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In this paper we consider weakly almost periodic (w.a.p.) continuous
mappings of a compact Hausdorff space X. In the theory of Markov
operators on C(X), where X is metrizable, it is known that almost all
trajectories converge to the Foguel boundary F < X (see [9]). For determin-
istic operators we obtain a characterization of F in terms of limit points of
trajectories. We also show that for w.a.p. mappings on zero-dimensional
spaces the center is equal to the set of recurrent points. If F = X for a w.a.p.
mapping on a zero-dimensional space X, then also the center is equal to X.

1. Terminology and notation. Let X be a compact Hausdorff space and
@: X —» X be a continuous mapping. The formula T, f= fo¢ defines a
deterministic Markov operator on the space C(X) of complex-valued con-
tinuous functions on X. A nonempty closed subset 4 < X is called invariant
if @ (A) = A and it is called minimal (invariant) if there are no proper invariant
subsets of A. It is known (see, e.g., [3]) that a point xe X belongs to M, the
union of all minimal sets, if and only if x is uniformly recurrent, i.e., such that
for every neighbourhood U of x there exists a natural k such that for every
natural n we have

(@™ (x): i=1,2,3,...,k} U #0.

A point ye X is called recurrent if for every neighbourhood U of y we have
{():i=1,2,3,..}nU#Q.

The set of recurrent points will be denoted by M2. Obviously, M, = M2. By
a center M, of ¢ we mean the closure of the union of supports of all ¢-
invariant probability (Radon) measures on X. Since each minimal set sup-
ports some invariant probability (Radon) measure, we have M, c M,,. The
Foguel boundary F, is defined as the zero set of all lsc. functions f
(0 < f < 1) such that f 0@ — 0 pointwise on X. The above definitions of M,,
and F, agree with the usual notions of the center and the Foguel boundary
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for general Markov operators on C(X) (see, e.g., [9]). We say that a system
(X, @) is conservative if F, = X.

A Markov operator T on C(X) is called weakly (strongly) almost periodic
if the orbits {T"f: n >0} are relatively compact for the weak (uniform)
topology in C(X). For a system (X, ¢) the above definition of w.a.p. is
equivalent to the condition that each element of the pointwise closure S, of
the family {¢"}2, is a continuous mapping. (S, is always compact for
the pointwise convergence, monothetic subgroup of mappings on X; see,
e.g., [1], Theorem 3.1)) It is easily seery that

M?:={x:IyeS,, x=y(x)}= U M,
veS,

By O,(x) we denote the set {y(x): y€S,}. Obviously, O,(x) is compact.
The system (X, ¢) for which X =xu 0, (x) for some xe X is called point
transitive [5].

2. Weakly almost periodic systems. Let (X, @) be a w.a.p. system. In [8]
Sine has proved that M} = M_,. Now the deLeeuw—Glicksberg decomposi-
tion will be used. For every f e C(X) we have f = Ef +(I —E) f, where Ef is in
C, (), the minimal closed subspace of C(X) containing all eigenfunctions of
T, pertaining to eigenvalues of modulus 1, and (I — E) f belongs to C,(¢), the
subspace of C(X) consisting of all functions g having zero in the weak
closure of the orbit {go¢": n> 0} (see [1]). It is not difficult to see that in
the deterministic case we have E = T; for some retraction ¢ onto M,, (cf. [5],
Theorem 2.4). Let S be the set of all limit points of the sequence o" for the
topology of pointwise convergence on X. By [1], seS and S cS,. The
limit points of trajectories ¥ (x) (l/IES¢) need not be cluster points of 0 (%) In
the topological sense but, obviously, by the w.a.p. assumption, each topologn-
cal cluster point of O,(x) is such a limit point.

LemMMAa 1. Let (X, @) be a w.a.p. point transitive system generated by a
recurrent point xe X. Then M2 =X and ¢ is a homeomorphism.
Proof. We have x = y/(x) for some y€S,. But also

Yo'(x) ="y (x)=9"(x) forn=1,2,...

