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Kuranishi families for Hopf surfaces

by Krzysztof DaBrowskl (Warszawa)

Abstract. The Kuranishi family for any (primary) Hopf surface is construced. It is proved
that any two Hopf surfaces are deformations of each other. For every Hopf surface, the group of
holomorphic line bundles which can be determined by a divisor is examined.

By a Hopf surface we mean any complex manifold homeomorphic to
S! x83. For any such surface we give an explicit construction of the
Kuranishi family. Our construction is a generalization and a simplification of
that obtained by Kodaira and Spencer [6] for some special Hopf surfaces.
Moreover, we construct such an ascending chain of analytic families that,
after a finite number of steps, contains any two given Hopf surfaces. This
implies that any two of them are deformations of each other. We also
examine the group of holomorphic line bundles which can be determined by
a divisor.

A construction of the Kuranishi families for any Hopf surface was
obtained independently by Wehler [10]. He used ideas different from the
original ideas of Kodaira and Spencer, namely more algebraic ones. We give
here our contruction as obtained in [1].

The author thanks Professor Andrzej Bialynicki-Birula for valuable
discussions and Doctor Joachim Wehler for sending a typescript of [10].

Notation

general:

N the set of positive integers,

Z  the group of integers,

Z, the cyclic group of n clements,

C  the field of complex numbers,

C* the multiplicative group of non-zero complex numbers,
C" the complex affine n-dimensional space,

C2 the domain C2\{(0, 0)},

P" the complex projective n-dimensional space,

{g> the infinite cyclic group generated by an element g;
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for a complex manifold X:
7, (X) the fundamental group of X,

a(X) the algebraic dimension of X: the transcendence degree over C of
the field of all global meromorphic functions on X,

e the tangent sheaf of X: the sheaf of tangent holomérphic vector
fields on X,

h’ the dimension dim. H'(X, @),

[D] the complex line bundle determined by a divisor U (when D is

a divisor) or by the divisor 1-D (when D is a 1-codimensional
analytic set),
Div(X) the group of divisors on X,
Pic(X) the group of isomorphism classes of complex line bundles on X,
deg X the degree of a Hopf surface, see Definition 1.6.

1. By a Hopf surface we mean any complex manifold homeomorphic
to S! xS°. The present paper is based on the following theorem of Kodaira.

THEOREM 1.1 ([4], § 10 and [5]). For every Hopf surface X there exist
numbers meN, a, b, te C satisfying ‘

0<la<|bj<1 and (B"—a)t=0

such that X is biholomorphic to C%/{y), where y is an automorphism of C2
given by
(21, 23) = (az, +1273, bz,).

Conversely, for any m, a, b, t, as above, the corresponding group {y) acts freely
and properly discontinuously on C2 and the complex manifold C/(y) is a
Hopf surface.

By this theorem we will assume that every Hopf surface under con-
sideration is given as CZ/(y) for some y as above.

Since the automorphism y need not be linear, it is not always given by
a matrix. In connection with it we introduce a notion which enable us to
describe y in a convenient way.

DEeFINITION 1.2, A quasimatrix is an expression of the form
atr()
b
which is a short notation for a (not necessarily linear) mapping

(x, y)—=(ax+ty™, by).

Notice that the conditions of Theorem 1.1 mean that the automorphism
y may have two forms:

fort =0: y=[ab], for t # 0: y=[b t(b)].
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In connection with the above we assume the following

DEerFINITION 1.3. A quasimatrix being of the first of the above forms will
be called a quasimatrix of degree 0, and a quasimatrix of the second form will
be called of degree m, where me N.

By standard methods, using universal coverings and examination of
coefficients of power series (compare with [8]) one obtains the following
facts.

LemMa 14. Two given Hopf surfaces C}/{p) and C%/{(y) are biholo-
morphic if and only if there exists a holomorphic automorphism F of C? such
that

yoF =Foe.

If ¢ and y are linear, then F can be also linear.

ProposITION 1.5. Let @, y be automorphisms of C% satisfying the condi-
tions of Theorem 1.1. Then

(1) If the quasimatrices of ¢ and y are of different degrees, then Hopf
surfaces C2/{¢) and CZ%/(y> are non-biholomorphic.

(ii) Let the quasimatrices of ¢ and y be of the same degree me N and

(p=[a"'t()"':| nd y=[b"‘s()"]‘
) a ' b

Then C2%/{@) is biholomorphic to C2%/{y) if and only if a =b.
(iii) Let the quasimatrices of ¢ and y be of degree 0 and

VRN

Then C2%/{¢) and C%/{y) are biholomorphic if and only if ¢ =y or a’ = b and
a=">.

