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ODD CYCLES AND A CLASS OF FACETS
OF THE AXIAL 3-INDEX ASSIGNMENT POLYTOPE

_ Abstract. We study the facial structure of the polytope associated with the axial 3-index
3signment problem AP3,. Any solution of this problem is the incidence vector of an n-element
Set within an n3-element ground set E,. These n-sets are the bases of a 3-matroid-intersection,
t;he circuits of which are all of cardinality 2. Thus AP3, can be put into relation to a particular
Vertex packing problem. It is well known (cf. [5]) that odd cycles without chords induce facets of

Polytope defined to be the convex hull of the incidence vectors of vertex packings. We show

W odd cycles give rise to a particular class of facets of the axial 3-index assignment polytope.

L. Introduction. The axial 3-index (or 3-dimensional) assignment problem,
denoted by AP3, in the sequel, can be stated as follows:
_ Given a ground set N = {1, ..., n} and real weights c;; for i,j, ke N
find a real vector x which satisfies the conditions
¥ Y xp=1 for every keN,

| ieN jeN
(1) Y ¥ xux=1 for every jeN,
- ieN keN
Z z X =1 ' for every ie N,
jeN keN

xijke{O, 1'} for all i, j, keN,

ad which minimizes (or maximizes)

D) Y. Cijk Xijk-

ieN jeN keN

AP3n is called axial in distinction to the planar 3-index assignment problem
8¢ defining system of equations is the following:

injk=1 for all j, kEN,
ieN ~

Q) me=1 for all i, ke N,
JjeN :

le',jk:]' fOI‘ all i,jEN-

keN
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There are various applications for these problems such as traffic assignment
in communication satellites (cf. [1]), transportation of goods of several types
(cf. [6]), or timetabling (cf. [4]). Usually, these problems are solved by branch
and bound (see, e.g., [7]). The idea of combining it with cutting plane
methods has turned out to be very efficient in solving large scale 0-1
programming problems. However, such an approach requires the knowledge
of at least a partial description of an associated polytope P, defined to be the
convex hull of all feasible 0-1 vectors. Only recently, work has been done t0
(partially) describe the polytopes associated with 3-index assignment prob-
leins: Euler et al. [3] have considered the planar case, whereas Balas and
Saltzman [2] treat the axial problem. Before stating their main results let uS
introduce some basic notions.

Let E,={e;: 1<i,j,k<n} be a set of n* elements and L be 3
feasible array, ie., an (n xn)-array over N, the cells of which contain every
element (or symbol) k from N at most once. Obviously, we can identify L
with a subset E; of E, containing exactly those elements e, a for which
symbol k is contained in cell ij of L. Therefore, feasible arrays are in a 1’]{
correspondence with subsets of E,. The incidence vector of such a subset Er
is the vector x* having n® components x%, which are defined to be 1 if tb
element ¢, is contained in E; and to be 0 if this is not the case. With al{y _
feasible array we can thus associate its incidence vector in a unique way. It ¥
easily seen that in this way the solutions of the planar problem correspo™
exactly to the Latin squares (of order n), i.c., those feasible arrays the cells @
which contain exactly one symbol such that each row and each colum?
contain each symbol of type k exactly once. If now L is defined to contain 1?
each row and column exactly one symbol so that each symbol ke N occufs
exactly once, the associated incidence vector x is seen to represent" a
solution of AP3, and vice versa. Such an L will be called a permutatio®
square (of order n), an example of which is shown in Fig. 1.

Our main interest lies in describing the polytope P,, defined to be the
convex hull of all incidence vectors of permutation squares, by a system ©

Fig. 1
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‘linear inequalities, but since such a complete description is very difficult to
Obtain (if at all), we will focus on a partial description. For this let us first
Introduce some basic notation from polyhedral theory. A polyhedron P = R™
I8 the intersection of finitely many half-spaces in R™. A polytope is a bounded
Polyhedron or, equivalently, the convex hull of finitely many points. The
dimension of a polyhedron P, denoted by dim P, is the maximum number of
affinely independent points in P minus 1. A linear inequality a” x < a,,
Where ae R™— {0} and a,cR, is said to be valid for P if

P c {xeR™: a" x < ao}.