By continuity, ¥ is the identity on X, and thus each ye X is recurrent. We
have y = lim ™ pointwise for some net n,. Let ¢! denote, some cluster
point of the net ¢™ '. Since ¢! is continuous and gp ™! =@ o =y, @ is
a homeomorphism. '

ProrosiTioN 1. Let (X, ¢) be an s.a.p. system. Then M2 =M,

Proof. We need only to prove that M2 < M,. Suppose x =y (x),
YyeS,. If ¢y = ¢, then {x} is a minimal set, so xe M,. Therefore we may
assume that ¥ = ¢y = x¢ for some xeS,. Moreover, ¥|0,(x) must be the
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identity on O, (x), so

110, (%) = [0]0g ()] .

But by the s.a.p. assumption, the family S, is equicontinuous, whence
S,10,(x) is a group. This implies that ¥|0,(x) = |0, (x) is the only idempo-
tent, so x = ¢(x) and xe M, by the previous remarks.

LEMMA 2. Let (X, @) be an arbitrary system and U some clopen set
containing M,,. Then for each xe U the set O,(x) contains a non-recurrent
point y.

Proof. Suppose x is recurrent. Since O, (x) is an invariant set, it is not
disjoint with M,},, and thus with U. Moreover, it is easy to see that for every
natural n there exists k(n) such that

o*™(x)e U, "™+ (x)eU fori=1,2,...,n.

Let y be some cluster point of the sequence ¢*™(x). We have now ye U¢ and
@' (y)eU for i=1,2, ..., thus y is not recurrent.

THEOREM 1. For every w.a.p. system on a zero-dimensional space X we
have M2 = M,,.

Proof. Suppose there exists a recurrent point x¢M,. Consider the
system (O, (x), ¢). Since, by the w.a.p. assumption, M} = M, is closed and
0,(x) is zero-dimensional, Lemma 2 is valid. The application of Lemma 1
leads to a contradiction.

Remark. For w.a.p. systems the condition MZ = M, (= M,) is equiv-
alent to the equality M, = M, (M, = M,) for all y =S,,.

It should be noted that symbolic systems constitute an important class
of zero-dimensional systems (see [3]).

THEOREM 2. Let X be a finite graph. Then for every w.a.p. system (X, ¢)
we have M2 =M,.

Proof. Suppose the assertion is not true. Then we find xe M2\M,, and
a neighbourhood U of x such that U n M, = @. For every n there exists k(n)
with

o™ (x)el, *™*i(x)elfori=1,2,...,n.

Let y be some cluster point of the sequence ¢*™(x). We have y¢ M, so
there is U,3y with U,n M, = @. We also have ¢'(y)eUc for i=1, 2, ...,
and thus O, (y) = U°. Now, by the recurrence of x, O,(y) cannot contain the
points ¢"(x), n =1, 2, ..., so O,(y) is nowhere dense in O,(x), and thus in
X. This implies that the set O,(y) " U, is zero-dimensional. Consider the
system (O, (y), ¢). As in the proof of Theorem 1 the application of Lemmas 1
and 2 leads to a contradiction.
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Our Example 1 will show that for infinite-dimensional spaces the
assertion. of Theorem 2 need not hold. The question asked in [5] (p. 84)
about not minimal point transitive w.a.p. systems on manifolds is related to
the question whether Theorem 2 holds for finite-dimensional manifolds: for
any point transitive w.a.p. system on a space X with no isolated points we
have M2 = X by Lemma 1, and whenever Theorem 2 holds X is minimal.

The inclusion My < F,, which holds for all Markov operators T (see
[9]), is now, for w.a.p. systems, an easy consequence of the characterization of
M, cited in Section 1 and of the following result which describes F,, in terms
of trajectories (cf. Theorem 17 in [9] for more general Markov operators).

