp(—ct) < (y/cey,
and hence
t~Yexp(—ct) = (ce/y) exp[ — 2ct].
Therefore

ao

1 1 [ceV
— — - > —|— —_ .
j' exp(—ct)t™dt n(y) exp[—2cT]

n
T

Combining this with (5.7) gives
(5.8) M, (f; R) < 2cn(y/ce)’ exp[2c/(1 - R)"] I (R; c).
Thus

lim sup(1-R)"log* M_(f; R) < 2

R-1

for all ¢ > 0. Thus feF,(D).
(iii) (a)=(c). Since M,(f;r) < M_(f;7), lim(1—r)"log* M,(f:r)=0.
r—1

Hence there exists w(r) decreasing to zero as r — 1 such that
(5.8) M (f; R) < 2cn(y/ce)’ exp[2¢/(1 - R)"]I1(R; ¢).
Since each ¢,, is homogeneous of degree k, for 0 <r <1,

f@) =flrz) = kZau(f)P"%v(Z)'
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Thus a,,(f) = a,,(f)r*. Since £, is continuous on D,

ey (f) = [ [ (r)) 1, ()) dA (1),
B

and hence by Hdélder’s inequality,
lay, (Sl < M2 (S5 Nllowdl2.

Since ||@gll; = 1, from (5.9) and the above,
1
o, ()l < 5 explo()(1-1)""].

Let & | 0 (with &, <27®* 1Y) and choose g; 11 such that w(r) <¢; for r > g;.
Choose a sequence of integers k; with k;,; > k; such that

1—(5,-'/"5,‘)”(”l 2 ;.
For k; <k <kj,,, set
re = 1=(g /)0,
Then r, > ¢; and
expl[w(ry) (1 —r)™"] < exp[el/+ D grin+ 1],

Also, by the inequality 1—x > e~ 2* which is valid for x sufficiently small
(x<9),

(r* = (1 —(e/k)/* 1))k > exp [ — 261/ D oo+ 1],

Therefore
lay, (f) < exp [33:/(""' 1) gnin+ 1)],

from which (5.5) follows with 4, = 3g/"* V), k; <k <kj,.

(iv) (c) =(d). Suppose (5.5) holds for some positive seguence 4, decreas-
ing to zero. Let ¢ > 0 be arbitrary. Choose K such that 4, <c/2 for all k
= K. Then

o Mk © ‘e
Z E |akv(f)| exp[—Cknl("+l)] < Z (n+k l)exp[_.i.ckn/(lﬁ 1)]
k=Kv=1 Py

which converges.
(v) (d)=(a). Suppose f is given by (5.2). Then

M (f;r)= fIf(r)ldA() < kZlakvl r* £ |ow, (&) dA(1).
B v
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l .

But |, ll; < 1. Consider I(c) = jexp[—c(l —r) ") M, (f; r)dr. Then
0

I(c) <) la) }r" exp[—c(1—r)""]dr.
k,v 4]

Define the sequence {r;} and {ry} by
(5.10) ry = 1—(c/l)Mm+ Dy = 1-2(c/k)/"* D,
Then for ry <r<r
rrexp[—c(l—r)""] < exp[—(1+2"")cl/o+ 1 gain+ 1y]
Lexp[—ctrr Dt ]
For r<r{,
rexp[—c(1—r) "] < ¥ < (1-2(c/k)M+ D)
< exp[ = 21+ D grin+ ] < exp [ —cl/n+ 1) gniin+ 17,
and for r > ry,
rrexp[—c(1—r)~"] <exp[—cl/tDrn+D]
Therefore for all r, 0 <r <1,
rFexp[—c(1—r)~"] < exp[—cM+ D rin+ 1],

and hence by assumption I(c) < co.
As in the proof of (5.8)

M, (fir) < A exp[2c/1—-r)"11(c),

where A is a constant depending only on ¢ and n. Let 0 <r < ¢ < 1. Since
f,(2) is holomorphic in D and continuous in D,

Jo@ = [P(z,1) f,(1)dA(1).
B
Thus by (2.1)

- 2"
M,(f.7) stl(f; Q).
By the above, taking ¢ =r gives
M (f;r) < 2"A(1~r)""exp[2c/(1—r)"]1(c),

from which it follows that

lim sup(l1 —r)"log™ M (f, r) < 2"c.

r—1

Thus feF,.
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The family of (semi) norms ]| llc},>o given by (5.4) defines a locally
convex topology on F,. Furthermore, since [|f e, < I Slle, whenever 0 < ¢y
<c,, the topology on F, can be defined by a countable family of
seminorms.

