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ON FRACTIONAL DERIVATIVES
BY

HELENA MUSIELAK (POZNAN)

In this paper we shall prove a theorem of Bernstein’s type for frac-
tional derivatives in the sense of Weyl, extending some results of Montel
[1], p. 175.

1. Let f be a 2n-periodic function integrable in (0,2x) and such
that

f f(z)dz = 0.
Consider 0 < a < 1, and write
1 ; .
(* o) = Fa—g i (@—2)""f(e)d

for all these x at which the integral exists. F(x) is defined almost every-
where (see [5], p. 134-135). .

If F(x) has a derivative F'(x) a. e., then F’ is called the derivative
of order a of the function f in the sense of Weyl and is denoted by @,

It is known (see [6], p. 135) that

1 z 1 in
F@) = =g | F@) o o f OLARCERTE

fo;' e (0, 27), where

P( 7 Lim {2 (t+2my)* ' —(27)* " — ] for te (—2m, 27).

We shall assume that the functions f under consideration belong
to the space L? in the interval (0, 2x), where 1 < p < oo, with the norm

1/p
Iflp = ( ) If(w)l”dw) it 1<p< oo,
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and
Il = esssup|f(x)| = hmllfllp

o<z<2r

First, we prove the following auxiliary result concerning derivatives
of order a of a sequence of functions from LP:
THEOREM 1. Let f and f,(n = 1, 2, ...) be 2 n-periodic functions belonging
to I?, 1 < p < oo, and let

[ fi@)da = [ fu(o)ds = 0.

If the functions f, have derivatives f© of order a in the sense of Weyl
Jor an a satisfying the inequalities O < a<1l-—1/p, and if |f,—fl,— 0,
19 —Q|, > 0 as n— oo for a function G L?, then the function F defined
by (*) 43 equivalent to an absolutely continuous fumction whose derivative
is equal to G almost everywhere, i. e. f@(x) = G(x) for almost every », and
f9e I2.

The proof will be carried out in the case 1 < p < oo; the case p = o
is obtained immediately, passing to limit as p — oc.

Denote by F,(«) the right-hand side of (*) in which f(2) is replaced
by f.(2). Then

F(a)—F,() = f (o—2)"f(e) —Fa(e)]de +

r(1— a)

1
+’2?°f [£(2) —fa(2)]71_a(@ —2) d2.

By Minkowski’s inequality,

(f \F () — Fu(2)” do ) !

STa—a) {fz | f (@—2)"°[f(2) —a (z)]dz]”dm}"”+
0

2 2w }1/p 1 1

+—{f I f [F(2) —fa(@)1t1_olo—2) e - P(l—a)A+ 2n

Writing ¢ = p/(p —1) and applying the Holder inequality, we estimate
A as follows:

2 2

< aquT_/{f [ at-0e-dis@)—fute)Pds] s

1 (2 Tc)l—a
< (1 — aq)(l""l)lp pllp(l _ a)l[p "f_fn“p'
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In order to estimate B, let us remark that

ro(®—2) = [(®—2+427)7" +o1_a(®—2)],

27
I'l—a)
where p,_,(#—2) is continuous and thus bounded in the rectangle
[0,2%; 0,2 =]. Hence

2 ﬂ
B< o ’ f (f(2) = fol2)) (€ — 2+ 2 )~ dz

l/p

Caa] 7+

+[fn|f () ~Tu(@) oralo—21 e a0] ).

However, by the Hoélder inequality,

14

{fmU (f(2) —fa(2)) (@ —2+2m)

4 w\V1—a (9 r)l/P
of dof” < R S 1Al

Analogously, if ¢,_,(x—2)< M, where M is a constant, then we
have

{ fni f (f(2) —fa(2)) 01—a(@ — z)dzl dw} < 2nM|f—follp-

Therefore,
"F_Fn"p < Oap"f—fn“p7

where C,, is a constant, and C,, < C, for 1 < p < oo, where C, does not
depend on p. Thus | F — F,|, - 0. Consequently, F,(x) - F(z) in measure.
Hence, there exists a subsequence F,, ,(®) such that F,, (2)— F(x) a.e.
Let Ze (0,27) be such a point that F, (T) > F(Z). By assumption,
IFr—Gll, > 0.

Let us write

x
R(z) = [ G(t)dt+ F(3).
z
We show that RB(x) = F(z) a. e. Indeed, we have

2r
[ 1Py, (#)— G (2)do < (27)"9|| Fp, — G, > 0.
0

Hence

Bl

F;,n(w)dw—>fG(w)dw = R(x)—F(%).
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But 17’,,,ﬂ () are absolutely continuous, by the assumption. Hence
E 4
J Fn, )8t = Py ()~ Fp, ().