Note that by the first part of Proposition 1.5 we can speak not only
about the degree of a quasimatrix but even about the degree of a Hopf
surface, namely

DerINITION 1.6. A Hopf surface X = C2/<y) is of degree m if and only if
the quasimatrix of y is of degree m. We denote this by deg X = m.

It is possible to characterize the degree of a Hopf surface X intrinsically
by examining the algebraic dimension of X and the divisor of the canonical
bundle on X, when the algebraic dimension is 0, but we will not use it here

(see [2]).

2. Here, for any Hopf surface X, we examine the subgroup in Pic(X)
which consists of those (classes of) line bundles on X that can be determined
by a divisor. '
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First of all, Betti numbers show that for a Hopf surface X its algebraic
dimension a(X) can be equal only to 0 or 1.

THeoreM 2.1 (Kodaira [3], [4]). Let a Hopf surface X be given by a

quasimatrix
_[a Oy
Y= b |
Then:

(i) a(X) =1 if and only if t =0 and a* = b' for some k, leN,
() If a(X)=1 then X contains infinitely many curves (1-dimensional
analytic subsets),

(iit) If a(X) =0 then X contains not more than two irreducible curves.
Each of them is non-singular and elliptic.

Note that any Hopf surface contains a curve. Let X = C%/{y> where 7 is
as above. Then the equation z, = 0 is invariant under {(y)», hence it deter-
mines an elliptic curve C, biholomorphic to C*/(b). If t =0, then the
equation z, =0 also determines an elliptic curve C, biholomorphic to
C*/{a). Part (iil) of Theorem 2.1 says that for a(X) = 0 there are no curves
other than C and C,.

But in case t # 0 the only curve is C.

THEOREM 2.2 [2]. A Hopf surface X contains exactly one irreducible curve
if and only if deg X > 0.

Consider the canonical homomorphism

[ 7: Div(X) - Pic(X)

given by
D—[D].

In this section we want to describe the image [Div(X)] of Div(X) in Pic(X)
and [ ], where X is any Hopf surface.

Since in the case a(X) =0 the homomorphism [ ] is a monomorphism
and we know the number of curves on X, we immediately have

LEMMA 23. Let X be a Hopf surface with a(X)=0. Then

(i) If deg X =0, then [Div(X)]=Z-CPZ-C,.

(i) If deg X > 0, then [Div(X)]=Z-C.

Now consider the case where a(X)=1. Let X = C2/(y) where

o

and a* = b for k, le N. Denote d := ged(k, 1) (the greatest common divisor).
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LemMma 24. Let X be as above. Then [Div(X)] = Z®Z,.

Proof. Without loss of generality we may assume that k and ! are
chosen the smallest possible. By assumption, there exists a meromorphic
function on X, hence a holomorphic mapping f: X - P'. Let n: C} > X
denote the factor map. Then we have a commutative diagram of holo-
morphic surjections

2 g

— X

Pt
where F =fomn is given by

F(zy,25) = 2‘5/2'2

The only curves on X are fibres of f ([3], Theorem 4.3, and [4]. Section 9).
For we P! denote C,,:=J '(w) = X. In particular we have C_ = C and
Co = C,. The divisors kC,, IC and C,,, for w # 0, oo, are linearly equivalent,
hence [Div(X)] is equal to the image G of Z-C®Z-C, in Pic(X).
We obtain a short exact sequence of groups

0 - ker rp—»Z@Zi’»G—ro

where ¢@(k, 0) = ¢(0, ). Since G has a non-zero free part, ker ¢ = Z or 0.
The condition that k and [/ are the smallest possible means that the element
(k, —)eZ®DZ is a generator of ker ¢. The numbers k/d and //d are mutually
prime, thus there exist integers x and y such that
x E+ L 1
ava-

hence the element (k/d, —I/d) can be completed to a basis of Z@Z. Since we"
may write

ker ¢ = dZ(k/d, —l/d),

we obtain that

QED.
CorOLLARY 2.5. Let X be a Hopf surface given by a quasimatrix

_fa()"
v={" |

$ — Annales Polonici Mathematici XLV.1



66 K. Dabrowski

Then we have the following table:

conditions for y [Div(X)]
t#0 z
t=0 and & # b, (k. IeN) yACSY A
t=0and ¢ =5 ged(k, ) =1 z
t=0and a* =, ged(k, ) =d > 1 YASY A

Remark 26. Lemma 24 can be proved also in another way. By
Kodaira [4], for any Hopf surface X, Pic(X) = C*. By (2.2) in [2] we have a
correspondence

Pic(X)a[C,] = aeC*, Pic(X)3[C]—beC*

hence [Div(X)] is isomorphic to the subgroup in C* generated by a and b.

