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Introduction. In many geometrical considerations one uses an appropriate
equivalence of segments or triangles as a primitive notion. This is the case of
Euclidean geometry treated as a theory of equidistance relation, affine
geometry as a theory of parallelity, ordered affine geometry as a theory of
directed parallelity, similarity geometry, and so on. But, besides there is also
another kind of notions that are useful in formalization of geometrical
theories: orthogonality of segments, converse similarity, converse parallelity
and many similar. They all are somehow similar — namely their square is
an equivalence. And even more — their third power is equal to them. It turns
out that any such relation — it will be called a half-equivalence — induces
two equivalences of geometrical importance — its square and the sum of it
and its square.

Next, for any equivalence ~ < (X")? consider the group of all bijections
f of X satisfying

(VXq, o0y X)) X1 oo X = f(Xy), .00, f(X)

and denote it by Izt (=). So then if || is an affine parallelity, then Izt(||) is the
group Dil of dilatations, for = being an equidistance Izt (=) is the group of
isometries, and so on. When the plane we investigate is built over a
Euclidean, Pythagorean and 2-formally real field, then the class of squares in
every such group forms a subgroup of Izt (=) of index 2. Moreover, when we
define the congruence =; by the formula

for any permutation group G of X,

Xgsoois Xn =G Y15 - Y @S€G) [ (x) =y1 A oo A f(x) = yal,
we see that .—=-lz12(z) is again the relation of clear geometrical sense. We can

define here formally the analog of orthogonality, =G\62° it turns out to be
a half-equivalence.
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In the first part of the paper we formalize the notions introduced above.
These observations allow us to investigate the group Izt(L u||), where L is a
Euclidean orthogonality (perhaps the most interesting, very little known
though very simple), and to formulate an axiom system for the class of these
groups. We show then how to reconstruct the geometry from them.

1. Half-equivalences and groups of squares. The relation R = (X")? will be
called a half-equivalence provided it satisfies
() RORoOR =R,
(i) R=R"1,
("1) (Vxla AR xn)(ayl’ cre yn)[<<xla st x,,), <yl9 Tty y,,))eR],
where o denotes the composition of relations, i.e., for x, ye X",

(x, y>eROR<=3ze X" [(x, 2D, {z, y>eR].

Write 4(Y) = {{y, y>: yeY}, R* =RoR, R* = RoR? and so on.
LemmAa 1. If R is a half-equivalence, then RoR and RUROR are
equivalences.

Proof. From (iii) and (ii) it follows that
A(X") < R* = RUR~
This proves reflexivity. Furthermore,
(RoR)"'=R"'oR"!'=R* and (RUR?)'=R!'U(R)!'=RUR2

This proves symmetry. Finally, transitivity follows from (i).

Let G be a transformation group of X, Z < G. For natural n define the
relation =" = (X")? by

Ay, ...,y =2by, ..., b>:=>3QfeZ)[f(a))=by A ... Af(a,)=b,].
For a given group G denote by G? the set of squares in G, ie., G2

= {f"f: feG}. Now denote by Llg the relation =7 ,.

LemMaA 2. If G is a transformation group of X, and G? is a subgroup of G
of index 2, then 17 is a half-equivalence and

(L&? v Lg) =(=8), (L§)? = =L,.
Proof. Assume that q,, ..., a,e X and

By, ..y @ Y(LE)? by, ..., by,

Then there are fy, f,, f3€ G\G* with f, f; f3(a) = b; for i =1, ..., n. Conse-
quently, f; f,€G? and f, f, f;€ G\G?. Thus

ay, ..., ayy L& (by, ..oy by

The converse inclusion is trivial. If f(a;) = b; (i =1, ..., n) and fe G\G?, then
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f~1eG\G? and f " !(b;) = g;. This proves the symmetry of 1L%. Obviously, the
domain of 1% is X" just because G\G? # @. Assume that

<al, ey a"> 522 <bl’ ey b,|>.