THEOREM 5.2.

(a) F, is a countably normed Fréchet space containing N, as a dense
subspace. The topology of F, restricted to N, is weaker than the topology in
N, defined by the distance function (3.5).

(b) For feF,, f,—f in F,asr— 1.

Proof. Suppose {f;} is a Cauchy sequence in F,. Then by inequality
(58), for 0<r<1

M (fi—f;r) < A exp[2c(1—r)" "I fi=Sille,

from which it follows that {f;} converges uniformly on compact subsets of D
to a holomorphic function f. The proof that f; —f in F* is straightforward.

Suppose {f;} =N, and f;— feN, with respect to the metric d(f, g)
= || f—gll given by (3.5). Since log™ x < log(1+ x), by (2.1) and (3.2), for ue B,

log™ |fy(ru)—f (ru)] < J P(ru, t)log™ | f* (@) —f* (1) dA(2)

B
<« 2 | tog (1415 —r*)di
S (-r)r ! "
B

Therefore,
M, (fi=f, <exp[2°[If;—flI(1—r)""].
Let ¢ > 0 be given and let ¢ > 0 be arbitrary. Choose R, 0 < R < 1 such that
1
jexp[—%c(l—r)"']dr <ie.
Also, choose J, such that 2"||f;—f]| < }c for all j > J, and
jexp[—c(l—r)"'] M (fi—findr <}e.
(V]

The last follows since f;— f uniformly on compact subsets of D. Then for
all j=J,

R 1
=Sl < g exp[—c(1—-r)""IM(f;-f; T)dr+£ exp[—4c(1-r)""]dr <e.

Therefore || f;—f]|. — 0 as j — co. Since this holds for all ¢ >0, f; — f in the
topology of F,. Therefore the topology of F, restricted to N, is weaker than
the topology on N, given by the metric (3.5).
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Let feF,. Thenforallr,0<r <1, f,eN,. Thus to show N, is dense
in F, we only need to show that f, — f in F,. But this is an immediate
consequence of the fact that f, converges uniformly to f on compact subsets
of D and that for 0 < g < 1,

M (fi-fidd <My (S, r)+ M (., @) <2M(/, ).

We conclude this section by giving a characterization of the continuous
linear functionals on F,.

THEOREM 5.3. If I' is a continuous linear functional on F,, then there
exists a sequence {b, .}, k=0,1,2,...; v=1,..., m of complex numbers
with

(5.11) by, = O(exp[—ck”"*V])

for some ¢ > 0, such that

o Mk

(5.12) rf)=13% ¥ a,(Nby,

k=0v=1'

where feF, is given by (5.2), with convergence being absolute. Conversely if
{bxy} satisfies (5.11), then (5.12) defines a continuous linear functional on F,.

Proof. Suppose I' is a continuous linear functional on F,. Put

bhv = r(‘pkv)'
For f(z) =) a, ¢ €F,, let
k,v

i o™
f,"(Z) = z Z akvrk(pkv(z)'
_ k=0v=1
Since f/ - f, in F, as j— oo,

r(j;)= lim r(f;-") =hzakvbhvrk-

jo®

Since f,— fin F,
(513) r(f) = Zakvbtv'
k,v

By Theorem 5.1 (c), the above series must converge for any sequence {a,,}
satisfying (5.5). Hence the argument of q,, can be chosen arbitrarily.
Therefore the series in (5.13) converges absolutely. Also, the sequence {b;,}
must satisfy

by, = O(exp[— A4 k¥"* 1])
for- any sequence {4,} with A, > 0. Therefore as in Lemma 1 of [14]
by, = O(exp[—ck™"* 1))

for some ¢ > 0.
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Conversely, if {b,,} is a sequence of complex numbers satisfying (5.11),
by (5.6), I' defined by (5.12) is a linear functional on F,. To show I is
continuous, we will show that |[I'(f)| < 4||f]|.- for some constant A and some"
¢’ (depending on c).

For teB, let

1
g = (j) exp[—c(1—r)""} f(rt)dr.

Then |g(®)) <|Ifll, and
11

g(g(t) = [ [exp[—c(1—r)""lexp[—c(1—g) "1 f (rt) f (t) drdo.

