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The purpose of this paper is to discuss the concept of exterior form and exterior
differential of smooth exterior forms on m-dimensional differential space (M, C)
(see [1] and [4]). A smooth exterior differential form is meant as a smooth section

of the bundle /\ T*(M, C) which is defined in this paper.

1. The bundles /\ T(M, C) and /\ T*(M, C)

Let (M, C) be a differential space with the Hausdorff topology ¢ (see [4]). In paper
[2] it is defined the tangent bundle T(M, C). Any mapping X which assigns to each
point p € M the vector X(p) of T,(M, C) is called a vector field on (M, C). The
vector field X is said to be smooth if for any function & € C the function dy « defined
by the formula:
(6x0)(p) = X(p)(«) for peM,

belongs to C. The vector field X is smooth iff we have the smooth mapping X: (M, C)
- T(M, C). The set of all smooth vector fields on (M, C) we denote by (M, C).
The set £ (M, C) may be regarded as C-module with addition of elements of (M, C)
and multiplication by elements of C defined by formulae:

X+Y)(p) = X(p)+Y(p) and (a-X)(p) = a(p)X(p)

forpeM, X,Ye (M, C), and « € C. The module just defined will be denoted
by the same symbol. Any element of the vector space (T,,(M , C))*, dual to T,(M, C),
is called a covector of (M, C) at p. A tangent covector of (M, C) at any point pe M
is called a covector of (M, C). The set of all covectors of (M, C) is denoted by
set T*(M, C). We have well defined mapping & of setT*(M, C) onto M by the
condition: w is an element of (T2w(M, C))* for wesetT*(M, C). For any
Xe&(M,C) we have defined the real function X defined by formula: X(w)
= WX (n(w))) for w € set T*(M, C). We consider the smallest differential structure
on set 7*(M, C) containing the set
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faon; aeCluiX; Xed(M,O)}.

The differential space being set T*(M, C) together with this differential structure
is denoted by T*(M, C) and called the cotangent bundle of (M, C).

Let Vi, ..., Ve X (M,C) and U € 7. We say that (V,, ..., V,) is a local
vector basis of (M, C) on U, if

@ (V1(p), ..., Vm(p)) is a basis of T,(M, C) for p e U;

(b) for any Ve Z(M,C) there exist «,,...,x,€C such that ¥(p)
=Y a(p)Vi(p) for pe U.

(M, C) is said to be (see [6]) of finite dimension m if for any point p € M there
exist U € 7¢ and a local vector basis of (M, C) on U.

For any p € M we have the exterior algebras /\ T,(M, C) and /\ (T,(M, C))*
of the vector spaces T,(M, C) and (T,(M, C))*, respectively. Assuming that (M, C)
is of finite dimension m we have the m-dimensional spaces T,(M, C) and (T,(M, C))*,
and the pairing

10 N\ TM, O x /\ (T(M, C))* > R,
defined by the formulae: (tjw) = 0 for r in /\* T,(M, C), w in A! (T,(M, C))*,
k # 1,
(O A o ADWI A . AW = det[w,(v); i,j < m]

forv,, ..., v in Tp(M, C) and w,, ..., w, in (T,(M, C))*.

We may assume that the sets of all elements of algebras /\ T,(M, C) and
A\ T,(M, C) are disjoint for p # g. The set of all elements of algebras /\ T,(M, C),
for all p € M, we denote by set /\ T(M, C). Assigning to every € set /\ T(M, C)
the point 7" (¢) € M in such a way that ¢ is an element of /\ T~ )(M, C), we have
the mapping

7" set )\ T(M,C)— M.

We define the differential structure C~ on set /\ T(M, C) as the smallest of all
differential structures containing the set

(1.1) {aoa”; aeClu U {|da, A ... Aday); ay, ..., a, € C},
k=1
where for any k

lday A ..o Adad(t) = (ti(day), A ... A(de),), p=a ()

for t e set /\ T(M, C). Here (da),(v) = v(«) for « € C(p) and v in T,(M, C). Then,
we get the differential space /\ T(M, C) := (set /\ T(M, C), C") (see [3]). Of
course, we have the smooth mapping

7*: N\T(M, C) - (M, C)

called the projection of the Grassmann bundle /\ T(M, C).