Then, for some g = h? g(a)=b; (i =1, ..., n). Consider any f from G\G2.
We have

<al’ AR an> -LE <f(al)9 '--’f(an)> -L?; <bls RS bn>

If <ay, ..., a,>(12)% by, ..., b,), then for some f;, f, € G\G? we have f, f,(a;)
= b;. But f; f,€ G?. Hence we have proved that =7, = (1g)*. Now the thesis
follows from the equality G = G? U (G\G?).

Finally, for a given equivalence =~ on X" define Izt (=) to be the class of
all bijections f of X satisfying

(Vxy, ooy X,€ X)Xy, ooy X = {f(%y), -0 S (X)D].

2. Group of orthogonalizations. The Euclidean geometry we shall deal
with is the theory of all Euclidean planes over 2-formally real and Euclidean
fields. Every such plane is the structure

A= U, 14 = (F%; 15,
where we define

{aya;><by by Lpcic)<dydyy<>(a; —by)(c;—dy)+(az—by)(c,—d;) = 0.

It is known [2] that such a theory is definitionally equivalent to the standard
formalization of Euclidean geometry in terms of an equidistance relation.
Analytically, an equidistance = is defined by

{ayaz )y <byby)y = {cyc;) <dydy ) <>(a; —by)? +(a, — b,)?
= (c; —dy)?* +(c,—d))%

Now modify the orthogonality relation 14 so as for a, b, c,de U
ab LAcd<>(ab lcd ha#bAc#tdyv(a=bnArc=b).

It is commonly known that 14 is a half-equivalence, and (L14)? is the
relation of parallelity || of nondegenerate segments. From Lemma 1 it
follows that 14 U||4 is an equivalence as well. Write H4 = 14 U(L14)? and
consider the group Izt (H4). It will be called the group of orthogonalizations in
A. For short, we shall write OSim(A) for Izt(H*), and the index A will be
omitted in the sequel.

LeEMMA 3. The class of lines in A and the class of circles in A are invariant
under OSim (A).
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Proof. Take two points a, be U, a # b. Then the set
S(Z) = {x: axHxb} = {x: ax||xb v ax L xb}

is the sum of the line through a and b and the circle with diameter ab with a
and b excluded. Analogously,

O(a, b) = {x: abHax} = {x: ab|lax v ab L ax}
is the sum of the line through a and b and the line orthogonal to it at a.

Clearly, OSim < Aut(H), so the classes {S (a): a# b} and {O(a, b): a # b}

b
are invariant under OSim. But the line L(a, b) through a and b is equal to

L(a, b) =(0(a, b)nO(b, a))u {a, b} = (O(a, b) mS(Z))u {a, b};

analogously, the circle C(a, b) with diameter ab is equal to

(G oG)) e

Hence the classes of lines and the classes of circles are invariant.

LEMMA 4. OSim is 2-rigid, i.e., if f € OSim, a, be U, f(a) = a and f (b) = b,
then a=>b or f=1id.

Proof. Let a # b, f(a) = a, f (b) = b, and f € OSim. First we show that if
ceC(a,b) or ceOf(a, b)\L(a, b), then f(c)=c. Let ceO(a, b)\L(a, b).
Clearly,

f(c)eO(a, b)\L(a, b).

Assume ¢ # f (c). Thus bc|| bf (c) is impossible, and so bc L b f(c). Analogous-

ly, f(f(c) =c.
Let ge L(c, b)nC(a, b), q # b. Then

f(@eL(b, f(c)nC(a, b).