PROPOSITION 2. Let ¢: X — X be continuous. Then the Foguel boundary
is the closure of the limit points of trajectories:

F,={y(x): xeX, yesS,} ™.

Proof. Denote by F, the set on the right. Let y¢F, and U be a
neighbourhood of y such that U nF, = @. The function

f=1y, where W= |) o7 *(U),
k=0

is Ls.c. and subinvariant. Suppose there exists xe X with fo¢@" (x) =1 for
some subsequence n'. This would mean that ¢" (x)e ¢ ¥ (U) for some natural
k', so ¢"*¥(x)eU. But n'+k'— co. Pick up a subnet n, such that ¢™
converges pointwise to |/1€§¢. Then Y (x)e F, by the definition of F,. On the
other hand, y (x) e U, which is a contradiction. It follows that f 0 ¢" —0. Since
f»=1, y¢F,. We have proved that F, c F,. The converse inclusion is
obvious: notice that whenever go¢" — 0, g vanishes at all limit points.

It is not hard to construct an example showing that the set

Y (x): xeX, weg,,}
need not be closed.

Remark. It is obvious now that M2 c F,,.

THEOREM 3. A w.a.p. system is conservative if and only if M2 is dense
in X.

Proof. The sufficiency is an immediate consequence of Proposition 2.
To prove the necessity assume that V; # @ is open. The function

h= IWl’ where W, = _Uo(p—i(Vl)s

is Ls.c. and subinvariant. By conservativeness, there exists x, e V; with

fioe(x)) = fi(x) =1
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(see a=b in [2], p. 29; the metrizability assumption is unnecessary). For
some i; > 1 we have x, ¢ ! (V}), so there is a neighbourhood V¥, of x, with
V, c V, and ¢'!'(V,) = V;. Analogously, replacing V; by V, we take f, and
choose x, to find V3. By induction we obtain a sequence of nonempty open
sets ¥, with

VeercV, and  @"(Voy) < Vi
The set
Vao = ﬂ I7»
n=1

is closed and nonempty with (pi"(Vw) < ¥, (n = 1). Pick up a subnet i, of i,
for which ¢ converges pointwise to some continuous YeS,. It is obvious
now that ¥V, is y-invariant, whence V,, n M, # @ and the proof is complete.

CoOROLLARY. A w.a.p. system (X, @), where X is a zero-dimensional space
or a finite graph, is conservative if and only if M, = X. It is then an s.a.p.
homeomorphism.

The last part follows from Theorem 2.4 in [5].

It should be noted that the structure of s.a.p. homeomorphisms is fully
described by the celebrated Halmos-von Neumann theorem: they act as
translations in disjoint unions of compact monothetic groups.

Remark. In metric spaces Theorem 3 holds without w.a.p. assumption:
we may choose ¥, with diameters converging to zero; then V, turns out to
be a y-invariant point, and so a recurrent one (although ¥ need not be
continuous). The theorem can be expressed as follows:

If the set of limit points is dense in a compact metric dynamical system,
then the set of recurrent points is also dense.

A question is whether the same is true without metrizability (P 1336).

We end the section with a lemma which will be used in later examples
to verify the w.a.p. property.

LemMMa 3. Let (X, @) be a point transitive system generated by a point
xo€ X. The following conditions are equivalent:

(1) (X, @) is a w.a.p. system;

(i) S, is commutative; .

(i) Yy Y2(x0) = Y2 ¥1(xo) for any two Yy, Y1€S,.

Proof. (i)=(ii)) holds for arbitrary systems: It is obvious that ¢
commutes with all yeS,. Let y,, y,€8S,. We have y; = lim @™ pointwise
on X. But, by (i), ¥, is continuous, whence

Yo, = lim!/’2¢"¢ = lim‘P"a'lfz =y ¥,.