A subset F of P is called a face of P if there exists an inequality a7 x < a,,
valid for P, such that '

F ={xeP: a" x = a,}.

We also say that the inequality a” x < a, defines F. A face F is proper if
Fxp A proper, nonempty face maximal with respect to set-inclusion is
Called a facer. Any polyhedron P has a representation of the form

P={xeR™ Ax<b, Dx =d}.

If D has full rank and {xe R™: Dx = d} equals the affine space spanned by P,
P’hjch we denote by aff(P), then Dx = d is called a minimal equation system
or P

Consider now the clutter 4, of all those subsets of E,, the feasible
rrays associated with constitute the permutation squares. This clutter
nduces an independence system (E,, .#,) in a natural way, where .#, is the
Collection of all subsets of members of 4&,. Any circuit, i, a minimal
fiependent subset of E,, of this indeperidence system has cardinality 2, which
®Rables us to associate with (E,, #») an undirected graph G, =(E,, €,),
Where the edge set , stands for the collection of circuits. Of special interest
Within G, are the maximal cliques, ie., complete subgraphs, as well as the
‘?ﬂdlmed odd cycles, ie., chordless cycles of length 2p+1 for p > 2. These

o] 1| 1 1112

1 2 |1

P

Fig. 2
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subgraphs are known to induce facets of the monotonization of P, the
convex hull of the incidence vectors of members of .#,. Balas and Saltzman
[2] have identified three classes of maximal cliques within G, and shown
that they are exhaustive. Moreover, two classes among them have been
shown to define facets of our polytope P,, whereas the cliques of the third
class give rise to a'minimal equatlon system for P,. Two instances of the first
two classes are represented in Fig. 2 by their associated feasible arrays.
. For the planar problem (cf. [3]) only one class of maximal chques could
be identified, which not only induce 1mproper faces but also give rise to 3
minimal equation system. Note also that in this case the associated circtits
can have cardinality greater than two. Moreover, a class of odd cycles could
be identified, the corresponding inequalities all define facets of the associated
ppolytope. The feasible array of such an odd cycle is illustrated in Fig. 3.

1 . 1,n 2
n-11 n :
=2 | -1 ni
2:% n1| n
L
34|45 ' 3] 4
1,212,3 2|3
Fig 3 Fig. 4

It is the aim of this paper to show how facet-defining inequalities for Py
can be obtained from odd cycles in G,. A particular instance of such an od
cycle is shown in Fig. 4. .

2. A minimal equation system for P,. Let us consider the equatwﬂ'
system (1) defining the set of solutions to AP3,. The underlymg matrix 4

the following form (assummg a lexicographically increasing order Of th"’
triples ijk):

1.1 1.1 1.1

ARARRRARRRRI

- 111

1111111111

- 11111

ANRRERERERE RN

1111
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We will show in the sequel that A’x = 1, A’ being obtained by deletion
of rows n+1 and 2n+1, is 2 minimal equation system for P,. Such a proof
has already been given in [2] but our proof is closely related to the notion of
4 permutation square and, besides, it will be very important for the remain-
Ing part of this paper.

THEOREM 1. The system A'x =1 is a minimal equation system for P,.

Proof. Let a’ x < a, be a linear inequality such that '

P,<{xeR" a" x = a,}.

We have to show the existence of a vector 1 having n® components such that
AT = qa. Let us define such a 4 as follows:

A= ay1x for k=1,...,n,
Az :=0, ’
Ayi=ay—ayy forj=2,....n
Az :=0,

Ay =@y —ayy fori=2,...,n.

We have to show that the equality
(3) Qijk = Atk +’12]+/13i

holds for all i, j, ke N. We observe that by the definition of A this equality
olds for all triples ijk, at least two of which are equal to 1. Two main
Cases remain:

, Cas_e 1. Exactly one of the indices is equal to 1, say the index i. Then
We have to show that '

Ay +a8111 = 81151+

For this consider the following feasible arrays L,,..., L, (the occurring
SYmbol k' is chosen to be unequal to k and 1):

