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SETS OF UNIFORM CONVERGENCE

BY

LUISA PEDEMONTE (GENOVA)*

Let G be a compact abelian group and let its dual group /' be an infinite
discrete group. We denote by C(G) the space of continuous functions
on G, and by A (@) the space of continuous functions with absolutely con-
vergent Fourier series. For a subset £ < I', we let

Cx(G) = {fe C(G): f(y) =0, y¢ E}.

o Lt Fy be finite subsets of the group I' such that Fy < ¥y, , and
UFy=1T; if
1

fl@) ~ D'f(r)y@

yel
we write

Sx(fro) = D fr)ra).

yeF’N

We recall the following definition:

Definition 1. E < I'is called a Sidon set if Cr, = A ; that is, if every
function in Cx has an absolutely convergent Fourier series.

The purpose of this note is to study subsets of I" which satisfy a prop-
erty which is weaker than the property of being a Sidon set. That is
we want to study sets defined by the following

Definition 2. A subset E < I'is called a set of uniform convergence,

or a UC set, if every function in Cg has & uniformly convergent Fourier
series.

It is clear that every Sidon set is a UC set.

In section 1, we give a condition which is equivalent to the definition
of a UC set and we exhibit an example of a UC set which is not a Sidon
set in an infinite discrete group.

* This paper was written while the author held a graduate fellowship of the
Consiglio Nazionale della Ricerche.
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In section 2, we study UC subsets of Z, the dual group of the group
T = R/2=Z. In this case we construct a class of UC sets which are not
Sidon sets. This construction is based on that which is given in [4]. We
prove that then a UC set cannot contain arbitrarily long arithmetic
progressions. Finally we discuss some examples and counter-examples.

In section 3, we discuss the previous arguments in the group 13,
the dual group of the Cantor group.

In section 4, we discuss some open problems, in particular the union
problem for UC sets.

1. Let G be a compact group and let its dual group I be an infinite
discrete abelian group; let Fy be finite subsets of I' such that

FycFy,, and UFy=1I.
1

We have the following characterization of UC sets:!

THEOREM 1. K < I' is a UC set if and only if there is a constant C and,
for every positive integer N, @ measure puy e M (Q) with the following properties:

(i) lluyll < C for every N e N,
(il) ay(y) =1 for ye BENFy;
(iii) ay(y) = 0 for ye En(I'\Fy).

Proof. If E is a UC set, then, by the uniform boundedness principle,
there exists a constant C such that, for each N, the mapping

foonf) = D fy) for feCy

veF pr

is a bounded linear functional on Cg of norm at most C. The Hahn-Banach
theorem allows us to extend this functional to C (@), with preservation of
norm. Hence there is & measure uy such that

luyl = llpxll <C  and @yn(f) = ff(w)d.“N(-’”) for fe Cg.
G

Let y(z) be an element in F; then

on(y) = fy(w)dun(w) = un ().
G

But, from the definition of ¢y,

so that the assertion is proved.
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On the other hand, if we suppose that a measure satisfying (i), (ii)
and (iii) exists, then we have

I8nflle = If*pnlle < Clifle for every fe Cg,

so that £ is a UC set.
Obviously, every subset of a UC set is & UC set.
Now we exhibit an example of a subset of I" which is & UC set but

not a Sidon set.
We say that a finite set D < I' is dissociated [6] if it does not contain

1 and if the equality
yiyel...y =1  with y;¢ D and ¢e{—2, —1,0,1, 2}
implies the equality
o= = =vm =1
We construct a subset E < I' in the following way: let E, = {y,}

with y, # 1. Let us suppose to have constructed E, and let n, be the first
index such that

B = {(yi,vi,5 Vip Vipe By 1<, <i3<k}c F,,.
Then we choose y,., so that E, , = E, U {y;,,} is a dissociated set
and {y;,, B} NF, =@. Then we have the following
THEOREM 2. If

E =kLJ1 E, = {7’:'}:?;1’

then E* is a UC set and it is not a Sidon set.
Proof. Let f be a continuous function with Fourier coefficients f(y)

and such that f(y) =0 if y¢ E*. For each N, we have n, < N < ng,
for some &k and, therefore,

Sx(fro) = D fr@ = D fov@+ Y fo)re =sQ+8%.
veFn thnk 'yeFN\Fnk
We let
k _
P@) = Pyo) = [ | (1+-—”"(m);7‘(w)).

i=1
Then, since P(x) > 0 and E is dissociated, we have .
(i) P(0) = IPl, =1,
(i) P(y;7i,) =1/4, 1 <4, <4, < k.
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But if y; y;,¢ F,,, then ¢, and i, are not greater than k and, in view
of (ii),

1 1 -
T80, 0) = ¢ ;jfmy(w) = P+f(@)
veFp,

Therefore [|SWlu < 4 1|flloo-

On the other hand, if f(y) # 0 and ye Fy\F, , then y = y; .,y
1<i<k.