The equality g =f(q) is impossible; otherwise ¢ = f(c). The same considera-

tions give us £ (f(¢)) = g. Thus we should have c¢f (9)llqf(c) or ¢f (q) L qf(c).
But this is inconsistent. Now let pe L(a, b). Consider

C(a, p~(O(a, b)\L(a, b)) and C(b, p)n(O(b, a)\L(a, b)).
One of these sets is nonempty — let g be a point in it. Then f(q) = ¢, and

next f(p) = p. Finally, for arbitrary xe L(a, b) we look for peL(Z), px L ab.
Then f(p) = p and f(x) = x, which completes the proof.
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We have shown in fact in Lemma 3 that OSim is a subgroup of
similarities. Now we shall explain the structure of OSim better. Denote by
Dil(A) the class of dilatations (i.e., translations and homotheties) in A4; that
is, Dil(A4) = Izt (||4). Clearly, since || < H, we have Dil(4) < OSim(A). Next,
consider a rotation g such that g2 is a central symmetry o, with center p. We
see that ¢ OSim. For arbitrary a we have simply

ag(a) = o(a)0*(a) = ¢(a) 5, {a).

Therefore ap L pf(a). Next ¢ is an isometry, and therefore it preserves ||. For
arbitrary a and b take g with ab||pq, p # q. Then

f@f)Ilpf(@Lpg and ab Lf(a)f(b).

Now we can prove the theorem which states that OSim consists exactly of
dilatations and such rotations and their compositions.

THEOREM 1. feOSim if and only if there exist a rotation ¢ and a
dilatation g such that o* is a central symmetry and f=g or f= go.

Proof. Take any points a, b, a # b. Let f € OSim and put ¢ = f (a) and
d =f(b). We have ab||cd or ab L cd. Assume ab||cd. Then there is g in Dil
with g(a) = ¢ and g(b) =d. By Lemma 4, f = g. Now let ab L cd. Take any g
with ¢? being a central symmetry and put g¢(a) = d’, ¢(b) = b". Then a'b’ L ab
and thus a'b’|| cd. Therefore, for some geDil, g(a’) = c and g(b') = d. Again
by Lemma 4 we obtain f=g. The converse implication is trivial.

As a corollary we obtain now

CoroLLARY 1. OSim(A) is a subgroup of positive similarities in A.

COROLLARY 2. The only involutions in OSim are central symmetries.

CoRroOLLARY 3. For every bijection f of the universe we have
feOSim<>(Va, b)[ab|lf(a) f(b)] v (Va, b)[ab L f(a) f (b)].

CoroLLARY 4. OSim? = Dil.

Proof. By Corollary 3, OSim? < Dil. Now let feDil. If f is a transla-
tion, then there is a translation u such that f = u®. Therefore, assume f (p) = p
for some p. Consider ¢ such that ¢> =¢,. Take any g, g # p. By the
conditions imposed on the field there is a homothety g with center p such
that g%(q) =f(q) or g*(q9) =a,(f(g). In the first case f=g? and in the
second case f = (go)>.

CoroLLARY 5. OSim? is a subgroup of OSim of index 2.

It suffices to notice that f e OSim\OSim? iff it satisfies

(Va, b)[ab Lf(a) f(b)].

CoroLLARY 6. L4 = 12, and H* =}, .
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Remark. Sometimes the Euclidean geometry is presented as a theory of
geometrical relations defined over complex fields [4]. In such models positive
similarities are described as linear transformations of the underlying field.
Then the group OSim consists of all functions f such that for some a, b we

have f(x) = ax+b for every x and a=a or a= —a, a #0.

3. Axiomatic description of orthogonalizations. Consider the following
axiom system: ‘

OS1: (Vx,y,2)[x(y-2) =(x"y)z].

OS2: (Vx)@y)[x-y=y-x=1]

OS3: (Vx)[x-1=1-x=x].

OS4: (Vx,y,2)[x'y=yxAxz=zx—x=1vyz=2zy]

0S5: (Vx, y)A2)[z2 = x2y%].

0S6: 3x, y[x2=y*=1 A xp? # y*x].

OS7: (Vx, y,2)[x*=y*=z22=1-x=1vy=1vz

=1 v (xyz)? =1].

0S8: (Vx, y)[x*=py*=1Ax,y#1-Q@2)[2* =1 A xz =2zy]].

0S9: (Vx,y,2)[x*=y*=2z2=1AX,y,2#1
—(Quwu?x =xu> Auty=zu* Au?#1]
—@@v)[v?z =zv? A vPy = x07])].