1 1 Tk k

row il K . Y k! k'

col.j
Ly Ly Ly L,

W Observe that L, and L,, resp. L, and L,, can be completed identically to
th Permutation squares L, ..., L, which according to our assumption on
€ vector q satisfy the inequality a” x < a, with equality. Therefore, we infer
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with the notation a(L):= a” x" that

a(Ly)—a(Ly) = a(L)—a(L) =0 and a(Ly)—a(Ly) = a(Ls)—a(Ls =0

implying o
0=a(L;)—a(L;)+a(Li)—a(Ly) = ayp+ a4y — 8151 — 8111

which proves case 1. -

The case j=1, i, k # 1 follows along the same line by transposition
and for k =1, i, j # 1 the consideration of the four arrays (with k' # 1 and
i'#1, 1)

1 1
rowi'| k! K K K
row / 1 1
col. j ‘
L-| . Lz L3 L.'.

yields the proof. :

Case 2. All three indices i, j, k are unequal to 1. In view of (3) and the
latter case we have only to consider the two arrays

1 . k
row / k ' 1
col. j
Ly Ly

which, clearly, can also be completed identically to full permutation squares-
This completes our proof.

CoroLLARY 1. We have |
| " dim P, = *—3n+2 = (n—1)2(n+2).

3. A further class of facet-defining inequalities for P,. Starting from a7
odd cycle of the type illustrated in Fig. 4 and using Padberg’s lifting theorem
(¢f. [5]) we can obtain facet-defining inequalities for the monotonization ©
P,. It seems that quite a number of distinct classes of such inequalities can
be found this way. However, in view of the (lower-dimensional) polytope P,
it still has to be shown that these inequalities define faces of P,, which ar¢
different from those induced by the clique inequalities as given in [2]. T
class of such inequalities we found arises from two feasible arrays L, and L2
(illustrated in Fig. 5) by “summation”, i.e., they have the form

) x(Ly)+x(Ly) < (n—1).



Facets of 3-index assignment polytope 381

2..n n-1
n |..n n-1
n-1{1..n1...n
n=1|n-1|n-1 —1in-1
L.npl.nll.n nl'n"n n'1 n
4 t..n|l.n|l.n 5..n{5...n|5..n n-1{5...n
3 |..n 1...n|l..n{l.n L.nlh..n n—1jb..n
2 .n|l.n l.npl.nll.n 3..n n-113..n
L-| LZ
Fig. 5

ProposiTiON 1. The'inequality x(L,)+x(L2) < (n—1) is valid for P,.

Proof. Suppose there exists a permutation square L such that xZ(L,)
+x4(L,) > n. ' _

1. L does not contain the symbol n—1 in cells 4(n—1), ..., n(n—1) nor
4 symbol k out of the set {n—i+3, ..., n} in cell in for i =4, ..., n. Then, by
2 well-known result from the theory of permutation matrices, L has to
Contain the symbol n—1 in cell 3(n—2). But then, again, it has also to
COntain the symbol n in cell 2(n— 1) as well as the symbols n—i+2 in cells ij
Or i=4, ..., nand j=n—i+1, respectively. At the end, L has to contain
the Symbol 1 in cell 1n, which leads to a contradiction with our assumption.

2. If the symbol n—1 within L is contained in one of the cells i(n—1),
Where j¢ {4, ..., n}, then L has to contain two symbols in the first 3 rows
and n—2 columns. Note that the corresponding coefficients of our inequality
are zero. By our assumption, L must contain a symbol k from {n—i+3, ...
- 1} in cell in for some ie{d4,...,n}). But then L has even to contain

€€ symbols in the first 3 rows and n—2 columns, which contradicts our
ASsumption. ' ‘ ‘

3. The same observation holds if L contains the symbol n—1 in one of
the cejig 4n, ..., nn. Moreover, the assumption that L contains two or more
$Ymbols in the subrectangle formed by rows 1, 2, 3 and columns 1, 2, ...
=2 (symbol n—1 in cell 3(rn—2) excluded) leads to a contradiction.