Let
k

0@) = Qu@) = yuos | [ (140 ZELTD),

i=1

where a; = 1if y;  ,y;e Fyand a;, =0if y; v, ¢ Fy, 1.€. 1 Y4€ F,,H1 Fy.
Then

i) Q@) = Qi) =1,
(i) @(yrpr7e) = @/2, 1 <i<k.
Therefore,

1 .
@ = D f0lmre =5 D for@,

Ve Fnk+1 ‘yEFN\Fnk

and so
8RN0 = 21 *Qlloo < 21| flloo -

In conclusion,
I8 nflloo < 411 flleo +2 1 flloo = 61l flloo -

From this inequality it follows that E? is a UC set. The fact that
E? is not a Sidon set is well known and follows, e.g., from the lemma
of [4] or [3]

2. Throughout this section @ is the group T = R/2xZ, and then I
is the group Z. If

Fy={0, +£1, £2,..., + N} and f(z) ~ Zf(,n) ¢

we have the usual definition

N
Sn(fya) = D ftn) ™.
-N
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A\
THEOREM 3. Let n; be a strictly increasing sequence of positive integers
with the property that

n; >Ny +Ne+ .. Ny
and let
B — {”’*jl+”j2+ —}—fnjs: 1<§<...<Jg}-

Then E® is & UC set, but if s > 2, it is not a Sidon set.

Proof. We will prove by induction that E® is a UC set. The assertion
is true for 8 = 1, since E = E' is a Sidon set. Let us suppose that E°!
is a UC set and let fe E°. We will show that

I8 ¥ flleo < (2° + C) Iflloo s

where C is the UC constant relative to E°*~'. We can assume that N # n;
for all j. Therefore, n, < N < n,, for some k. We have

Sy(fyo) = D fmyem™=+ Y fn)e" = 8Y(f,2) +8Y(f, z).
n<ng np<n<N

With the same argument as used in theorem 2, we prove that

18910 < 2211 flloo -

If np<n<N<mn,, and fA(n) # 0, then n =mn;+mn; +...+n; |
for some 1 <j;<...<j,_; < k—1. Thus
Sgr)(f,’”) =

f (nk+ %jl + ) +'njs_1)exp [i(’n/k —!—'n]-l + v +'n,
njl+...+njs_1<N—nk

)2].

s—1

From the inductive hypothesis we know that for every N there is
& measure uye M(T) such that |juy| < C and

A

1 for ne B°7', n| < N —ny,
pn(n) =

0 for ne E*7', |n| >N —mn,.

Let dvy = exp[in,z]duy; then

Ivall = lluxll < € and "?N(nk"*'njl'{'“'_l_nj,_l) = ﬁN(”fl+'-'+”is-1)’
so that
- 1 if ’n=’nk+’n]-1+...+’nj’_l<N,
ry(n) = .
0 if n=m+n+...4+n,_,>N.

It follows that
S%)(f’ z) = (vy*f)(®),
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and so
1821100 < Cllfllo -

The conclusion is as in theorem 2.
We give now a necessary condition in order that £ — Z be a UC set.
THEOREM 4. If E < Z 18 a UC set, then E does not contain arbitrarily
long arithmetic progressions.
Proof. Suppose that there is a UC set £ such that, for infinitely many
positive integers N,
{a—{—bn}fio < E, where a,be N, a<<b.

Without loss of generality we can assume that E consists of positive
integers. Let {f,},.x be trigonometric polynomials of degree k, and such
that

Iflle <1 and  [I8,f,lle— oo.

Assume also that f,(n) =0 for n < 0. We choose a subsequence
{N;} of {N;} in such a way that N; >F,. Let

g.(a+bm) =f,(m) and §,(n) =0 if n = a:bm.

Then
9l = lIfille <1 and g,eCg.

On the other hand,

a+bv 0
8ai60(9) = 2 g,(n)e™* = va(m)ei(a+bm)z.
—(a+bv) 0
Therefore,
”Sa+bvgv”co = ]]S,f,”oo — 00,

but this is a contradiction, if F is a UC set.

Remark. It is not true that if ¥ is a Sidon set, then F 4 E is a UC
set. In fact, there exists a Sidon set Z such that E + E contains all posi-
tive integers. This is shown by Ebenstein [2], who has taken the set
E = {10"+n}u{—10"}.

3. In this section we study a UC subset of the dual group D of the
Cantor group D defined by

D = HZ(z),. with Z(2) = {0, 1}.

j=1
We consider the elements of D arranged according to the ordering
defined by Paley for the Walsh functions. In other words, we let r;(x)



SETS OF UNIFORM CONVERGENCE 129

— (—1)7, where & = {x;} ¢ D with ;¢ Z(2), and we put
wy =1,
Wy = 7475, .75, Where n = 2~y ol ot

Then, for a function f defined on D, we write

8.(f, @) = D f(wiwy ().
k=0
We recall (see [4]) that
Sup {[I8,fllw: fe C(D), |flle < 1} = +o0.