3. Note that the definition of a Hopf surface implies that the class of all
Hopf surfaces is closed under deformations (any deformation of a Hopf
surface is again a Hopf surface). In this section we will prove that any two
Hopf surfaces are deformations of each other. We introduce a filtration in
the class of all Hopf surfaces and construct an ascending chain of analytic
families in such a way that Hopf surfaces from a given member of the
filtration are some fibers of the analytic family which corresponds to that
member. The filtration will be given by considering Hopf surfaces of degree
less or equal to a given one.

In our construction we use a notion of a hyperquasimatrix being a
generalization of that of matrix. On could avoid use of those two notions
and denote all automorphisms in the conventional way, but it would only
cause complication of terminology and notation.

DEerINITION 3.1. A hyperquasimatrix is an expression of the form

a ) t()

n=

b

which is a short notation for a mapping

m
(x, Yy=(ax+ Y 1, ¥*, by).
n=1
In what follows we assume that a, b, ¢,, ..., t,, are complex numbers and m
is a positive integer. If ¢, # 0 for some g, then the greatest u such that ¢, # 0
is called the degree of the hyperquasimatrix. If ¢, = 0 for all y, then we say
that the hyperquasimatrix is of degree 0.
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Any hyperquasimatrix may be considered to be a point of C"*2 (where

n > m) in the following way
(@ b, ty,...itm, 0,...,0).
Assume the following notation
D*:=1{zeC: 0< |zl <1}, M™:=D*xD*xC™
Let u be a hyperquasimatrix and ue M™. Consider an automorphism
g: M"xCZ ->M™"xC%, (u, x)—(u, u(x)),

where x = (z, w)eC2.

LEMMA 3.2. The group {g)> acts freely and properly discontinuously on
M™xC}.

Proof. The proof of this lemma is a slight modification of that of
Lemma 1 in [8]. We give it here for the convenience of the reader.

Assume the contrary. Suppose that there exist a non-zero integer n and
a point xeCZ such that

(u, u"(x)) = (u, x).
This implies that u"(x) = x. Let
a Y Wy
= p=1
b

(In this proof we write t* instead of t,.) It is easy to see that then for n > 0
holds

u

m n—1
az+ ) WY a1l wr =2z, bBw=w
1 =0

u= v=
and for n <0
m n—1
z- Z £ Z n—vw”(v+l) =2 Kn=w'
a = voa" b b

Hence in both cases it must be w =0, whence z =0 and it gives a
contradiction. Therefore {g)> acts freely.

To prove that {g) acts properly discontinuously it is sufficient to show
that for any two compact subsets K; =« M™, K, c C2,

card \neZ: g"(K, xK;)n(K,; xK,) # Q]

is finite. Since K, and K, are compact, there exist positive real numbers C, D
such that for every uek,,

ldd<sC<1, l<C<I, fi<D
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and there exist real numbers A >0, B > 1 such that for every xeK,,
A<|x|<B
where | | is a norm in C* defined as
(zys ooes zZdli=lzq]+ .o Hzil

for (z,, ..., z)eC*. Let

n—1

saﬂ):= Z an—l—vbpv.
v=0

Then for ueK;, xeK,, neN we have

m
|u” x] < |a|”|z] + Z |£#)] |s%¥)] |wj* + |b|"|w| < C*"B+mDnC" ! B™+ C“B,H—u>°0.
u=1

Thus there exists NeN such that for every n > N we have |u"x| < A.
Now we consider negative exponents of u. We show that there exists
N’eN such that for every n> N’ and (u, x)e K; x K, we have

[u="x| > B.

Assume that there exist a sequence of points (u;, x;) of K; xK, and a
sequence of integers

nl <”2<...<nj<...

such that for every jeN,

lu; ¥ x;) < B.

Let y;:=u; “x;. Then x; =uy,. Let y; =:(;, #;) and

. m
e X0y
u=1 .

u, =
b;
Then
n; n; i n;
x;=ui'y; =(a/ Z;+ Zl tf s Wi, bi’ W)
e
where
nj— 1
. i—1-
= Y aT e,
v=0
Hence

Ix < CB+mDn,C"" ' B"+C"B - 0.

i~
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This contradicts the assumption that x;eK, for every jeN. We have
therefore obtained that the set

{neZ: g"(K, xK,)n(K; xK,) # @}
is contained in
{neZ: —N' <n< Nj}.

QED.

Now fix me N and consider all Hopf surfaces of degree less or equal to
m. We construct an analytic family which will contain all such Hopf surfaces
as its fibres.