4. If L contains exactly one element in this subrectangle, then it has to
co_main a symbol k from {n—i+3, ..., n} in cell in for some ie {4, ..., n}. If
SIS is the symbol n, then L contains at least two symbols whose coefficient
an Our inequality is zero, leading as in case 2 to a contradiction. Therefore,
5 €lement, say k, in column » must be unequal to n (and as we have already
"°en also unequal to n—1). Now the symbol within the subrectangle must be

Tow 1, since otherwise at least one further such element exists. But then L
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is forced to contain the symbol n in cell 2(n—1) and the symbol n—1 in cell
3(rn—2). By our assumption, L must also contain the symbol n—2 in cell
4(n-3), so the symbol in its n-th column must be unequal to n—2, n—1, n
Therefore, in line 5, L has to contain the symbol n—3 in its (n— —4)-th
column, and continuing this way we arrive at the conclusion that the symbol
3 has to occur in cell (n—1)2 as well as in cell nn, a contradiction.

5. Finally, the assumption that there is no element in L with a corre-
sponding zero coefficient in our inequality leads us to case 1.

Now let F = {xe P,: x(Ly)+x(L;) =(n—1)} and let a’ x < ag be any
other inequality valid for P, such that F = {xeP,: a"x = ao} Obviously,
there is a permutation square L whose incidence vector is not contained in
F. Therefore, to show that F is a facet of P, we have only to prove the
existence of a scalar o and a real vector 4 such that a’ = AT 4 +ac?, where €
is the sum of the incidence vectors of L; and L,. For this we make use of
our vector 4 as introduced in Theorem 1 and show the desired equality first
for all those triples ijk for which the coefficient in inequality (4) is zero. In
particular, we will exhibit for every subcase to be considered a permutation
square contained in F to which the partial permutation squares already
considered in the proof of Theorem 1 can always be completed.

For the case where at least two of the indices i, j, k are equal to one the
result is obvious.

Case l.i=1, j, k# 1, ] n—1 and jk is unequal to (n—1)(n—1)-
Here the fol]owmg two permutation squares (one for k = 2, one for k # 2}
yield the proof (in the second one the symbol k has been replaced by ]+1

n n

3

4

j4+1

3

/ 1 / '
j#
Y

2

col. j

col.j ~

for j=1,i,k+#1 the following two permutation squares (one for k < n—1
+2 and one for i =3 and k =n) are appropriate:

k n
n n-1

/ 2
n-f .
~ +2
/ 3
1
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Finally, for k=1, i and j# 1 as well as i+j<n+1 the folldwing two
Permutation squares yield the proof: ‘

1 2

/ 1 row i
n=i
/j /S

3 3
j+1 j+1

col, j ) col.j

Case 2. All three indices are unequal to one; here the essential example
for a possible completion is given by the -following permutation square:

1

k row 7/
J+1
n-i

+2

2
col. j
This completes our proof for all these triples ijk having a zero coefficient
n (4).

Let us now pass to the remaining ones. We have to show the equations

©) G = At Az + A3+ a,
Tespectively, |
(6) Qi = Agg+ Azt Az + 20

for appropriate triples ijk.
' For this we choose a as follows:
& = Qp-1)23 T Gn-1y11t 28,11 — 8121813,

Which shows equality (5) for ijk = (n—1)23. For the other triples we have to
Freat the following two pairs of arrays:

3 1 k Y

row / k 1

col. j
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3,3 1,1 k11 1

row i kK . 1

3,3
11

col, j

arising from (5) and (6), respectively. In the sequel we will consider 6 further
cases and indicate how the above-mentioned pairs of arrays can be “decom-
posed” further into identically completable, partial permutation squares (or
into pairs of arrays which are easily seen to be decomposable in this way)-
We will, however, restrict ourselves to just presenting the triples of indices
defining these partial permutation squares.

Case 3. jj=1nand k=2,...,n 0r i+j=n+1 and k=n—i+2:
[ink, n13—11k, nn3];

[(n—1D)11, i3 —n13, (n—1)nl];

[123, (n—1)nl —(n—-1)23, 1n1];

(111, §1—-i11, 1517;

Lijk, 1n1—ij1, 1nk];

[113, 121-111, 123].

Case 4. i>4, jell,...,n—1}, ke{l, ..., n}—{n+2—i} if i+j>n+l
and for ke{n+3—i,....n} if i+j<n+1l; k#n—1if j=n—1: ,

[+ 1=i)(n+2~i), ijk—i(n+1—i)(n+2—i), 1jk];

[(n—1D11, i(n+1-i)(n+2—D)—ill, (n—=1)(n+1=H(n+2-0)];

[123, (n—1)(n+1—i) (n+2—i)—(n—1) 23, L(n+1—~i)(n+2~i)];

[113, 121—111, 123];

[111, Lk—11k, 11]

This decomposition is essentially the same as that with i+j < n+1.