The implication (ii) = (iii) is trivial. To prove (iil) = (i) assume that y, €S,
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and y, = y,(xo) —» y in X. By compactness, there is a subnet y, convergent
pointwise to some Y,eS,. We have ¥, (xo) = y. Now

Y1 (Ve) = Y1 Ve (o) = Yur ¥y (Xo)
by (iii), so
Y1 a) = Y2 ¥y (x0) = Y1 ¥2(x0) = ¥4 (y),
which proves the continuity of y,.

3. An example. There exists a w.a.p. system for which M2 # M,,.
ExaMpLE 1. Let ¢ be the left shift on the Hilbert cube IV ie.,

e(z,y, 25, ...) = (25, 23, ...).

We choose a certain element aeI” and define X as O,(a). Let
0O<o,<1 and J]a«,>0
m=1

(thus a,, — 1). There is a sequence of natural numbers w,, = 2 with a,™ — 0.
Set

2 wyp _wp—1 2 w1
a, =(1, oy, ay, ..., g, &y, ..., 0y, 1, oy, af, ..., 0y, ..,
a2=(1, 1, 1, ooy 1, 1, ceny 1, 0y, Az, Az, ..., A3, ...),

-----------------------------------------

so that each a,cI" is a periodic sequence with the period
O =2Wp0p-y (0pg=1),
a,, is constant on the blocks of length o,_, and its values are
1, 0y G2y oy O™ G 5 eees O

Take

multiplied coordinatewise. Since at every coordinate the product is finite,
a > 0 everywhere. It is not hard to see that a is recurrent, but not uniformly
recurrent: the zero element of I” (denoted by 0) is easily seen to be in O, (a),
and hence O, (a) is not minimal. The system (X, ¢) is by definition point
transitive. It remains to show that ¢ is w.a.p. on X. We use the condition (iii)
of Lemma 3. Let xe X. Then, by metrizability,

x = lim ¢™(a).

By an easy diagonal argument and by compactness we may choose a
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subsequence n, with the following properties:
(1) n, = n,(modo,) whenever k > m. We put p, = (n,,), .
an
(2 re= J] ¢™(a,) converges in k at each coordinate.

m=k+1

The limit element is denoted by r. Clearly,
(3) 0 < Pm < Op and Pm = Pm-1 (mOd Om-— l)'
We have now ¢*(a,) = ¢"™(a,) for k > m, and thus

a k
o™@ =[] ¢™@w = [] o™ (@wr:.
m=1 m=1
Since the first factor decreases monotonically, we obtain

x= 1 o"(@nr.

m=1

Now we observe that r is constant, i.e., r = (g, 9, ...). In fact, if g,, and n, are
sequences of natural numbers such that the limit ' of r,

n=I1 ¢™ ™,

m=k+1

exists, then ' is constant. This easily follows from the observation that the
quotient of any two neighbouring coordinates of r; is contained in the
interval

@®©

[T % I ']

m=k+1 m=k+1

convergent to {1}. So far the points of X have been described: they are of
the form

x=g¢ l:[l @™ (@),

where ¢ denotes a real factor from [0, 1] and the numbers p, satisfy (3).
Moreover, if x # 0, then all coordinates of x are nonzero and the above
representation is unique. The first assertion follows from the observation that
the quotient of any two neighbouring coordinates of x is in the interval

a

1T ome T )

m=1

To prove the uniqueness suppose that

e ﬁ @™ (am) = ¢ I'll 0" (a,) # 0.
m=1 m=

6 — Colloquium Mathematicum t. 54, z. 2
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Let m, be the least number for which p,, # pn,. We have

o [T ¢™@w=0¢ [ ¢"™(an #0.

m=mqg m=mq
Notice that in the sequence on the left the block of length o, -,, for
which ¢"mo (amg) takes the value a::°, has smaller values than the neighbour-

ing blocks (from the assumption w,, > 2 all sequences ¢"™(a,) for m > m,

are constant on these three blocks). But, since pp, # P, (pp;"o (am,) has at

the same positions another value, and thus one of the neighbouring blocks is
smaller than the middle one. This contradiction implies p,, = p,, for all m
and, consequently, ¢ = ¢". Now let y =§, and xe X,

ao
x =g [ ¢™(an) # 0.
m=1

By metrizability and compactness of X there exists a sequence of iterates ¢
such that qo""(a) —y(a), ¢"™(x) = ¥ (x), and for which properties (1), (2) and
the following condition are satisfied:

a0
) ri= [I "™ ™(a.n) converges in k at each coordinate.
m=k+1
The limit ' has been shown to be constant. We have