0S10: (Vx)[x® =1-x*=1].

Let G be any model of OS1-OS9. Then G is a group. Denote by IT(G)
the class of involutions in G. For every geG let 4, be the inner automor-
phism correlated with g, restricted to I1(G). So 4, is a function defined by
Ag(a) = gag™"' for all involutions a of G. Now fix some model G of OSI1-
0S9.

LemMa 5. (i) (3a, beII(G))[a # b].

(i) (Vaell (G)@a)[«? = a].

(iii) (Va, bell1(G))[ab = ba — a = b].

(iv) (Va, belI(G)(Va)[4 (@) =a A d(b)=b—a=bva=1]

(v) (Va)[4, =1d —a=1].

Proof. (i) follows from OS6. Just take a and b with a?> =b* =1,
ab? # b*a. Then a # b%; a, b*> # 1. So a, b*cI1(G).

(ii) By OS6 there exists g with p = g I1(G). Let ae I1(G). Take a from
OS8 such that apa™! =a and put B =aqa"'. Then B% =a.

(i11) Assume that a, beII(G), ab = ba; let moreover a # b. Clearly, aa
= aa and, by (ii), a = a # 1 for some a. Then there exists # from OS9 such
that Bb = b and Ba = bp. Thus a = b.

(iv) Assume aeG, a, beIl(G), aa = ao, ab = ba. Then « = 1 or ab = ba
by OS4, which implies « =1 or a =b.

(v) is a consequence of (i) and (iv).
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Now we shall look at squares in G. We know that IT1(G) < G. More-
over, by (v), 4(G) =G.

THeoreM 2. (i) G? is a subgroup of G.

(i) <1(G), =32 is the dffine space of dimension > 2 such that its
dilatation group is equal to i(G?).

Proof. (i) is trivial in view of OSS5.

(i) We should only check appropriate axioms of the space or — even
easier — we should check that G? satisfies axioms of dilatation groups
presented in [1]. But this is trivial since G and G? have the same involutions,
and the rest of axioms consist of universal sentences. The only problem is
with the dimension axiom. Take any p, aelIl (G) = I1(G?). Find o with a?

=a and put g = 4,(p). We claim that ~ap = c299. Otherwise, for some
B, 4;2(a) = a and A5, (p) = q. By Lemma 5 (iv), B* = a. But then p* = a and

B® = 1. Thus, by OS10, B* = 1, which is impossible.

To obtain an axiom system of groups of orthogonalizations we should
guarantee now that (G:G?) = 2 and the orthogonality we have obtained is
the Euclidean one. Assume first that the following holds:

OS11: (Vx, p)[x* =1 A x> #1-32)[y=2" v y=22x]].

LemMMA 6. If G OS1-0OS11, then (G: G?) = 2.

Proof. We must show that f, g¢ G* — fg e G? since the rest is trivial by
the axiom OS5. Take f¢ G2 Next consider ¢ such that p?elI(G). There
exists h, such that /= h}o. Analogously, there exists h, with g = gh? (from
OS11 take z with g=1z%p and put h, =90 'zp). Now we have fy
= h?o*h3e G

Now it makes sense to investigate 1%, as a half-equivalence. We recall
that 1%g, is equal to =2 .. Denote by E(G) the structure <IT1(G); 1&).
Let ||c = (L&)*. We know that for every g in G either g is in Dil(E(G)) or, for
o such that ¢?elI(G), gg is in Dil(E(G)). Write

PG)={feG: f*=1nf2#1, V(G) = 1(G)-T1(G).
Clearly, V(G) is a commutative subgroup of G consisting of translations. G
itself is generated by G> U P(G). Now consider the group O(G) generated by
P(G). We should obtain O(G) = P(G)u V(G) U II(G).

OS12: (Vx, p)[x*=1Ay?=1-(xp)*=1v x?=1].

LEmma 7. If o, Be P(G), then afell(G) or afe V(G).

