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1. Introduction. In this paper we consider the random process Y (%)
with discrete parameter, defined as the transformation of a given binary
random process,

(1) Y (@) =fa(&Xicns1y Xicngay oooy Zimpygy ooy Ximgy Xi),y

where X; denotes a two-point random variable being the value of the
process X () for fixed ¢ (¢ = —v,..., —1,..., —1,0,1,2,..., v and 7r
denoting natural numbers for which n<r<v—n-+1) and f, is an
n-argument; logic function (n > 1).

The realizations of the random variable X; will be denoted by ;.

Let Y, be a two-point random variable being the value of the process
Y (4) for fixed ¢ (¢ = —r,..., —1,0,1,2,...). Such a process very often
occurs in the theory of signal detection in the presence of noise ([1]).
In this case {X;} is a sequence of quantized signals mixed with noise.
This sequence forms the input stream of a decision device; here f, is the
decision function used for detecting the signal and {Y,} is a sequence
of decisions concerning the existence and non-existence of the signal.

For an optimal choice of the function f, it is necessary to find some
probability characteristics of the process Y (i), depending on the pro-
cess X (1).

The aim of this paper is to present an algorithm for computing pro-
babilities of the events

B ={(Y;,=1)u(¥Yy=1)v..vu(XY,;=1)}, J=>1,
for various functions f, and distributions of random variables X,.
For the sake of simplicity let us write:
p; =P{X; =1}, ¢ =P{X;=0}=1—p,
a; = {Y; =0}, b, ={Y; =1},

4;={a_.Nna_,, 0...0a_, Na},

A, ={d_,vb_,,u...ub_,Ub},
B'i = {blu bgU ees U bi—l v b’i}'
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2. A recurrence formula for P{B;}.

AssuMPTIONS. 1° {X,} is a sequence of independent two-point random
variables with known probabilities p; (¢ = —v, ..., —7r,...,—1,0,1,2,...);
v and r denote natural numbers satisfying the condition n < r < v—n+1;

2° p; = 0 for 4 < 0;

3° the stochastic process Y (¢) is defined by (1), where f, is an’
n-argument logic function (n > 1);

40 f,.(0,0,...,0) =0; f, 0.

The distributions of the random variables X, (i = —v,..., —r,...,
-1,0,1,2,...) completely define the process Y (¢). Thus, theoretically,
the problem is reduced to classical methods of seeking the distribution
of the function with random arguments. However, if J is a large number,
classical methods lead to very cumbersome numerical computations
(e.g. for J = 30 the number of additions would be near to 10°). These
classical methods would require a very long computer working time and
could give large numerical errors. It is possible to avoid these difficulties
by using suitable recurrent formulae.

Let us consider the relations

P{A;u 4;} =P{A}+P{4}<]1,

based on the fact that 4, and 4; are complementary events. From assum-
ptions 2° and 4° it follows that

(2) P{A;} =1 for ¢<0.
As P{4,} =1, thus

(3) P{B;lAo} = P{B; N A},

(4) P{B; N A.} = P{B,}.
Similarly

(5) P{4;|4.} = P{4;}.

Since 4; = A, N B;; P{A;} = P{B;|A.} - P{4,} = P{B;} =1—P{B},
for every ¢ we have

(6) P{B;} =1—P{4;}.
Taking into consideration the above relations we observe that
(7) P{B;} =P{4,nb}+P{4, Nnb}+...+
+...+P{4;_; nb}+...4+P{4;_, Nb;}.
Let us consider events {B;} and {B;_,}. From (7) it follows that
(8) P{B;} = P{B; 1}+P{4;; Nnb;}.
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Identities (7) and (8) may be used for deriving a recurrent formula.
Define:
AP; =P{A;_ ;nb} =P{a_,Nn...Nay,Na; N... a_, N b};
Xin) = (Xint1s Ximnpas ooy Ximnpgy ooey Xo);
ngn) = (Xi—2n+17 Xi—2n+2’ sy X-i—m Xi—n+17 seey Xi—l’ Xi)i
X?H-H'l) = (X_gy ooy X pyoeey Xy Xoy Xyyoony Xygy Xy,

Here X{™,X{ and X{"***! are random vector variables. Their
realizations will be denoted by small letters (™, 2 and x{"***V) respec-
tively.