@® k
" ()= e« [T 0™ ™(am) = & I1 9™ ™ (@i

m=1

Thus

V() =00 [] 0™ "™ (ay)

m=1

and, as previously,

V@) =e [] o™ (an.
m=1
We show that ¢ = ¢'. First note that each sequence a, has the following
property: for any two natural i and j,
. a,, (i) < A, (i -l.-J) <ozt am((?),
an(0) ~ an()) am (i)

where a,, (i) denotes the (i+ 1)-st coordinate of a,, (a,(0) = 1). Since

[ o]

1 am(gm) = 05 ' x(0) # 0,

m=1
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the product ﬁ a,(qm) tends to 1 when k— oo. Thus, by the above
inequalities, mr '
ﬁ A (Gm + 1)
m=k+1
[T an(w

m=k+1

- 1.

In our notation the quotient tends to
ro ¢

r0 o

From the uniqueness of the representation of nonzero elements of X it
follows that each y €S, which is nonzero at a is of the form § = gy,, where
0€(0, 1] and ¢, is defined on X for p =(p,, p,, ...) satisfying (3) by the
formula

0 if x=0,
Yolx) = { © . o
o [T o™ "™(@n) if x =10, [] ¢"(an) #0.
m=1

m=1
Note also that for any such p the sequence ¢’™(a) converges to Y,(a), and

thus, whenever the last is nonzero, ¢"™ — ¥, (each convergent subnet of ¢™™
has the same limit). So y,€ S,. The above formula implies easily the required
condition Y, Y, (a) =Y, ¥, (a) for ¥,, Yy,€S, which are nonzero at a. The
same holds trivially when both mappings are zero at a. The remaining case is
Y,(a) # 0 = y,(a). We have y, =gy, ¥,(a) # 0, for some ¢ and p. Set

;o Om — Pm if P,,,?’-‘O,
P»=0 if p, = 0.
Since the p,, satisfy (3), we have Y, €S,. Moreover, ¥, (a) and ¥ ,(a) are, by
the definition of a, equal at the first coordinate, thus ¥, a # 0. We have

'I’p wp' (a) = Ul (po,,,(am) =a.

Suppose now ¥, ¥, (a) # 0. Then
Va¥1(a) = Y291 (¥, ¥, (0)
=Y ¥y (V29 )(@ =¥,(Y2¥1) ¥, (a)
= 'ﬁp Y, Q'/’p '/’p' (a) = Q'/’p Y2(a) =0.

The second and the third equalities follow from the previously proved
commutation law for mappings which are nonzero at a. This contradiction
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implies Y, ¥, (a) = 0 = Y, Y, (a), the last equality being obvious. An applica-
tion of Lemma 3 shows that (X, ¢) is a w.a.p. system.

In this example it is easy to verify that M, = {0}. By Lemma 1 we have
M? =X, and thus the system (X, ¢) is conservative. This shows that we
cannot omit the assumptions made on the space X in the Corollary.