Proof. Assume first a?> = B> = peIl(G). Now we prove that a = f v «a
= B~!. We have ap = «® = px and Bp = pB. Thus aff = Ba. So (af)? = «* B>
=1 and afp = paf. Therefore, af =1 and a = B! or af = p and aff = 2,
a = B. Now assume a? = p, B?> = q, p, qeI1(G). Consider r such that pr = rq
and y =rar. Then y2=¢q, so y =B or y =B~ '. Let y = B. We should show
that (x¢f)®> =1, that is, af = f~'a~!. We have aff = ay = arar and B~ 'a~!
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=ra”'ra”'. By OS12, (ar)* = 1. Thus we obtain the assertion. If y = 71,
we prove that afgeI1(G). But g = B! since BgB = B* = 1 and the thesis
follows from the first part.

CoroLLARY 7. (1) P(G)-I1(G)uII(G)-P(G) < P(G).

(i) P(G)-V(G)u V(G): P(G) < P(G).

Now define in I1(G) the relation B; by the formula

Bg(a, b, c): <=@g)[9g> =b Anga=cg] A a, b, cell(G).

We see that it is defined quite similarly as the midpoint relation (coinciding
with the usual affine midpoint relation) b = a @ ¢ <>ba = cb. The relation B
may be considered as a relation of orthonormal (equi-orthogonal) base of
Szmielew [5]. Now we shall prove it satisfies all the properties imposed by
Szmielew on the relation of orthonormal base.

THEOREM 3. If G satisfies OS1-OS10 and OS12, then B is the relation of
orthonormal base in {I1(G), ||, Bg)-

Proof. The proof consists in analytical checking of appropriate axioms.

() (Va, p)3q)B(pag).

Take f with f2 =a and put q = fpf~'.

(i) B(paq)— B(qap).

If f2=a and fp = qf, then (f~!)? =g satisfies g> = a, gq = py.

(i) B(pag) A B(paq)—q=q'vq®q =a.

Assume f2=g>=aand fp=¢qf,gp=q'g. Thenf =g or f=¢g . In the
first case, ¢ = ¢’. In the second one, we calculate f2q(f2)~ ' =f3(f"qf)f 3
=gpg'=q,s0 a=f*=q®q.

(iv) B(pag) A q ® ¢ = a— B(paq).

Assume f2 =a, fp = qf, and aq = q'a. Then

fPr=f'fp=asf=qaf =qf* and ()’ =a.
(v) B(pag) AB(ras) hna=q®q AnpPr=a®@brq®s=a®crq ®Ps
=c' @ a— B(cab) v B(c'ab).
First we prove that the following holds:
a®b=c®d<ac =db.
Take p such that ap = pb and cp = pd. Then
ac = pbppdp = pbdp = dbpp = db.

Next assume ap = pb and put d' = pcp. Consequently, ac = d'b. Thus if ac
= db, then d = d’. Now we can prove (v). Assume f? = a. From the assump-
tion fp = qf we have f " 'p=gq'f~ . Moreover, fr=sfor f 'r=s""1 As-
sume fr = sf. Next, using the fact proved above, we get b = par, ¢’ = saq’, c
= saq. We have fbf ! = fparf ~! = gas = c. Analogously we calculate when

flr=sf"1.
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(vi) B(pag) A B(pa'q) »a=a vq@®p=ada.

Assume f2 =a, g> = d, fp = qf, gp = q¢. Then take h = g~ 'f. We have
hp = ph. By Lemma 7, he V(G) or he Il (G). But he V(G) implies h = 1 and a
=a'. If hell(G), then h=p. We should prove that pa=ad'q. This is
equivalent to pf? =g?q =g*fpf ~'. We have

pf=g’fo=g ' =9*f""g=9"
(vi)) a # p A B(paq) A apllap’ A aqllaq’ A pqllp'q" — B(p"aq’).
Take f with f2 = a, fp = qf. By the homogeneity of the underlying affine

space there exists g such that ge G2, ga=ag, gp =p'g, 99 = q'g. By OS4, fg
= gf. Therefore,

f Y =fgpg ' f ' =afof ‘g '=9q97"' =47,
so B(p’'aq’) holds.
(viii) a # p A B(paq) A pallpa’ A pqllpg’ A aq|la’q — B(pa'q').