Case 5. i+j=n+1, k=n+3—i,...,n and i >3, or i+j>n+1 and
k=n+2—i:

[113, 121-111, 123];

(111, 1jk—-11k, 11];

[11n, ik~ iln, 1jk];

[(n—1)1n, 123—11n, (n—1)23];

[iln, (n—1)11—i11, (n—1)1n].

Case 6. i24, j=n, kel2,...,n—i+2}:

[111, ink—ill, 1nk]; '

(113, 121, 1nk, (n—1)11—111, 11k, 1nl, (n—1)23], ]
where the second expression in brackets can be treated exactly as in case 3
for k =1 we obtain the following decomposition:
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{113, in1 —il1, 1n3];
(121, m—111-111, (n—1)21];
[(n—-1)21, 1n3—(n—1)23, 1nl].
Case 7.i>4 and j=n:
[113, 121, (n—1)11, ink—11k, 1nl, il1, (n—1)23];
[113, 121, (n—1)11—111, 111, (n—1)23], '
Where the first expression in brackets can be treated exactly as in case 4.

Case 8. i>4,j=n—~1and k=n-1:

[123, n—D(n—1)1—-(n—1)23, 1(n—1)1];

[113, 121—-111, 123];

[11n, in—1)(n—1)—iln, 1(n—1)(n—-1)];

R2in, 1(n—1)(n—1)—11(n—1), 2(n—1)n];

2(n—1)n, (n—1)11-21n, (n—1)(n—-1)1];

[113, 121, iln, (n—1)11—11n, 111, il1, (n—1)23],

Where the last expression in brackets can be treated as in case 4.

Finally, the remaining cases in rows 1-3 are easily treated in a similar
Way. Since there exists a permutation square L satisfying inequality (4)
:tl:ictly, our « must be strictly greater from zero. Altogether we have thus

Own; ,

THEOREM 2. Inequality (4) defines a facet of P,.

. What we still have to show is that F, the face of P, induced by
equality (4), is distinct from those faces which are induced by

(1) the “trivial” inequalities x;3 =0, i, j, ke N,

. (ii) the inequalities x(L) < 1, where L is a clique of type 1 as illustrated
n Fig. 2’ 2
- (iii) the corresponding inequality arising from type 2,
al of which have been shown by Balas and Saltzman [2] to define facets of
a- For this it suffices to exhibit a permutation square L' for every face F’
Such that x is a member of F but not of F'. '
For (i) this is easy to see since for each triple ijk there is a permutation
quare L such that x*eF and x% = 1. | '

_ As to (i) we note that any clique of this type is uniquely defined by a
Pair of indices ij defining the cell which contains the symbols 1, ..., n as well
% a single index k, by which row i and column j are filled up. First, if i +j
=Nn+1,ij % 1nand k # 1, j+ 1, then L as illustrated in Fig. 6 has the desired
pl'(.’Perties. If, however, k =1 (k =j+1), then putting the symbol 1 in cell
I(1“‘1) and the symbol j in cell in (the symbol j+1 in cell (i+1)n and the
S¥mbol j in cell 1j) yields a permutation square of the desired type. The case
Y=1nis easily treated in a similar way. Second, if i+j # n+1, then the
Permutation square shown in Fig. 7 has the required properties provided

¥ n—i+2 and j+1 (mod n). Obviously, by exchanging the symbol 1 for
"~i+2, for 2 or for n we always obtain a permutation square as required.
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The same can be done for k = j+1 (mod n), and so any member of the first
class of cliques is shown to induce a facet of P, which is distinct from F.
Quite along the same lines this is shown for the members of the second class.

JH

" Fig. 6 - Fig. 7

To conclude we only mention that the total number of inequalities of
type (4) is exponential in n (permutations of rows, columns and symbols yield
distinct facets!). Moreover, it seems to be worthwhile to keep n fixed and
further generalize this class of facet-defining inequalities for polyhedra Py»
where n' is strictly greater than n. '
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