Let {g> be as in Lemma 3.2. From this lemma we infer that

Vi= M™xCl/(g)
is a complex manifold. Let
x: M"xCi -V
be the factor map and
. M™"xCZ > M™
be the Cartesian projection. There holds
mog=m
hence there exists a holomorphic map p: ¥V— M™ such that the diagram

x
M™e? ; >y

Mm

commutes. Since x is a covering, p is a holomorphic submersion.
We want to show that (V, p, M™) is an analytic family. For this purpose
we must know that p is proper.

DeFINITION 3.3 ([4], Section 10). Let B be a closed unit ball in C?
B:= {(z;, z;)e C?: |z,4®+]z5)> < 1}. A holomorphic automorphism h of C?
is called a contraction if h"(B) converges to (0, 0) for n—» .

LemMMmA 34. Fibres of p are compact.

Proof. In our situation a hyperquasimatrix u determines an auto-
morphism u of C2, but by definition u(0, 0) : = (0, 0)e C* we can extend u to
an automorphism of C2. Lemma 3.2 implies that the (extended)
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automorphism u is a contraction. Hence we may assume by an appropriate
choice of the system of global complex coordinates on C?2 that the contraction
u has the form of a quasimatrix (which satisfies conditions of Theorem 1.1)
[7], [9]. Since any fibre p~!(u) of p has the form p~'(u) = CZ/<u), The-
orem 1.1 implies that p~!(u) is a Hopf surface, hence is compact. QED.

Since p is a submersion with compact (and connected) fibres, it is
proper. Thus (V, p, M™) is an analytic family of Hopf surfaces. In this way
we have

ProPosITION 3.5. For every meN there exists an analytic family such that
all Hopf surfaces of degree less or equal to m are fibres of this family.

Proof. Take the family (V, p, M™ we have constructed. In order to
obtain a Hopf surface of degree 0 as some fibre p~!(u), take for u a

hyperquasimatrix
[a T 1 y‘]
u=1
; b

in which |a| < |b|] and ¢, = 0 for every u. For a Hopf surface of a non-zero
degree k < m, take u with a =b* and t, =0 for u # k. QED.

As a corollary we obtain
THEOREM 3.6. Any two Hopf surfaces are deformations of each other.

Remark 3.7. In [2] we constructed an analytic family which contains
all Hopf surfaces, hence gives a stronger result. That family was obtained by
means of glueing of infinitely many ones. Nevertheless, we decided to publish
the present construction too, because it is simpler and in some situations it
can be more convenient to have a family which is given as a factor space of
an action of a group of automorphisms of a simple manifold, than as
infinitely many families glued together into a big one.

4. By the Kuranishi family for a compact complex manifold X we mean
an analytic family ¥ = (V, p, M) = {X,},cs such that X is biholomorphic to
X,, for some point t,e M and the Kodaira—Spencer map

o TM- H (X, 0©)

is an epimorphism for any ¢ and an isomorphism for ¢t =¢,.

In order to construct the Kuranishi family for any Hopf surface X,
we must know h! of X. The following lemma shows that it is sufficient to
know h°.

LemMMA 4.1. For any Hopf surface, h> =0 and h' = h°’
Proof. By the Serre duality theorem, for a Hopf surface X we have

h? = dim H*(X, Q°(TX)) = dim H°(X, Q*(T* X))
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(where QP(E) is the sheaf of holomorphic p-forms with coefficients in a
holomorphic vector bundle E). To prove the remaining part of the lemma
observe that transition functions of the bundle T* X® /\ 2T* X for a Hopf
surface X determined by a quasimatrix

]

1
a*b

are given by a matrix

mt =1
a’b? **  ab?

Since the bundle induced on C? is trivial, our task ist to find functions f, g
holomorphic on C? that satisfy

1
f(azl +t2';, sz) = ;2_bf(zh 22)’

mt

a tz%, bz,) = ———
g( zl+ 2 2) azbz

1
257 f(zy, Zz)+ﬁ g(z,y, z,).

By the first equality, f = 0, hence, by the second one, g = 0. Thus, for any
Hopf surface, h> = 0. Now we can find A'.

It is easy to see that for every Hopf surface, its Chern classes satisfy c,
= ¢, = 0. This is implied by the theorem of Kiinneth and the fact that c, is
equal to the Euler characteristic with coefficients in a field. Hence the
Riemann—Roch-Hirzebruch formula in our situation has a form

h*—h'+h° =0.

Since h* =0, we obtain that h' = h°, QED.

Namba [8] determined the dimensions of complex Lie groups of holo-
morphic automorphisms of Hopf surfaces of degrees 0 and 1. Since
those dimensions are equal to the dimensions h° we have to find h° only for
Hopf surfaces of degree greater than 1.