Let f2 =a and fp = qf. Analogously, there exists h such that hp = ph
and ha=a h, hq =q h, he G*>. Take g = hfh~!. Then g*> = a’. Moreover,

gp=hh~'p="hph™' =hgfh™' =q'g.
This means B(pa’ q’) holds.

Finally, assume the last axiom holds:
OS13: (Vg, p, p, 9 [p, P, 9 1(G), ge P(G), # (4% p, P, )

QLW =g* AR fpf TR =fpf "' A g =qh?]].

LemMma 8. If G|= OS1-OS11, OS13, then {I1(G), || is a two-dimensional
affine plane.

Proof. Fix p, aecll(G), p # a. Take g with g? =a and p =gpg~!. Let
qell(G), q # a, p, p. We are going to prove that a, p, p, g are coplanar.
Take f and h as in OS13. Then h*e G*? = Dil(E(G)). Write p, = fpf ~', P,
=fpf ~'. Assume first that feG? Then p,, p,, a, p, p are coplanar. Next
h*qh~% =q and h*p, h~% = p,, so p,, P, q are collinear. Thus a, p, p, q are
coplanar. Next assume f ¢ G2. By OS11 there exists f; such that f=f?g. Let
p =gpg~'; then p ®p =a, so a, p, p, p' are coplanar. Define p, and p) to
be f2pf,” 2 and f? p' f,” 2, respectively. An analogous consideration leads us to
the conclusion that a, p, p, 4 are coplanar, which completes the proof.

Now we can correlate three notions: B, || and 1. Namely, we have

LEMMA 9. a, b, ¢, dellI(G)—(ab Lcd<@3p, q,r) [B(p, q,r) A pqllab
A cd|| gr]).

Proof. Let a, b, ¢, deI1(G). The implication « is trivial since just by
the definition B(p, q, r) implies pq L qr; next we use properties of a half-
equivalence. Assume ab lcd, a# b (then also ¢ #d). Take g such that
B(abq). So ab 1 bq. Thus cd| bg, which completes the proof.
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All the lemmas lead us to the main representation theorem:

THEOREM 4 [Representation Theorem]. For every structure G, G is a
model of OS1-OS13 if and only if, for some Euclidean plane A = (U, L) over
a Euclidean 2-formally real field, G is isomorphic to OSim(A) = Izt(H%).

Proof. The first part consists in analytical checking of our axioms in
groups OSim(A). This will be omitted since it is easy but rather involved.
Some of them were proved in Section 2. Second, we take any model G of
OS1-0S13. We know that 12 is a half-equivalence and ||z = (12)? gives us
the affine plane. Next, by Theorem 3, the structure A" = {I1(G); ||g, Bg) is
the Euclidean plane in the sense of Szmielew [5] — the affine plane with
orthonormal base. As proved in [5], orthogonality in such a plane is defined
by

xy Lzt <@u, v, w)[xy|luv A zt|jow A B(uow)].

Thus L* = 1; by Lemma 9. So we have proved that E(G) is a Euclidean
plane. Obviously, 4(G) < OSim(E(G)); moreover, 4, =id<>g =1, so 4 is an
injection.