ON EXTERIOR FORMS AND EXTERIOR DIFFERENTIAL 213

Analogously, we define set /‘A\ T*(M, C) as the set of all covectors of (M, C)
and the mapping

2:oset NT*M, C)» M
in such a way that w is in /\ (T;A(w,(M, C)) for w in set /\ T*(M, C). Taking

+*

the smallest differential structure, C", on set /\ T*(M, C) containing the set

(1.2) faonm; aeClolU {XiA ... AN Xy, ..., X €T (M, C)},
k=1

where for any k

(1.3) (XA oo AXIW) = X (DA . AX(P)WY, P =3 (W),

we define /\ T*(M, C) as the differential space (set /\ T*(M, O), 6"‘) We have
then the smooth mapping
7 \T*M, C)—» (M, C)

called the Grassmann bundle /\ T*(M, C).
A section w of the Grassmann bundle /\ T*(M, C), i.e., the smooth mapping

(1.4) o: (M,C)~ /\ T*(M, C)
such that
(1.5) 7 ew = idy

is said to be a smooth exterior form on (M, C). If k is such that w(p) is
in /\k(T,,(M, C))* for p € M, then w is said to be a form on (M, C) of degree k.
PROPOSITION 1.1. For a differential space (M, C) of finite dimension any form

w on (M, C) of degree k is a smooth exterior form on (M, C) iff for any X,, ..., X
€ X (M, C) the function

(1.6) M3p—- XA .. AXD o)
belongs to C.

Proof. Let X, ..., X, € (M, C). Assume that (1.6) belongs to C. Then, by
(1.4) and (1.3),

1.7 KA A X (o) = @A ... AX(Dw(p)) for peM.

Thus, the function {X; A ... AX,| - belongs to set (1.2). For any « € C we have
(o7") ew = € C. Therefore, we have the smooth mapping (1.4).
Conversely, for the smooth mapping (1.4) fulfilling (1.5), and for any X}, ..., X;

e Z(M, C), by the definition of é‘, the function {X; A ... AXy| o belongs to C.
According to (1.7) function (1.6) belongs to C. This ends the proof.

Let us remark that, denoting the set of all elements of /\'T,,(M, &)
(/\' (T (M, C)*) by set \'T,(M, C) (set /\"(T,(M, C))*) and setting
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set /\'T(M, C) = L{{set N (M, C)

e set \'T*(M, C) = pLE{lset N(T,M, ©))*,
we have

set /\ T(M, C) = Lm) set \"T(M, C)
and =

set /\ T*(M, C) = U set /\ET*(M, C).
k=0

PROPOSITION 1.2. For a differential space (M, C) of finite dimension the differential
structure induced (see [8]) from /\ T(M,C) (/\ T*(M,C)) to set /\"T(M, C)
(set /\kT*(M , C)) coincides with the smallest differential structure containing the

set obtained from
(1.8) {aon; aecClu{da,n ... nday); oy, ..., 0,€C},

(1.9) {aon’; ae CYO{X A ... AXL; Xyy ..., X, XM, C))
by the restriction of each function to set /\tT(M , C) (set /\tT*(M , O)).

Proof. The fact that the set of all functions obtained from (1.8) by the restriction
to set /\tT(M , C) is contained in the differential structure induced from (1.1)

to set /\'T (M, C) is obvious. To prove the inverse inclusion let us take any «,, ...

..,y €C, wherel # k, and ¢ € set /\.T(M , C). Then, by definition of the function
|day A ... Aday) we have

lday A ... Adu)(t) = ¢tl(da)on ... Alda),y =0, p==a"().
Thus, the restriction of the function |da, A ... Ada) to set /\tT(M , C) vanishes.
So, it belongs to the smallest differential structure containing the set of all restric-

tions of functions of set (1.8) to set /\tT (M, C). The proof of the dual part of Prop-
osition 1.2 is similar.

2. Two points of view on smooth 4-forms

Proposition 1.2 allows us to consider set /\'T (M, C) (set /\'T*(M , C)) together
with the smallest differential structure containing the set of all restrictions to

set /\kT(M , C) (to set /\kT *(M, C)) of functions belonging to set (1.8) (to set
(1.9)) as a differential subspace of /\ T(M, C) (/\ T*(M, C)). This subspace
will be denoted by /\"T(M, C) (/\"T*(M, C)). Denoting by #* (by 7*) the restric-
tion of #~ (of #") to set /\"T(M, C) (to set /\"T*(M, C)) we have the smooth
mappings

: N'T(M, C)—> (M, C)
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and
2 \'T*M, C) - (M, ©).

These mappings will be called the projections of bundles /\*T(M ,C) and
/\.T *(M, C), respectively.

Now, each of the smooth exterior forms of degree k may be considered as
a smooth section of the bundle /\kT *(M, C), i.e,, as a smooth mapping
2.1) w: (M, C)~ /\'T*(M, C)
such that 7% o w = idy.