00
Using the orthonormality of the {¢,,} on B,

11
—C —C
ﬁg(t)lz a0 = 3 lawl? J j exp [(l—_,—).]exp [(1 - Q),]r* ¢*drdg
B 00
1

_ 2
= Evlak"lz (J exp [(l _i)u]r" dr) .
0

With r; and r{ defined as in (5.10), for r, <r <r,

r*exp [(1—_(;)"] > exp[ = 5cHt D rint 1]

Therefore

1
[rrexp[—c(1—r)""]dr > (c/k)M™+ D exp [ — Sclia+ 1) aitn+ 17
0

> exp[— 6cl/nt D grint )
for sufficiently large k. Therefore
Iz =y a2 exp [ —12c1/+ D) rin+ 1]
For any ¢’ >0, -

(Z Iakvl Cxp [— C' k’ll(u+ 1)])2
k,v
< (X law?exp[—c k"™ DY) (Y exp[—c k¥ D).
k,v &

Therefore, if b,, = O(exp[ —ck™"* 1)),
IF(f)? < A fIZ

where ¢’ = (c/12)"*!.
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Remark. As in [15], one can use (5.6) to define an alternate family of
seminorms on F,. For f(z2) =) a,, ¢, (2)eF,, set

(5.14) A = ,‘Zlaul exp[—ck”"* D]

In the proof of Theorem (5.3) we showed that

Al < AN

where ¢’ =(c/12)"*! and A(c) is a constant depending only on c. A similar
method of proof can be used to show that

”f“c S "Ifl”c’,

where ¢’ = ¢'/** 1, Thus the topologies on F, given by the (semi)norms. (5.4)
and (5.14) are equivalent.

6. The space F, for general domains. In this section we assume that D is
the product of k irreducible bounded symmetric domains D;, i=1, ..., k,

each of dimension n;. Let I* = [0, 1). As in (5.4) we define F (D) as the class
of holomorphic functions f on D for which

k
(6.1) Iflle = [ exp[—c [T (1—=r) ¥ M, (f; (r))dr < w0,
lk i=1

where dr =dr, ...dr,.
By Theorem 4.3 (d), if feN_(D), then

k
(62) lim ([T (1—r)")log* M (f: (r)) =0.

(r)=(1) i=1

We note, however, that (6.2) in itself is not sufficient for a holomorphic

function f to belong to F, (D). As an example, consider D = U x U, where
U={zeC,|z| <1} and set

1 1
S 22) = exp [\/r?u _22)]'
D |

Then )

1 1
-

Thus
(1=r)(l—=r)log" M (f;ry,r)) = Ji-rn

which tends to zero as (r) —(1). However, ||f]l. = + o0 for all ¢ sufficiently
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small. To see this we first note that if 0 < ¢ <4, then there exists an R, such
that

—C 1
+ =C
(1_r1) \/l—rl

for all r{, 0<r, <R,. Thus

JCXP [(T_T;h]Mw(f; ry, ra)drydr,

12
1 Ry

j f °""[(1—rz)(<1—r1) -rl)]d"""

= R, jexp[(l_rz)]drz = + .

0

The following theorem gives a characterization of F, in terms of limits
of log* M (f: (r)).

k
THEOREM 6.1. Let f be holomorphic on D = XD,-, where each D; is

irreducible oj dimension n;. Then feF (D) if and only 1j Jor every nonempty
subset S of {1, ..., k},

(6.3) lim ([[(1—r)¥)log* M_(f;(r) =0,
rg—(1) ieS
where rg = (r;), i€S, and r; is fixed with 0 <r; <1 for all j¢S.

For convenience we will give the proof only for the case k = 2. For the
proof of the theorem we will need the following lemma.

LeEMMA 6.2. If F is holomorphic on D, x D,, then for all ry < g4, 7, < 0,,

Mao(f; rys 7‘2) < Mw(f; 01 QZ)‘

The proof of the lemma is an immediate consequence of the maximum
principle and the fact that the function f(z,, z,) is holomorphic in D, if
z,e D, is fixed and vice-versa.

Proof of Theorem 6.1. Suppose f is holomorphic on D, x D, satisfy-
ing (6.3). Let ¢ > 0 be arbitrary. Since

lim  (1=r)" (1=r))"log* My (firy, rs) =0

('1"2)_.(ltl) =
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there exists R;, R;, 0 <R; <1, such that
(64) M (firy, r) <exple(l—r) " (1—ry) "]

for all ry, ry, R, <r; <1.

Consider || f||,. given by (6.1). We split the integral up over the four sets
El = [0’ R]] X [0! RZ]! EZ = [0’ Rl] x [R2a 1)’ E3 = [Rl’ l)x [Oa RZ]’ and
E, =[R,, 1) x[R,, 1). Let

I; = I exP[‘k(l‘rl)_nl(l—rz)_nz] M (fsry, ra)dr dr,.
E.