Now we should prove that E(G) is a plane over a Euclidean 2-formally
real field. Consider any dilatation ¢ in E(G), let ¢(p) = p for some point p.
Then there is fin G such that ¢ = ifz by Theorem 2 (ii). First assume f € G?;
then ¥ = A, is a dilatation and y? = ¢. Otherwise, there are g and ¢ such
that f = g2?p and ¢ = p; so gp = pg. Then for ¢ = A,2 we have Yy =o0,0%
Therefore, every homothety ¢ with center p is a square or its product with
central symmetry is a square. This means that in the underlying field every
element is a square or its opposite is a square, so the field is Euclidean. Next,
there is no isotropic line in E(G), since if ab 1 ab, then fa = af and fb = bf
for some f¢ G2 But this is impossible if a # b; the condition above is
satisfied by f=1 and 1eG? (the group is 2-rigid). Therefore, the field is 2-
formally real. Consequently, Izt(HE) are 2-rigid as well Take
¢€OSim(E(G)) and a, bell(G),a#b. Let ¢ =¢(a) and d = ¢(b). Then
abHcd; so ab||gcd or ab 1 cd. Take fin G such that fa = ¢f and fb = df. We
have A,(a) = @(a) and i,(b) = @(b), a #b, i;, pcOSim(E(G)). So ¢ = 4.
Thus 4 is the desired isomorphism of G and OSim(E(G)).

THEOREM 5. A is a Euclidean plane over a Euclidean 2-formally real field
if and only if for some group G satisfying OS1-OS13 we have A = E(G).

Proof. First we notice that if 4 is such a plane, then 4 = E(OSim(A)).
To prove this it suffices to see that involutions in OSim(A) are exactly
central symmetries. For every point p let o, denote the central symmetry
with center p. Then for ¢€OSim(A4) we have @o,¢ ™' =0, ie. 4,(0),)
= 0,,- Thus and by Section 2, ¢ is an isomorphism of 4 and E(OSim(4)).
Now from Theorem 4 we obtain our assertion.

This means we can reconstruct the plane geometry of Euclidean ortho-
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gonality from the groups of orthogonalizations just like it can be done for
the equidistance relation with the help of positive isometries or for parallelity
with dilatation groups. It is worthwhile to notice that the system of notions
consisting of parallelity and orthogonality is very natural for Euclidean
geometry. A very elegant axiom system for such structures (of dimension 3
and greater) was presented by Kusak [3]; from this paper it follows that
such an elegant system should exist also for 2-dimensional geometry.

Appendix. There is another more analytical approach to groups of
orthogonalizations. Assume we have chosen in an affine space a coordinate
system with e; and e, as unit vectors and origin p. We can assume e, le,.
To extend this orthogonality to the whole plane we should find an “orthogo-
nalization” ¢ such that, for every vector v, ¢(v) Lv. Clearly, we should
obtain ¢ (¢ (v))|lv. Put ¢(e;) = e,. Now we have two cases: @(e;) = —e,; or
¢(e;) = e;. The first leads us to the groups we have just considered and to
the Euclidean orthogonality. The second one gives us the orthogonality of
the Minkowski plane. Thus the same trick may be done here; the relation
1 U] is an equivalence and the class OSim may be introduced. From the
Euclidean point of view the group we obtain may be described as follows.
Let (k) and (m) be two families of parallel lines, let k L m. Denote by N the
group generated by X = {o,: xe(k) u(m)}]. It consists of all translations,
central symmetries and symmetries with axes from Z. Then denote by NSim
the group generated by all the dilatations and the group N (i.e, by Dilu 2).
Then NSim is the group of orthogonalizations of the Minkowski plane,
where 2 corresponds to the class of isotropic lines in this plane. In a very
similar, though more involving way we can reconstruct the geometry from it.

First we see that involutions in NSim are elements of 2 and central
symmetries. They are intrinsically distinguishable — a is a central symmetry
(aeIl) iff for any involutions b and ¢ if a # b, ¢ and ab = ba, ac = ca, then
a=bc or b=c. The group satisfies the restricted 2-rigidness: a, bell,
feNSim, fa=af, fb =bf - f =id v (3neX)[an = na A bn = nb].

Next NSim? consists of all positive dilatations. We obtain Dil as a
group generated by IT U NSim? (Dil = NSim? U IT - NSim?). This allows us to
reconstruct parallelity in NSim to be =3,

Finally, we get the Minkowski orthogonality as =Zg,pn- We will not
present any axiomatics for groups NSim here; from the above considerations
it follows that the class of orthogonalizations of Minkowski planes is also
axiomatizable.
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