LEmMMA 4.2. For every Hopf surface X of degree greater than 1, h® = 2.
Proof. By assumption, X is determined by an automorphism y of the

form
_ bm ( )M
Y= . b
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where m > 2. Since this automorphism may be considered as a transition
function for the manifold X, the tangent bundle of X has a transition matrix

]

Hence in order to obtain a global vector field on X, it is sufficient to
find functions f, g holomorphic on C? that satisfy the following conditions

f(b™zy+27, bzy) =b"f (24, ) +mzT ' g(zy, 2,),
43)
g(b™z, +27, bz;) = bg(z,, z,).

Let

a a
[z, 2) = Z fklzlizlz, g(zy, z3) = Z guz'lez-
0

k1= kI=0

We show that g(zy, z;5) = go; 22-

From the linear part of the second equality (4.3) we infer that g, = 0.
We will see that g,, =0 for every k, ! with k+1> 1.

The second equality (4.3) may be written in the form

@ k k
Y guy (v)bm+l Ayt = z g b2t 25

ki=0 v=0 kI=0

Hence on the left side of this equality the coefficient g,, occurs at monomials
22 24 with the following pairs («, f) of exponents

k, D, k=1, m+1), ..., (k—=v, vm+1), ..., (0, km+]).

For our purpose it is sufficient to consider only those pairs («, f) in which
a+f is minimal, hence («, f) = (k, I) (we recall that m > 2). For this pair
it should be

km+1_k 1 _ 1
Gub Z123 —g,,,bz’{z;.

But the equality b*"*'=b is impossible when k+!> 2 (and m > 2), hence
gu = 0.

It is clear that we need not consider other pairs of exponents because if
two power series are equal then in particular their parts with the sums of
exponents not greater than k+/ are equal, too.

Thus actually g(z,, =,) = g, z,. Therefore we have

z Sad™z +2Db 2y =) Suab™ 2% 25+ mgo, 25.

Now on the left side of this equality the coefficient f,; stands precisely at the
same monomials z{ -4 as g,, did before.
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Let (a, B) # (0, m). As before, we consider only that pair («, f) for which
o+ B is minimal. Then it should be
b 2 2 = fubm Az,

Hence f,, can be non-zero only for (k, ) =(1, 0) or (0, m).
Now let (a, f) = (0, m). Then we have, for the coefficients

Sio+Som =fom+Mgo; .
Hence
SJio =mgo, .

Thus two independent coefficients can be non-zero, namely fio = mgo,
and f;,,. QED.

Therefore, together with the results of Namba [8], we obtain the
following table:

the form of y h°
. 4
a
[ b]’ where m > 2 3
any other 2

5. Before we construct the Kuranishi families, we briefly recall the
definition of the Kodaira—Spencer map. Since for every Hopf surface we have
h? = 0, there are no obstructions for the basis of the Kuranishi family to be
non-singular, thus it is sufficient for us to consider only the case of a non-
singular basis. .

Assume we have a family ¥ = (V, p, M) = | X,},.s Over a non-singular
basis M. Fix a point t,€ M and consider the fibre X, . Let D be a coordinate
neighbourhood around z, in M and let (¢, ..., ™) be local coordinates. Then
we can assume D so chosen that

J
p (D)= -91 U;

where U; are coordinate neighbourhoods with coordinates (t, z))

=(t', ..., 1™ z}, ..., z7) on each of them and
Uj={x=(t,z): teD, |}| <¢;}
where ¢; are small positive numbers and « =1, ..., n. For xe U;n U, holds

B(x) = % (), ..., "(x), L (X), ..., zp(xX) = [5%(¢, z)
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where f§, are holomorphic functions. Let U,;:= X, nU;. We can use z} as
coordinates on U,;. The transformation z§ = f%(t, z,) depends on t.
We define the Kodaira-Spencer map

&, T,M-H'(X,, 6).

An element ve T, M can be expressed as

Consider a vector field on U, ;N U, ,

“ 0
I (t,) 1= Lgl Ci i

'of}h(t! zk), AR .‘gl G %!'of;k(t’ zh)]'

Then define g, (v) to be the cohomology class
[{sjk(to)}ﬂz]e H! (Xros o)

of the cocycle obtained.

6. Now we are in position to construct the Kuranishi family for an
arbitrary Hopf surface.
Consider a general situation. Assume the following three conditions.

