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STRONG RIESZ SETS AND POLYNOMIALS

BY

TODD COCHRANE anp ROBERT E. DRESSLER (MANHATTAN, KANSAS)

Let Tdenote the circle group and-M(T) the set of finite Borel measures on
T For any ue M(T) the Fourier-Stieltjes transform j is defined by

a — 1% —in0
u(n)—zn _j‘ne du(0), neZ.

A subset S of Z is called a Riesz set if, for any ue M(T) with suppji < S, p is
absolutely continuous with respect to Lebesgue measure on T. Throughout this
paper we shall endow Z with the topology of its Bohr compactification. The
closure of a subset S of Z will be denoted by S.

In [5], Meyer defined a set of integers to be a strong Riesz set if its closure
is a Riesz set and in Theorem 2 of the same paper he showed that the union of
a strong Riesz set and a Riesz set is a Riesz set. In Proposition 4 of [5] Meyer
proved that the set of squares is a strong Riesz set. In [3], Dressler and Pigno
showed that the set of integers representable as a sum of two squares is a strong
Riesz set. In this paper we extend these results and give a criterion for
determining the closure of the set of values represented by a polynomial in
n variables.

To begin, we recall that a basic neighborhood of zero is given by

N(ﬁl’ BZ,---aﬂlo 8) = {XEZ: "ﬂ:x" < 8’ 1 s l sk}’

‘where B,, B,,...,B, are any real numbers, ¢ > 0, and |-]| denotes the distance
to the nearest integer. In particular, if the B, are all rational, then the
neighborhood is just an arithmetic progression through the origin. Basic
neighborhoods of other points are just translates of these neighborhoods.

For any polynomial f = f(x) = f(x,, x,,...,x,) with integer coefficients we
let S, denote the set of values represented by f as the variables run through the
set of integers.

THEOREM 1. Let be Z. Then the following are equivalent:
(i) bes,. ,
(i) Every arithmetic progression containing b has a nonempty intersection
with S,.
(iii) The congruence f(x) = b (mod m) is solvable for all positive integers m.
(iv) The equation f(x) = b is solvable over the ring of p-adic integers for
every prime p.
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Proof. The equivalence of (ii) and (iii) is easily seen and that of (iii) and
(iv) is well known. Also, the fact that (i) implies (ii) is trivial. Thus we need only
show that (iii) implies (i). If fis a constant polynomial, this implication is trivial,
so we may assume that fis nonconstant. Let b be an integer satisfying (iii) and
let

N =N(B,, B2s---:Px€)+Db

be a neighborhood of b. We will show by induction on k that for any modulus
m # 0 there exists an n-tuple of integers a such that

fl@)=b (modm) and f(a+mt)eN

for infinitely many n-tuples ¢.

Suppose that k=1, N = N(f, ¢)+b, and m is a positive integer. If § is
rational, say B =r/s, we take a to be a solution of the congruence
f(x) = b (modms). Then, for any n-tuple of integers ¢,

”(f(a+mst)—b)ﬂ|| =0, thatis, f(a+mst)eN.

If B is irrational, then we take a to be any solution of the congruence
f(x)=b (modm). Let ¢ be an n-tuple of integers such that f(a+tmc) is
a nonconstant polynomial in the variable ¢; for instance, let ¢ be a point where
the maximal homogeneous part of f does not vanish. Then B(f(a +tmc)—b) is
a nonconstant polynomial with an irrational leading coefficient, and so its
values are uniformly distributed modulo one (see [2], Theorem VI, p. 71). In
particular, it will take on a value less than ¢ modulo one for infinitely many t.

Suppose now that the claim is true for k—1. Let N = N(8,,...,B,, &)+b
and let m be a positive integer. Suppose first that §,,...,5,, 1 are linearly
independent over Z. Let a be any solution of the congruence f(x) = b (modm)
and again let ¢ be an n-tuple such that f(a + tmc) is nonconstant. Then for any
nonzero n-tuple of integers u the polynomial in ¢

k

Y u;B,(f(a+mtc)—b)

i=1
has an irrational leading coefficient, and so its values are uniformly distributed
modulo one. Hence by Weyl’s Criterion ([2], Theorem III, p. 66) the k-tuples

(B1(f(@a+mtc)—b),...,B(f(a+mtc)—b))
are uniformly distributed in the unit cube, and so
|B:(fla+mec)—b)|| <e, 1<i<k,

for infinitely many integers t.
Suppose now that §,,...,5,, 1 are linearly dependent over Z, say, without
loss of generality, that

k-1
(1) B, = fk— Y Zig,

i=1 Uy
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for some u, u,eZ, 1 <i<k, u, #0. Set
U = max{|u,|, [uyl,....|ul}.

We apply the induction hypothesis to the neighborhood
Nr =N(&,. ) Bk—l i>+b

** ’
u, u, kU

of b, and to the modulus mu,. Thus, there exists an aeZ" such that
f(a) = b (modmu,),

and

kU

?U(a+mu,‘t)—b)“ < i, 1<i<k-1,

k

for infinitely many te Z”. For any such ¢ we have
|B:(fla+mu)—b)| <&, 1<i<k-1,

and, by (1) and the triangle inequality for |-,

k-
||Bx(fla@ + mu,8)—b)|| < |}ul(f(a+mu,‘t)_ b)‘ + Zl
k i=1

%ﬂi(ﬂa +mu,t)— b)”

k-1 €

Hence f(a+mu,t)e N(B,,...,B, &) +b.