Therefore, not all functions in C(D) have a uniformly convergent
Fourier series. The following theorem is & natural analogue of theorem 3
for subsets of i), but in this case the proof is more direct. Furthermore,
the class of UC sets defined in theorem 5 which follows is closed under
finite unions.

THEOREM 5. Let r;(x) be the Rademacher functions. For a positive
integer 8, let E° be defined by '

8
E = {?’,-17‘,-2..."‘,-

8

P < < .. < ).

If E = E"VE®V ... UE», then E is a UC set. If one of the s, is
greater than one, then E is not a Sidon set.

Proof. For each N, let M be the Iargest integer such that wy e F
and M < N. Let

M =204 4271 with j, >, > ... > .

We write
J1-1
Py(x) = n (1 +7(=),
t=1
ig—1
P, (x) = P Ty + e T"q—l(w)n (1+r,-(90)) for 2<qg<h

i=1

and, lastly,
P, (2) = T, Ty - iy (2)

For each N, the function @y = P,+P,+...+P;,,, where h = h(N)
depends on N, satisfies

1@nll; < (maxs;)+1,
CIip

A 1 if weE, k<N,

w =
O (102) 0 if weB, k>N.
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Therefore, £ = CJEsi is a UC set by theorem 1. If s, > 1, then E%
is known not to be a Sl;idon set.

We prove now the analogue of theorem 4.

THEOREM 6. If F D is a UC set, then E cannot contain subgroups
of arbitrarily large finite cardinality.

Proof. Let f, be polynomials of degree d,, that is

a
Je = ka (w;)w; () ,

j=0
such that

ifille <1 and |8, fillo— oo.

Suppose that E contains subgroups of arbitrarily large finite cardina-
lity. Then passing, if necessary, to a subsequence of {d,}, we can suppose
that K contains subgroups of cardinality 2", where 2%~ '< d, < 2™:;
let 8, 8, ..., 8, be a basis for such a subgroup and let us suppose

that s; precedes s;., in the Paley ordering. Let a: DD be a group-
-isomorphism such that a( i) = rifor 1 <i < hy. Let F, = 8, f;, and write

Fr(w;) = Fy(a(w,)) and f}(w;) = fi(a(w;). We have then
Fille = 1Filo = 00 and  [ifille = Ifille < 1

But ¥} = 8, fi, where m; iy such that a(w,, ) = w,, ;therefore, we have
a sequence f, of continuous E-functions, whose norms are bounded by 1
and such that ”Smk fk ll = oo. This is & contradiction because ¥ is a UC set.

We exhibit now an example of & Sidon set F < D such that
E = {w,w,: b # k; w,, w,e B}

is not a UC set, since it will contain subspaces of arbitrarily high eardinali-
ty. We define a sequence @; of subsets of D by induction on i. Let W, be

a subspace of D of cardinality », and let us consider n», Rademacher
funetions #,;, 7,5y ...y #,,, Whose index is greater than the index
of each element in W,. If

Wi = {0100y wl,nl}’

we let then

Gl = {'wl'ﬂ'u: J = 1, 2, ceey nl}-
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If i =2, W, will be a subspace of D with cardinality »; > n;_, and
will be disjoint from the subspace generated by 7y, 7z, ..., 1y, ,, Where
m;_, is the greatest index of the functions »;_,,, ..., 7;_,,, , when they
are arranged according to the ordering. We consider then n; Rademacher
functions 7;,,...,7;,, such that their index is greater than the index
of each function in W,, and we let

— C i . - f
G = {w;ri;0 j =1,2,...,n4, where W, = {w;,, ..., w,}.

Finally, we let
G = U G.,- and R = U {?',',j(','): 1< ](@) < ni} .
t=1 t=1

Both G and R are Sidon sets because they are independent subsets

of D; therefore E = GUR is a Sidon set [1], but E? is not a UC set since
E? > W, for each i.

4. It is known that the union of two Sidon sets is a Sidon set [1].
It is natural to ask now whether the union E,UFE, of two UC sets E, and
E, is a UC set. (P 944)

In the general case, we are unable to give an answer to this question
even if the UC sets are those defined in theorem 3 with respeet to the same

sequence {n,}. For UC subsets of D ‘we have only the partial answer given
in theorem 5.

Another natural open question concerning UC sets is the following:
does every set which is not a Sidon set contain a UC set which is still not
a Sidon set? (P 945) _

Finally, it is natural to ask whether the UC constants found in the-
orems 2 and 4 can be improved. More, in general, the relation between
a Sidon constant and a UC constant of a finite set is still unclear. (P 946)
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