() We have a set M of automorphisms of C2 analytically parametrized
by a domain M < C". For te M, denote by tcM the corresponding auto-
morphism. (One can say that the correspondence is given by “passing to the
Greek letter”.) By the analytical parametrization we mean that the mapping

& MxCZ-CZ; (1,2)-1(2)
is holomorphic in r. Let for any te M, C2/(z)> be a Hopf surface.
(i) The group (n) generated by an automorphism
n MxCZ->MxCZ; (1, 2)(t, 1(2))

acts freely and properly discontinuously on M xCZ.
We introduce a complex manifold V:= M xC2/{n). Let

x: MxCl-V
be the factor map and
n: MxCi->M
be the projection onto the first factor in a Cartesian product. We have

non=m



Kuranishi families for Hopf surfaces 75

hence there exists a holomorphic map p: V— M such that the diagram

Mxc2 x >y

M

commutes. Since » is a covering, p is a holomorphic submersion. Hence we
obtain an analytic family of Hopf surfaces.

(iii) Let S:= {(z*, z2)eC}: |z'|*+|2}*> = 1} be the unit sphere and let
7(S) be the image of S under 1. The condition says that for any teM,
Snt(S)=0Q.

Later on we will show (Lemma 6.10) that in our applications we do not
lose generality by assumption of Condition (iii).

THEOREM 6.1. Assume conditions (i), (ii), (iii). Then there exists an
analytic family (V, p, M) of Hopf surfaces such that for any te M, the kernel

of o, consists of all vectors v,=(v},...,v")e M for which there exists
a holomorphic vector field w, = (w!, w}) on C2 such that

¥ o o 1(2) = (w(2) — i 2)

for any zeC2, where 1" denotes the differential of 1.

Proof. In the proof we give an explicit description of g, in our case.
This description is a modification of that of Kodaira and Spencer in [6],
§ 15.

Let te M and let

W, be a neighbourhood of S in {t} x C2 (dependent of 1),

W, be the domain in {t} x CZ with the boundary equal to Su(S),

W, :=1(W)).

Finally, let U;:= x, (W) where x,:= x| .c2. Then we have

X'=U1UU2UU3.

(In fact U, = U,, hence even X, = U, uU,.) Since the covering x, is the
factor map

%, CE - X, =C2/{(x)

and in any of the sets S, 7(S), W, there are no two points lying in one orbit
of (> (and S n1(S) = @), we can choose W, so small that the covering x,



76 K. Dabrowski

restricted to W, (and W;) is trivial, hence there exist holomorphic maps
hi(t): U; - {1} xC?
defined by
hi(t):=3%"': U ->W.

Use z;e W, as a local coordinate of x,(z;)e U;. Then the transition functions
fa(t, z,) are as follows

Ni2(t, 22) = z3,  f23(t, z3) = 2z3,  f3,(t, z;) = 1(2y).

By our assumption we can see that the transition functions depend holo-
morphically on te M. Let v, = (v}, ..., v)e T, M. As in the definition of g,,
we have:

0
Sult): =) of ﬁfu(‘s )
ri
where ¢, := %,(t, z,). We have
(6.2) 312(t2) = 853(13) = 0.

But

G
$31(t) =) v =5 7(2)

generally is not equal to 0. For the sake of simplicity let us denote 9, (t,)
=11,(zy).

In this way we have obtained a 1-cocycle !9, ()}, which determines its
cohomology class 9, = g,(v,)e H! (X,, ©):

Let 7 denote the sheaf of (C*-)differentiable sections of TX,. Then the
sheaves 7 /@ and 07 are isomorphic and we obtain a commutative diagram
with exact rows

H°(X,7/8) ————» H'(X,,8) ————0

I§ “

Z3 X TH) ———  HJ (. TX)———=O

where a is the Dolbeault isomorphism and Z3'(X,, TX,) and H?!(X,, TX))
mean the group of d-closed TX,-forms of type (0, 1) on X, and the Dolbeault
cohomology group respectively.” Hence we have a d-closed TX,-form ¢ which
represents 9,. The form is given by sections i;€ H°(U,, ) which satisfy

(63) (PIU,' = a&, and Ak—)‘i = sik Qn U,' M Uk'
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The form ¢ induces a d<closed TC2-form @ = (@', $?) on {t} x C;, which is
{z)-invariant in the sense that
(@, 2) = &(t, 7(2).

Any section 4; induces a differentiable section 4; of TC2 on W,. By (6.2), (6.3),
I1=1,=1,=1, is a differentiable section of TC2 on W, u W, U W, and

§=0% T z)-A(t, z3) = v(zy)

where z; = 1(z,). Hence 1 extends to a global section 1(t, z) of TC: an
{t} x C} such that

(6.4) =01 and TI(t 2-(t 1(2) =1,(2).
If also @ = Ju on V, for some u, then u induces 7 on {t} xCZ such that
(6.5) §=0 and T, z)—fft, t(2) =0

hence the difference
w(t, z) := A(¢, 2)— fi(t, 2)

is holomorphic in z and
(6.6) Tw(t, 2)—w(t, 1(2)) = v,(2).