Thus Fm“(w)—.lf’m”(:i)»R(m)—F(E) a. e. Hence, we conclude that
R(x) = F(x) a.e. Consequently,

F(z) = f G)at+F(z) a.e.,

and so F(z) is equivalent to an absolutely continuous function whose
derivative is equal to G(x) a.e. Thus, Theorem 1 is proved (cf. [3],
p. 533).

2. Consider a 2=-periodic real function f Lebesgue-integrable over
{0, 27>, with complex Fourier coefficients ¢; (¢, = 0). Given a number
a > 0, we set

o ik
L ) = D) oz
k=—0c0

eianlz

where ¢* = for all these # at which the series converges, and

ul I_.,(z; f), ~where » =[a]+1.
dm-

The function f@ is called the fractional derivative of fif a # 1,2, ...
In case 0 < a< 1, I, . (x; f) coincides with F (x) defined by (*) (see [5],
p. 134-135).

If f is a trigonometric polynomial such that

19 z) =

[I@dz =0,

then the derivative of order a (0 < a<1) of f in the sense of Weyl is
equal to the derivative in the sense of [2].

Now, we prove the following theorem of Bernstein’s type, mentioned
above:

THEOREM 2. Let
27
feI?, [ fl@de =0, 0<a<1,1<p< co.
0

If there exists a sequence of trigonometric polynomials {T,}, T, of degree
not greater than n, such that

C
“f—Tn“p\ ’;a"
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Jor a constant C > 0 and n = 1,2, ..., then f has almost everywhere a de-
rivative f®) of an arbitrary order B satisfying the conditions

0<pf<min(a,1—1/p) and fPeIL>.

Let us remark that if we denote by FE,(f), the best approximation
of the function fe L? by trigonometric polynomials of degrees not exceeding
n in metric L?, then the assumption of Theorem 2 can be written in the
form E,(f), = 0(n™°).

Proof of Theorem 2. First, we show that if 0 < g < a, then the
sequence {T®} of derivatives of order B of trigonometric polynomials
T, satisfies the Cauchy condition in L”. Let ¥ < n and let numbers r and
m be chosen in such a manner that 2""'< k < 2", 2™ ! < n < 2™. Then

1P — 1P, < ITH - Tﬁf’u,+2u D — TN+ 1TH — TE .

Jmr
By Theorem 3 of [2],
7 2¢ 7 2*Y¢
1722 — TP, < 5 21T, — Till, < F " SF T
and, similarly,
7 2180
179 — T, < B e
7 21¢
178, —TR1, < B o
Hence,
S ® ® T ores 207
2 1730 = Tls< 5 02 T—per.
J=r
Thus we have, for k < n,
c* c*

(3 ()
IR — TN, < Sompr < =5

where C* is a constant. Consequently, the sequence {T®} satisfies the

Cauchy condition in L”. Since L” is complete, there exists a function

G e I” such that |T® —@|, — 0. On the other hand, we have |T, —f[, — 0.
First, let us suppose that

2r
f T.(x)dr =0 for n =1,2,...
0

Then, by Theorem 1, the function f has derivative f® of order g such
that

0 < f <min(a,1—1/p).
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Now, we remove the assumption

2r
[ T,(x)dz =o.
0

Let
2
[ T, (@)do = 2mal,
0
and let
Tn(w) = Tn(w) --a},"’.
Then
21 -
fLMM=m
0
But
b3,4
2ral| =| [ (f(@) —Tw(@)de | < @7)"Uf— T,
0
Hence

. 20
1f = Tolp < 1f = Tollp + (27) 10| < 20 — Tl <— o

Thus, the function f and trigonometric polynomials i',, satisfy the
assumptions of the first part of the proof. Hence, f¥) exists almost every-
where, and f® e L7,

Theorem 2 can be extended as follows:

THEOREM 3. Let

2%
felr, [ fla)ds =0, 0<a<l, 1<p< oo,
0

and let r be a positive integer. If there exists a sequence {T',} of trigonometric
polynomsials, T, of degree not greater than n, such that

c
"f_ Tn“p < —

nf+a
for a constant C and n = 1, 2, ..., then f has almost everywhere the derivative
F*P of an arbitrary order r+ 8 for B such that

0 <pf <min(e,1—1/p) and for+PeLP,

Proof. By virtue of the well-known theorem of Bernstein’s type
(see [4], p. 350), the function f is equivalent to a function ¢ having abso-
lutely continuous derivative "~V and the derivative ¢ of class Lip (a, p),
¢ e LP. In view of the Jackson theorem, in the space L? (see [4], p. 274-
-276), B,(¢M), = 0(n™°) as n — oo.
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Next, Theorem 2 ensures that ¢® has the derivative (¢)® a.e.,
whenever 0 < § < min(a, 1 —1/p). Moreover, (p™)P ¢ L2,
Observing that

((p(r) (w))(ﬂ) — (P("H’) (.’L‘) =f(r+/3) (.’D) a. e.,

we get at once the desired assertion.
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