J

On E,, M (f;ry, r2) S M_(f; R;, R;) and thus I, < o0, By (6.4)

I, < [ exp[—c(l—ry) ""(1—ry) "1drydr, < .
E4

Therefore it remains to show that I, and I; are finite,

Ry

I = IexP[_k(l"1)_"1(1—r2)_"2]Mw(f; ri, ra)dr, dr,.

0 Ry

1
<R, [exp[—2(1-ry) 1M, (f; Ry, ry)dr,.
R

By hypothesis, lim (1—r,)"2log* M (f; R,, r,) = 0. Hence there exists R}
ra—1
= R, such that

Mo (f; Ry, o) Sexple(1—-ry) "]

for all r, > Rj. Therefore
Ry

I SR M, (f; Ry, RY) | exp[—2c(1~ry) "]dry+
Ry

1
+R, [ exp[—c(1—r;) "*]dr,
Ry
which is finite. Similarly, I; < c0. Thus ||f||,. < o for all ¢ > 0.
Conversely, suppose ||f|l. < oo for all ¢ >0. Let 0<r,<1,i=1, 2 be
arbitrary. Set g; = (1+7r;)/2. Then

e1@2

e = I j exp[—c(1—5,) ""(1—55) "2IM(f; 54, S5)ds, ds,

rnr2

2 M (f;ry,ra)exp[—c(l —Ql)_nl(l —Qz)_nzl(gl —riea—ra)-
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Therefore

Mm(f;r19r2)<—4_“f‘ﬂc—_cxp|: ll21'“c nz:ly
(1=ry)(1=ry) (1=r2)" (1=r3)

where n = n; +n,. Hence, for fixed r,,

(6.5) lim sup(l—r,)" log* M _(f; 7y, r2) < 2—62
rl*l ( _rZ)

with an analogous result if r, is fixed, and

(6.6) lim sup (1—r)" (1 —ry)"2log™ M (f; 1y, r3) < 2"c

(ry,r2)~(1,1)
Since (6.5) anld2(6.6) hold for all ¢ > 0, f satisfies (6.3).
We now show that if f¢N_ (D), where D = )k( D;, each D; irreducible,
then f satisfies (63). Thus N, (D) < F,(D).
ProrosiTION 6.3. Let D = )"(1 D;. If feN_(D), then f satisfies (6.3).

Proof. Let S be a nonempty proper subset of {1, ..., k}. We adopt the
following notation: Dg = XD,, D¢ = XD Similarly for Bs, Bs. Points in

Dg, Bs will be denoted by zs, ts respectlvely Also, if r =(ry, ..., 1), rs = (1)),

ie S. If wg is an arbitrary but fixed point of Dg, f5 will denote the function
on Dg defined by

j:S(ZS) = f(Z),

where z; = z; if i€S, z; =w; if i¢S. dAg and diz will denote the appropriate
measures on Bg and Bg respcctlvely Finally, PS and PS denote the Poisson
Kernels on Dg x Bg and Dg x By respectively.

Let feN,(D). Then by (3.2),

log* |f(2) < P.[o],

where @e L'(B). Let ug be an arbitrary but fixed point in By and fix r,
0<rj<1, jeS. For tse Bg, set

@s(ts) = Bf P(rsug, 1) ¢ (1)dis.
s

Then ¢g is nonegative and measurable on Bg with

1 "
os(ts) < LH (1 i:j) :"Pg (ts),
j€S J
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where

@3 (ts) = | (1) dAg(r3).
Bs
Since [ p¥dig = j'(pdzL o¥eL!(By).

Let ueB be arbltrary, 0 <r; <1 where for i¢S, r; is fixed. Then
log* |f (ryuy, ..., new)l < _‘.P((")“a t)o(t)dA()
g

= [ PS(rsus, ts) @s(ts)dis(ts)

Bg
<A f PS(rsus, ts) 0¥ (ts) dAs(ts),
By

1+r,\"
where A = H( +r,) . Therefore
igS L—r;

log* | f(ryuy, ..., rew)l < Ahg(rsus),

where hg is the Poisson integral over Bg of the L' function ¢¥. Since the
function hg is independent of u;, i¢S,

log* M (f; (r)) < AM , (hg; r5).
Therefore by Theorem 4.2 (a),

lim ([J(1—=r)%)log* M (f;(r)) =0

rg—(1) ieS
Thus f satisfies (3.6).
As a consequence of the above, N,(D) < F, (D). Furthermore, as in
Theorem 5.2, if fe F, and f,, is defined by f,,(z) = f(ry2z;, ..., v 2), then
Jn—f in F, as (r)>(1). Thus N is dense in F, and as for irreducible

domains, the F, topology restricted to N, is weaker than the metric
topology of N,.
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