4. Some remarks on the Rosenblatt theorem. In the paper of Rosenblatt
([6], Lemma 12) it is shown that if T is a w.a.p. irreducible Markov operator,
then T" converges in the weak operator topology if and only if the peripheral
point spectrum of T (the eigenvalues of modulus 1) is {1}. By the same proof
the Rosenblatt theorem remains valid if irreducibility is replaced by the
weaker condition My = X. Since M, = ¢(X) for a w.a.p. system (X, ¢), the
peripheral point spectra of ¢ and ¢|M, are equal. Thus we easily infer that
the peripheral point spectrum of ¢ is {1} if and only if all minimal sets are
singletons, i.c., ¢|M, is the identity on M,. If moreover X = F, is a zero-
dimensional space or a finite graph, then, by the Corollary and above
remarks, the Rosenblatt theorem holds trivially. Example 1 shows that the
assumption M, = X cannot be replaced by the conservativity assumption for
infinite-dimensional spaces. We show in Example 2 that also for zero-
dimensional w.a.p. systems (even with a singleton center) ¢" may diverge on
F, if X # F,. There exists a nonconservative zero-dimensional w.a.p. system
(which is in fact a symbolic system) with peripheral point spectrum {1} in
which M, # F, (see [8], Example 2). We construct such a system with ¢"
diverging on F,.

ExaMPLE 2. Set

p=0.1 001 0 0001 0 0 00001...=0. 0y a; a, ...,
q=0.a000aya, 000 ay a;, & 0000 ay a; a, o .

in the dyadic representation and consider the mapping

@(x) =2x(mod1) (@(0.B,B:2B3..)=0.B,B83B4..)

restricted to
X =0,(9.

To prove the w.a.p. property of (X, ¢) note at first that Y = O, (p) is a ¢-
invariant subset of X, (Y, ¢) is a w.a.p. system analogous to that in Example
2 in [8] and the only limit points of (Y, ¢) are 0, 1/2, 1/4, 1/8, ... Observe
that 1 appears in p exactly at the same positions as «, does in g. Thus ¢" (p)
— 1/2 iff " (q) — p for every subsequence n'. By similar arguments we obtain

(1) lim @™ (q) = p/2' <lim o™ (p) = 1/2'**;

(2) lim¢™(g) = 0 or 1/2' = lim ¢" (p) = 0;

(3) lim 9™ (g) = ¢'(p) <> lim@" "*(q) = p<=lim " ~*(p) = 1/2 (¢ > 1).
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It is also not very difficult to see that
(4) the set of limit points equals Yu {p/2': t=1, 2,3, ...}.
Putting the facts (1){(4) together we obtain

X=Yup/2:t=1,223.00"q: n=1223,..1)

and @™ converges pointwise to some Y €S,, whenever ¢" (g) converges. Thus
we may consider only subsequences of iterates instead of subnets. By Lemma
3 the only remaining thing is to check if for any two subsequences of iterates
" and @™ which converge at g the iterated limits of ¢™ *™ (q) commute. We
consider four cases:

(a) one of the limits, say, lim " (q), is zero or 1/2° (t > 1);

(b) lim 9" (q) = ¢'(p), lim o™ (q) = ¢*(p) (¢, s > 0);

(©) limo"(q) = p/2, lim@™(q) = p/2° (t, s = 1);

(d) lim @™ (q) = ¢'(p). lim@™ (q) = p/2° (t =0, s> 1).

In the case (a) we have limlim¢@™*"(q) =0. On the other hand,

by (2), lim¢" (p) = 0, and thus, since (Y, @) is w.a.p., " converges to zero
on the whole Y. Clearly, lim ¢™ (g) is a limit point. If it is in Y, we are done,
if not, it must be p/2* (by (4)). Then lim¢™ ~%(q) is still of the form 1/2"
or zero and

limlim " *™ (q) = lim lim ™ ~9*™ *9(g) = lim¢" ~*(p) = 0

n m'

(by (2)). We omit similar arguments for (b), (c) and (d) in which the facts (3),
(1) and (3) are used, respectively.

In this example the center is {0} (this is easy to see by Theorem 1) and
the peripheral point spectrum is {1}. The Foguel boundary is (by (4) and
Proposition 2) equal to

Yulp/2:t=1,2,3,...

Clearly, ¢" does not converge on the Foguel boundary. Also the system
(F,, @) is not conservative.

I am due to thank A. Iwanik for his help during the preparation of this
paper.
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