Denote by I'; the set of those realizations a{"***1 which are related
to the event {4, ;, N b;}. Hence
(10) AP; = P{X{+H+err},

Taking into consideration that the events {X{*+%+1) — p(+i+1} gre
exclusive, we obtain

(11) AP; = 2 P{X{PH+) — go+ity
wg0+i+1)¢17‘

(9)

Let us consider the subsequences

. .
®" = (By_np1s Bint2y -3 Bimntfs ooy Fi1y T)

of the sequences a{"**+V¢ I,

For each (™ the following equality holds:
(12) flat”) =1.

Now consider the following event:

Rsn) = {a{_” N a.t_n_‘_l N... N ai__l N bi}'

In confo‘_rmit;j7 with (1) this event is realized by correspondent se-

quences
xf" = (Bi—ant19 Biangas ooos Bicny Biny1y «ooy Liyy Ti)-

Denote by K; the set of the sequences &{*™.

We shall require the following

LeMMA 1. The sets K;, 1 =1,2,...,are identical: K, = K, = ...
.. =K, =K.

Proof. Let us consider two arbitrary sets K, and K, (9, » =1, 2,...).
Let x{®™ e K,. According to (1) the sequence (™ realizes the sequence

{?/o-n. =0, Yg—nt1 = 0,..., Yog—1 = 0, Yo = 1}
which realizes the event R{™.
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Now, let us consider the sequence

wxzn) = (Bp—2n+1) Lr-snt29 ++*1 Thons Bhenit1y =3y Ta_1y )
and let xf™ = a™. In view of (1) the sequence x{™ realizes the sequence
{Yr-n =0, hent1 = 0y ey Ypy = 0,y, = 1}
which in turn realizes the event R{™. Hence x{>” ¢ K;. Thus

APV e K] = [2% e K,]
x(2n)
and
Kﬂ [ e Kh'

Similarly, it can be also shown that K, < K,. Hence K, = K, = K,

which completes the proof.
Denote by I, the set of all the different subsequences

n
.’132 ) = (w'—n+1y Zi_pt2y ooy Li_pgjy ooy Pi1y Z;)

of the sequences =\’ ¢ K.
It follows from Lemma 1 that

(13) mt]_:mz:...:m:...:m.
Denote card {I} by M. Then

(14) M = {a™, M2 pmm My

where

nym m m m m
2™ — (P g, L, aT, .., 2T,

It follows from the definition of the set I that this set is unambig-
uously defined by the function f,. A simple computer program for find-
ing IR for various functions f, has been made by the author.

It follows from the above definitions that if ™ = ax™™e M (m =
1,2,..., M), then f(x™) = 1. Hence

(15) M N,
where 9t is the set of all these values of the vector ™ for which f(x™) = 1.
Example. Let f(@®) = Zx,2, V 2,2, V ,2,%;. For this function
M = {(011), (101)}, M = {(011), (101), (110), (111)}.

Let us now come back to the sets I7.
If the sequence x("+*+Ve I, (xP+*+Y realizes the event {4, , N b;}),
then the subsequence of its last 2n terms forms the correspondent se-
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quence x{™ ¢ K,;. Hence
A, ynb}={a_.n...0aq;_,_,Na_,N..."a;_, Nb}
={a_,N...Na_, , NERY},

where, as assumed, r > n. Hence, the last n terms of every sequence
"+t I, form the subsequence x{™ equal to correspondent vector
™™ ¢ M. Thus, we can divide every set I'; in separate disjoint subsets I'™
in such a way that each I')* contains only those sequences ®{"t**) for
which their last n terms form the sequences x{™ equal to £™™. Thus

M
(16) r,=yrpr.

m=1

It follows from (9), (10), (11) and (16) that

M
(17) AP; = )'APT,
m=1
where
(18) APP = 37 P{XPH) —gfrHiny,
x£v+i+1) e Iy::n

From (4) and (7)

J
(19) P{B;} = ) 4P;.
=1
Thus, seeking the probability P {B,} is reduced to seeking of the proba-
bilities AP (1 =1,2,...and m =1,2,..., M).
Let us consider the vectors ™™ e IN. Asgign to each of these vectors
a corresponding binary matrix [o%;], ¥ =1,2,..., Mand j =1,2,...,n.
For this purpose the following operators will be defined:

(20) L{[m(n)] = (&) @2y ..y ®;) (j=1,2,...,n),
(21) I’g[w(n)] = (Tp—ji1y Opn—jrgy -2 %) (G =21,2,...,n),
where

™ = (D1, By eery Byyoney B,).
The elements of the matrices [0} ;] are defined by
(22) . |1 for {(k,j): Li[x™*] = Li[x™™]},
(1} =
ot 0 for the others pairs (k, j),

where m,k =1,2,...,M and j =1,2,...,n.
The general recurrent formula for computing the probabilities AP
is defined by the following
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THEOREM. Let f, be an n-argument logic function and let assumptions
10-4° hold. Then

(23) AP™ =
B g™ (1-2™) ¥ B am a-zm
= P{Ai—n} Hpiin+s%—n-|s-a - Zl Za}c’:i APf—nH' n piin+sq'i—-n-:87
8ml J=1 k=l 8=j+1

where a7 denote the s-th component of the vector ™™ e M (a7 ¢ {0, 1}).
Proof. For the sake of simplicity, the event {X{™ = a{®™} will be
denoted in the sequel by {x{™™}. Similar symbols apply to the other cases,
for example the event {X{®***Ve I} will be denoted by {I';}.
Let us consider the event

(24) 0" =f{a_,N... " a_, NE™m},

t=1,2,...andm =1,2,..., M,
where 2{M™ = ™™ ¢ 9R.
From assumption 1° it follows that

m m
a-="

(25) P{OP} = P{A;_ o} [ [ 5% nreinie-
Consider an event E;, -
B = {bi—p1V.- Vb1 0b)U (G _pyy N... Na_, Nay)},
P{E} =1, i=1,2,...

Hence P{0* n B;} = P{CT}.
It is easy to see that

P{OT N (Gi_pp1 O Gy_pyy N ... Na)} =0.
Hence
.P{Gzn} = .P{a_,. N... N a,,-_,, N (b‘i—‘l'H-l Ueee U b‘i—l W) b.‘) ﬂmﬂ"’m}.
But from (7) it follows that

fo_,n...na_ o N(By_pnp1 Vb pnpav ... Ub;_;UbY}

n
= le (. o TR o I TN o ) SR o BRI o B PENSNPEPIY o B VY N

‘Thus
(26) P{OP} = D P{ly_pyy N},

=1

But, according to (16),

M .
Ly nis = kUI T} iy Tini} D {Tar} =0 for k #m.
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Hence

@n PLy .y 2™ = YL, Aalm).
By definition =
(28) (T g = Ty naffk, ),
where ®{"f,, = ax™¥*¢ IN. Hence
(29) P{TY¥ g Na@™} = P{LE . ; nafk , aam™y,
It is easy to see that
(30) {&{Vx,; na™™y = (@7, N LV ,] 0 L[] n Lt [2""]},

where
L;‘—j [m$n)m] = (wﬁn+f+17 w;ri‘n+7'+2’ veuy Tgeyy BT,
Thus
P{rf . ; n&{"™ = P{TE .5 0 (Li[a®F, ] 0 L{[x™™]) n L3~ [{"™1]}.

Two cases are possible.
1. ¥ off; = 1, then {Zi[«™k ;1} = {Li{[«{™™]} and taking into consid-
eration that

(31) {rf oy 0 L™ 1} = {4}
one gets
P{pik—n+7 w(n)m} = P{ i—n+7 L;"—7 [wi‘n)m]}.

2. If off; =0, then {Li[x{™ 1} n{L{[x""]} =O (which is an
impossible event) and

(32) P{r%, . nam™ =0,
Thus
(33) P{F A nw"‘)m} — O' P{Irk nti A Ln—? [w(_n)m]}

It follows from assumption 1° that the events {I},.;} and
{L377 [®{®™]} are independent.
Taking into consideration that

zy (a-z3h

n
P{L;“"[wﬁn)m]} = Di- n+s% —n4s
8=7F41
and

P{I’L n+7} = AP?—n+7‘7

we infer from (33) that

£ m

zg (l—x )
(34) P{Pk n+j nw(n)m} = O'kyd-Pk—nﬂ pz n+s9i—n4s °

8=j+1



30 B. Korzan

From (34) and (27) we have

M n m m
x (1-=_)
(35) Pl ppy na{"™} = Z ok AP} py ” PilntoQi-nis -
=1

8=j+1

Let us observe that
1 for 2 =m,
0 for k #m.

m
Opn = dm.k =
Hence

M
(36) Pl naf™} = )6, AP} = APP.
k=1

From (35), (26), (36) and (25) we obtain (23), which completes the
proof.
Now, the probabilities P{B;} can be found from (23), (17) and (19).