Conversely, if there exists a holomorphic vector field w(t, z) on {t} xC2
satisfying (6.6), then

ﬁ(l, Z) = I(t’ Z)—W(t, Z)
satisfies (6.5) and [ determines u on ¥, such that ¢ = du. QED.

From now on we identify ¢ and t. The construction of the Kuranishi
families will be given as in Condition (ii) of Theorem 6.1. For different types
of Hopf surfaces we will choose different domains M which will parametrize
corresponding sets of automorphisms of CZ.

We divide the class of all Hopf surfaces in five subclasses, namely we
assume that a Hopf surfaces X is of the form C2/(y>, where

a:y=|"
.'}’—La,

B: y= a b]’ a # b"™ for any meN,

C:y= b b] for some meN\{1},
"bm ( )m
i b

(a1
E:y= a]'

D:.y= ] for some meN\{1},
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(The quasimatrices satisfy the conditions of Theorem 1.1.)

(A) Kodaira and Spencer [6] studied this case only for |a| < # where a is
the same as in the matrix
a
1 4l

(Precisely speaking, they considered |a| >3, but this makes no difference,

because the matrices
' 1
a a
o a _ a

are the two generators of the same infinite cyclic group.) Nevertheless, it is
easy to generalize their construction to the case |a} < 1. For this, pick a real
number

e:=3(1—|al)
and consider the domain

M’ := {te GL(2, C): |o| < 1—¢, |4] < €?}

£

o:=%3a+d), 4:=%a-958>+py.

Next, let M be the set of those matrices te M’ that are not equivalent to
matrices of the form
n

where neN\{1}. Clearly M is open in M.
For any te M, the eigenvalues of ¢ satisfy

where for

we have

lot/4] <1

thus the group (n) (as in Condition (ii) of Theorem 6.1) acts freely and
properly discontinuously on M xC2 and we obtain an analytic family
(V, p, M). By Jordan’s theorem and Kodaira’s Theorem 1.1, this i1s a family
of Hopf surfaces.

To prove that this is the Kuranishi family, we must know how ker g,
looks like. In our situation the thesis of Theorem 6.1 can be formulated in a
simpler way.
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CoroLLARY 6.7. In our situation ker g, consists of all v,e TTM for which
there exists a 2x2 complex matrix w, such that v, =tw,—w,t, v, being

considered as a matrix
v} v}
v, = .
"o o

Proof. By Hartogs’ theorem, the functions w/ are holomorphic at any
point of C2 hence they define a holomorphic mapping w, = (w!, w2): C?
— C2. As the desired matrix, take the differential of w,. QED.

We check that for

"
= \
a

ker o, = 0. In the remaining cases it is easy to see that ker g, is equal to the
tangent space T, M, ,, where M, , is a 2-dimensional submanifold in M given
by the equations

a+6—20=0, (x—06)>+4Bfy—44=0.
Hence, dim ker g, = 2.

We already know that for te M,

. _ (2
hl(Ci/<r>)=%4’ '“‘[ a]’

2; else,

hence g, is an epimorphism for any ¢t and an isomorphism for
= ,
in particular for

t= ,

-

where a is the number fixed at the beginning of the solution of Case (A).

Remark 6.8. It was essential to take the subset M in M’ because if we
wanted to obtain a similar family over M’, such a family would not be
complete at points of M'\M. In fact, for those points, h'! =3 and g, is
merely a monomorphism. As we will see later, those points should cor-
respond to Hopf surfaces of degree greater than one, which can not appear
in a family determined by matrices. Such a mistake was made by Kodaira
and Spencer in [6]. They considered a family over M’ and their family is not
complete. For points of M'\ M the proof of Theorem 15.4 in [6] does not
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work. But, as we could see, this mistake is not very serious, because we can
take such a smaller neighbourhood of the point of the basis, that for the fibre
over that point we have the Kuranishi family constructed.

(B) Let D*:= {zeC: 0 <|z] < 1}. Define an open subset N < D* x D*
by
N:={(a, f)eD* xD*: V o # p", p#a™}.

meN

(N is open in D* x D*, because the complement is a union of a locally finite
family of closed subsets of D* x D*, hence it is closed itsel.) If we identify an

with a point (a, ) D* x D*, then the assumption g € N makes sense. Then, for
M take any connected neighbourhood of g in N. Lemma 3.2 implies that
Condition (ii) of Theorem 6.1 is fulfilled, hence we obtain the appropriate
analytic family (V, p, M). (If in a matrix

"
B
there happens |a| > |B|, then it is eésy to check that this matrix gives the
same Hopf surface, as
B
a

does.) Since for any te M, dim T, M = h'(X,) = 2, we should only show that
ker g, =0 for any t. In our situation the thesis of Theorem 6.1 has the
following form.