The next two theorems give examples of strong Riesz sets that generalize
the examples referred to at the beginning of this paper.

THEOREM 2. If f(x,y) is a positive definite quadratic form with integer
coefficients, then § s is a strong Riesz set.

Proof. (We recall that a form is said to represent zero over a given field if it
does so in a nontrivial manner) If beS,, then by Theorem 1 the form
f(x, y)—bz? represents zero over every p-adic field. Thus, by [1], Lemma 2, p.
67, it represents zero over R as well. Since f is positive definite, b must be
positive. Thus, by the F. and M. Riesz Theorem, S ; is a Riesz set.

Theorem 2 does not generalize to positive definite forms in three variables.
For example, if f = x2 + 7y? +z2, then it follows readily from Theorem 1 that
S,=2Z. Let be Z. If p is an odd prime, then the congruence f = b (modp) has
a nonsingular solution which can be lifted to a solution (modp®) for any e > 1.
If p =2, then the congruence f= b (mod 8) has a solution with either x or
y odd. This solution can be lifted to a solution (mod 2¢) for any e > 3 (see [1],
Theorem 3, p. 42).
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THEOREM 3. Let f(x) be a quadratic or quartic polynomial in one variable
with integer coefficients. Then S, is a strong Riesz set.

We need the following lemmas:

LEMMA 1 ([4], p. 139, ex. 5). Let f(x) be a polynomial with integer
coefficients irreducible over Q and of degree > 2. Then there exist infinitely many
primes p such that the congruence f(x) =0 (modp) has no solution.

LEMMA 2(%). For any two nonsquare integers d,, d, there exist infinitely
many primes p such that d, and d, are quadratic nonresidues (mod p).

Proof. We may assume that d,, d, are square free. Say
d; = (—1)%2%de,, where a,, ;=0 or 1,
d is the greatest common divisor of the odd parts of d,, d,, and e,, e, are odd.
In particular, we note that d, e, and e, are pairwise relatively prime.
Case i. Suppose d # 1. We choose p such that

p=1 (mod 8), (‘—i>=—1, (ﬁ>=(52-)=1.
p P P

These four conditions depend only on the residue class of p (mod 8de, e,),
and so, by Dirichlet’s Theorem on primes in arithmetic progressions, infinitely
many such p exist.

Caseii. d=1, e, #1, e, # 1. In this case choose p such that

p=1 (mod 8), (e—‘>=(e—2)= —1.
P p

Caseiii. d=1,¢;, =1, e, #1. If d;, = +2, we choose p so that

B2
p=5 (mod 8) and (";’) - —(2?).

If d, = —1, we choose p so that
—1)22982
p=3 (mod 8) and (e_z) = —((—ﬂ)
4 D
Caseiv.d=1,e, #1, e, =1 (same as case iii).
Case v.d=e, =e,=1.1f d;, d;, = +2, we choose p so that

p=5 (mod 8).
Ifd,=-1,d,=2o0rd,=2 d,=—1, we take
p =3 (mod 8).

(*) The referee points out that this lemma is essentially contained in the work of Dirichlet.
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Finally, if d, = —1,d, = -2 or d, = -2, d, = —1, we take
p=17 (mod 8).

Proof of Theorem 3. First suppose that f(x) is a quadratic polynomial,
and without loss of generality assume that the leading coefficient is positive.
Let m be the minimum value attained by f over R and let b be any integer less
than m. Then f(x)—b is irreducible over R, and so by Lemma 1 there exists
a prime p such that the congruence

f(x)=b (modp)

has no solution. Hence, by Theorem 1, b¢ S . Thus S is bounded from below,
and therefore is a Riesz set.

Suppose now that fis a fourth degree polynomial and again assume that
the leading coefficient is positive and that m is the minimum value attained by
fover R. Let b be an integer less than m. Set g(x) = f(x)—b. Then g(x) is either
irreducible over Q or factors into a product of two irreducible quadratic
polynomials with integer coefficients. If g(x) is irreducible, we can proceed as
above. Suppose g(x) = h(x)k(x), where h and k are irreducible quadratic
polynomials over Z. Let d, e be the discriminants of h, k, respectively. By
Lemma 2 there exists a prime p such that

9-()-

For this prime the congruence g(x) = 0 (modp) has no solution. Therefore
b¢S,, and so S, is bounded from below.

We do not know whether S is a strong Riesz set in the cases where f is
a cubic polynomial or a polynomial of degree > 5 in one variable, or whether
there exist any indefinite binary quadratic forms f for which S is a strong Riesz
set (P 1373). We can prove the following however. If f(x) is a monic cubic
polynomial or a monomial of the form x? for a fixed d > 2, then S is a closed
set, and hence is a strong Riesz set if and only if it is a Riesz set.

REFERENCES

[1] Z. J. Borevich and I. R. Shafarevich, Number Theory, Academic Press, New York 1966.

[2] J.W.S. Cassels, An Introduction to Diophantine Approximation, Hafner Pub., New York 1972.

[3] R. E. Dressler and L. Pigno, On strong Riesz sets, Colloq. Math. 29 (1974), pp. 157-158.

[4] G. J. Janusz, Algebraic Number Fields, Academic Press, New York 1973.

[5] Y. Meyer, Spectres des mesures et mesures absolument continues, Studia Math. 30 (1968), pp.
87-99.

DEPARTMENT OF MATHEMATICS
KANSAS STATE UNIVERSITY
CARDWELL HALL

MANHATTAN, KANSAS 66506, U.S.A.

Regu par la Rédaction le 14.9.1988