Let us remark that we may consider skew symmetric k-C-linear mappings

8: (Z(M,C))— C,

where (Z(M, C))* is kth Cartesian power of the set (M, C). The set of all such
mappings § with addition and multiplication by functions belonging to C is the
C-module. Denote this C-module by k-sklin(M, C). On the other hand, under the
assumption of finite dimension of (M, C) we have the C-module of all smooth
exterior forms (2.1) with addition and multiplication by elements of C defined in
the natural way. Denote this C-module by I' (,/\.T*(M , C)). Assigning to every w

in I'( /\'T*(M , C)) the mapping o defined by the formula

(2.2) O(Xy,s oy XD (D) = (DA .. AXUP)0(P))
forpe M, X,, ..., X, € F(M, C) we obtain the C-linear mapping
2.3) o a: T(/\'T*(M, C)) -» k-sklin(M, C).

PROPOSITION 2.1. For any differential space (M, C) of finite dimension the C-
linear mapping (2.3) is an isomorphism of C-modules.

Proof. To prove that (2.3) is one-one, take w from I'( /\kT*(M , C)) and suppose
that o = 0. Let p € M. Then there exist a neighbourhood U of p and a local basis
V..., i) of (M,C) on U. Then for any i,, ..., i€ {l,...,m} we have

0=wl,, .., Vi.)(P) = V(P ... /\Vl.(P)|w(P)>-
From (a) of Section 1 it follows that m(p) = 0.

Let now 0 be any element of k-sklin(M, C). From the hypothesis that (M, C)
is of finite dimension it follows that (M, C) is an R. Sikorski’s differential module
(see [6]). Then, for any p € M and any v,, ..., vy in T,(M, C) we get well defined
real number 6,(v,, ..., v;) such that for any Xi, ..., X; € (M, C) satisfying the
equalities X;(p) = v;, i =1, ..., k,

2.4) B(01s s 00) = Xy, ..., X (P).

From k-C-linearity and skew-symmetry of 0 it follows that we have got the k-R-linear
and skew-symmetric mapping

0,: (T,(M,C))— R.
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This yields the existence of the linear mapping

8,: \'T,(M,C)> R
such that

2.5) G(in ... ADY) = 6,(Vy, ..., 00
for any v,, ..., v in Tp,(M, C). Then by duality there exists exactly one w(p) in
/\(T,(M, C))* such that

(U A ... AGo(p)) = é',(vl/\ .o Agy) for vy, ..., in T,(M,CO).
This, (2.4) and (2.5) yields

Xip)A ... AXUP(P) = 6(X;, ..., X)(p).

We get by (2.2) that w(X,, ..., Xi) = 0(X,, ..., X}). From Proposition 1.1 it follows
that w is a smooth form of degree k on (M, C) and we have w = 0. This ends the
proof.

3. Exterior differential

R. Sikorski in the paper [7] has considered the exterior differential of skew-symmetric
forms on abstract differential module. In particular, we have the exterior differential
of forms treated as elements of k-skewlin(M, C). The exterior differential of such
forms is defined by the standard formula:

k+1
(31) de(Xlr ---st+I) = Z(_I)H-l aX‘G(Xl9 -'-le—11Xl+la ) Xk+1)+

=1
+ Z (— 1)'+J 0([XI!XJ]:X1! "',Xt—l’X1+19 "'sX]—l9Xj+l’ "‘9Xl+l)s
<)

where [X;, X]] is the Lie bracket of X; and X}, for X, ..., X, in (M, C). Correct-
ness of definition of the operation d by formula (3.1) does not require the hypothesis
that (M, C) is of finite dimension, while we assume this hypothesis to correctly

define the exterior differential of forms treated as an element of I'( N'T*(M, Q).
The exterior differential of forms, which are the elements of I (/\*T*(M , 0)),
we shall denote by the same symbol d. /\°T*(M, C) may be identified with C.

ProrosiTION 3.1. If (M, C) is of finite dimension, then there exists exactly one
operation which assigns to every w in I /\IT*(M ,C)) the element dw of
(N1, 0)),

(32 &XPA ... AXa(P)do(p)) = do(Xy, ..., Xusr)(P), PEM,
Jor Xy, ..., X1 in ¥F(M,C), k =0,1, ..., m. The operation d satisfies the following
conditions:

(i) da(p)(v) = v(e) for v in T,(M, C) and a. € C,

(ii) d(w+w,) = dw+dw, for o, w, in I(/\"T*(M, C)),
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(i) d(w A7) = doAn+(—Dordy for w in T(/\"T*M, C)) and 7 in
r(/\' M, 0),
(iv)dod=0.

Proof. 1t follows from Proposition 2.1 and results of [7] by an easy verification.
The properties of exterior differential allow us to define the de Rham cohomo-
logy groups for differential spaces. There is evident way of introducing the singular
homology groups for differential spaces. To get the natural duality between de

Rbham cohomology groups and singular homology groups the Stokes’s formula
on differential space would be useful,
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