COROLLARY 6.9. ker g, consists of all v,e T, M for which there is a 2x2
complex matrix w, such that v, = tw,—w,t, v, being considered as a matrix

Proof. Is a consequence of the proof of Corollary 6.7. QED.
From this we easily obtain that v, = 0, hence ker g, =0 for any ¢.
Warning. It would not be sufficient to consider a set

{(@, B): O<la] <|Bl <1 and a # ™ Vm}

because the fact a # b does not imply |a| # |b|, so the case |¢| =|B| must be
included. )
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]

may be viewed as a point (a, B, A)e C>. By considerations similar to those at
the beginning of the solution of Case (B), we see that we may take M as such
a neighbourhood of

t =

=[]

N:={t=(a, B, HeC3 0<|u <|f| < 1)

(C) Any quasimatrix

in a set

that M contains no point ¢ with « = ™ for n # m. The Hopf surfaces CZ/{(g)

and CZ/<h) where
e A0)” |«
o=} w=[")

a# f™ and A # 0, are biholomorphic (in Lemma 1.4, substitute

l m
F:= [1 ,B"'-a( ) :I).
1

Thus we should show that

0 ifa=p"and A=0,

dim ker g, = %l else

Far this purpose we want to apply Theorem 6.1. Lemma 3.2 implies that
Condition (ii) is fulfilled. The following lemma shows that so is Condition

(iii).
=[]

there holds |\ <1, then St(S) = Q.
Proof. Let z = (z,, z;)€S. This means that |z,]2+|z,)> = 1. We show

LemMa 6.10. If in

IQZ1 +AZ';|2+ Iﬂ22|2 <1.
The left side is not greater than
le? 22| + 2 |adz, 25| +]A% 23M.

6 — Annales Polonici Mathematici XLV.1
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Consider an inequality
Ax?+Bx+C <0,
where
x:=|A, A:=zi"|, B:=2az,z%, C:=|a?z}-1.

We obtain two roots

loez, | +1
xl < 0 xZ = .
' |z,™

It should be |A| < x,. There holds
lacf [z4] +1

|z,™
hence it is sufficient to assume |i] < 1. QED.

By Proposition 1.5, we know that we may assume it without loss of
generality. We do it, but to simplify our notation we will write A = 1.
Now it is easy to check that we can formulate Theorem 6.1 as follows.

CoroLLARY 6.11. A vector v, belongs to ker g, if and only if there is a
holomorphic vector field w, on C? such that

23 (Z) =t (Wt (Z)) —W, (t (Z))

or any zeC2, V' being considered as a quasimatrix
y * ng q

b = [v‘ o7 ( )"']
| B v‘4 *

From this corollary, by the power series methods we obtain that for
a=pf" and 1 =0 it must be v, =0, hence ker g, =0; and for the other ¢
the vector v, has a non-zero coordinate v?, hence dim ker g, = 1.

(D) Define

2 aflzy|+12>1

N:={(a, B)eC% O <|a| <|fl <1}
and consider a quasimatrix
1 m
. [a () ]
B

]

for some fixed m # 1. We find a neighbourhood M of ¢, in N which consists

as a point (a, f)e N. Let
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of points (x, f) such that a # " for any n# m. In order to show that
ker g, =0 for any te M we have

CoROLLARY 6.12. A vector v,cker g, if and only if there is a holomorphic
vector field w, on C? such that

v, (2) = ' (W, (2)) —w, (1 (2))

for any zeC3, v, being considered as a matrix

I:vtl ]
U, = 4 |
Uy

Proof. By checking. QED.

From this by the power series methods we obtain that for any re M it
must be v, =0, hence ker ¢, = 0.

(E) Let
B al]
1]

Consider the Kuranishi family for the Hopf surface given by a matrix

)

Case (A). The basis of this family is a domain M < GL(2, C) with

elements denoted by
= [ ﬂ].
y 0

t,:= [a l]eM.
a

By Proposition 1.5 we may identify t, with ¢,. Consider a 2-dimensional
subset of M

Pick any 4 # 0 such that

M:={teM: =1, a =a}.

Restrict the family (V, p, M) from Case (A) to the set M’ and obtain a family
(V', p, M’). By Case (A) we know that for any te M’, h'(CZ/{t)) =2. We
check that there holds

CoroOLLARY 6.13. A vector v,eker g, if and only if there is a 2 x 2 complex
matrix w, such that

v, = tw,—w,t
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00
v, = 0 ot |

From this we easily obtain that it must be v, = 0 for any te M’, hence
ker g, = 0.

This completes our construction.

where
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