3. An example. Let us consider the following function f, (for n = 5):
F(@®) = 0,030, \/ By3, \V By@y®s \ @y By T, T

This function has the following set N:

{01101, 01110, 01111, 10110, 10111, 11011, 11101, 11110, 11111}.

On the other hand, the set I consists of the following 5 elements
(the equality of M and = is incidental):

1 0 1 1 0 1
2 0 1 1 1 0
3 0 1 1 1 1
4 1 0 1 1 0
5 1 0 1 1 1
We have
01001 01000 01000
10000 10001 10000
[k l=]00000|, [2,]=]00000], [o};1=(00001],
10010 10000 10000
00000 00010 00010
10100 1010 07
01000 01000
[t 1=]10000]|, [f,1=]10000
01001 01000
10000 1000 1]
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Thus
AP; = P{A; }q; 4Pi_sPi 2Gi1Pi— [AP;_ + AP}_J)P;i_sPi_2Qi1Pi—
—AP;_3p;_2q;_1p;— AP;_, i
AP} = P{A;_s}8isDi_sPi_2Pi1G— AP} 4+ AP _[1Ds_sP; 2Pi 10—
—AP;_3p; 3P 14— AP35
AP: = P{A;_s}¢_Di—sPiaPi 10— [AP;_4+ AP;_1D;_3D; 2Di 1Pi—
— AP} _3p;_2Pi 1 pi— AP;_1 ;5
AP} = P{A;_}Pi 4%i-3Pi-2Pi18i—
—[AP;_y+ AP}_,+ AP]_,1q;_3Pi 2Pi 1 &i—
—[A4P}_s+ AP} _1p;_20i 10— AP:_3Di_1 ;5
AP} = P{A; }P;i 4% 3Di—2Pi1Pi—
—[AP;_,+ AP;_,+ AP;_,1¢;—sPi—2Pi1Pi—
—[AP}_ s+ AP;_;1p;2Ps 10— AP;_s ;1 Ds,
where

i
P{A} =1—P{B}, P{B}= D) 4P, (i=1,2,...),

w=1
5
AP, = ) APy,
m=1

and for ¢ <0 we put, according to the assumptions, P{4;} =1 and
APT = 0.

The probabilities of the other realizations of the process Y (¢) may be
computed similarly. The reccurrence method described in this paper may
also be used for computing the distributions of various random variables
which may be derived from the process Y (i). For example, the distri-
bution of the length of a series may be computed by this method.
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8. KORZAN (Warssawa)

0 TRANSFORMACJACH LOGICZNYCH
BINARNEGO PROCESU STOCHASTYCZNEGO

STRESZCZENIE

W pracy rozwazany jest binarny proces stochastyczny Y (i) z dyskretnym para-
metrem, okreilony jako przeksztalcenie danego binarnego procesu stochastycznego
X (4). Przeksztalcenie to jest realizowane, zgodnie z wyrazeniem (1), przez m-argu-
mentows funkcje algebry logiki dwuwartoSciowej.

Celem pracy jest poszukiwanie formul analitycznych dla wyznaczania wartoéei
miary prawdopodobienistwa dla danych podzbioréw realizacji procesu Y (i) w zalez-
noéci od charakterystyk probabilistycznych procesu X (i).

Znaleziono formule rekurencyjna umozliwiajaca miedzy innymi wyznaczanie
rozkladu prawdopodobiefistwa dtugofei serii ciggu {¥;}.

Uzyskane wyniki znajduja zastosowanie w telekomunikacji przy poszukiwaniu
optymalnych filtréw cyfrowych dla wykrywania sygnaléw w szumach odbiorezych.



