CONTINUOUS MEASURES AND ANALYTIC SETS*

BY

R. KAUFMAN (URBANA, ILLINOIS)

0. Introduction. Let \(\Gamma \) be a countably infinite abelian group, and \(G \) its dual group. A subset \(S \) of \(\Gamma \) is called a \(w \)-set in \(\Gamma \) if there is a continuous complex-valued measure \(\mu \) in \(G \) such that \(|\hat{\mu}| \geq 1 \) everywhere in \(S \). (The name refers to the work of Wiener [11], apparently the first on Fourier–Stieltjes transforms of continuous measures; by definition, \(\hat{\mu}(\gamma) = \int \gamma d\mu \).) Regarding the space \(M_c(G) \) as a subset of a dual space \(C^*(G) \), it is of type \(F_{\sigma\delta} \) in the \(w \)-topology. This gives the easy half of our main result.

THEOREM. In the metric space \(2^\Gamma \), the class \(w\Gamma \) of all \(w \)-sets is an analytic set but not a Borel set.

A previous work on classes contained in \(2^\Gamma \) concerns the class \(R \) of Riesz sets [9]; the class \(R \), which plays the role of negligible sets, is \(co \)-analytic but not Borel. The present theorem depends on the harmonic analysis on certain non-locally compact topological groups established by Varopoulos [10], pp. 112–131 (see also [7]). For certain groups \(\Gamma \) (type I) this dependence is explicit, and for the remaining groups \(\Gamma \), the analysis of [10] is adapted by a ruse.

Remark. Every Sidon set is a \(w \)-set [2]. On the other hand, it is easy to prove that Sidon sets are a class of type \(F_{\sigma\delta} \) in \(2^\Gamma \). So our Theorem shows that not every \(w \)-set is Sidon. This is known and can be proved in many ways (cf., e.g., [6]).

1. Preliminaries. We shall first reduce the main result to certain special cases.

LEMMA 1. Let \(\varphi \) be a homomorphism of \(\Gamma \) onto a group \(\Gamma_1 \), and \(S_1 \subseteq \Gamma_1 \). Then \(S_1 \) is a \(w \)-set in \(\Gamma_1 \) if and only if \(\varphi^{-1}(S_1) \) is a \(w \)-set in \(\Gamma \).

Proof. Suppose that \(\mu \in M_c(G_1) \) and \(|\hat{\mu}| \geq 1 \) on \(S_1 \). (We have written \(G_1 \) for the dual of \(\Gamma_1 \).) Then the dual mapping \(\varphi^* \) is a homeomorphism of \(G_1 \) into \(G \), and

\[
(\varphi^*\mu)^*(s) = \hat{\mu}(\varphi s),
\]

whence \(|(\varphi^*\mu)^*| \geq 1\) on \(\varphi^{-1}(S_1) \), and of course \(\varphi^*\mu \) belongs to \(M_c(G) \). In the opposite direction, we begin with \(\mu \in M_c(G) \) and replace \(\mu \) by \(\lambda = \mu \cdot \hat{\mu} \), so that \(|\lambda| \geq 1 \) on \(\Gamma \) and \(|\lambda| \geq 1 \) on \(\varphi^{-1}(S_1) \). Let \(A \) be the kernel of \(\varphi \),

* Supported in part by the National Science Foundation.
let \(\hat{\lambda} \) be a Banach limit over \(\Lambda \), and observe that there is a measure \(\sigma \) such that

\[
\hat{\sigma}(\chi) \equiv \lim_{\gamma} \hat{\lambda}(\chi + \gamma).
\]

What we need to know about \(\sigma \) is that

\[
\sigma(E) = \lambda(E \cap \Lambda^\perp)
\]

for each Borel set \(E \), and \(\hat{\sigma}(\chi) \) is contained in the convex hull of the set \(\hat{\lambda}(\chi + \Lambda) \) for each \(\chi \). Identifying \(\Lambda^\perp \) with \(G_1 \), we conclude that \(S_1 \) is a w-set in \(\Gamma_1 \).

We now divide the groups \(\Gamma \) into two classes:

(I) For every integer \(m = 1, 2, 3, \ldots \), \(\Gamma/m\Gamma \) is finite.

(II) For some integer \(m \geq 1 \), \(\Gamma/m\Gamma \) is infinite.

2. Groups of type I. In this case the subgroup of \(G \) defined by the equation \(mg = 0 \) is finite for each \(m \). Therefore, \(G \) is an I-group and contains a perfect Kronecker set \(K \) (see [3], pp. 566–570, and [8], pp. 99–102). We suppose in fact that \(K \) is a Cantor set. We define a map from closed sets \(E \) of \(K \) into \(2^\Gamma \) as follows:

\[
\chi \in B(E) \iff |\chi - 1| < 1/3 \quad \text{on} \quad E.
\]

The mapping is lower semi-continuous in the following sense: if \(\lim E_n = E \) in the Hausdorff metric, then

\[
B(E) \subseteq \liminf B(E_n).
\]

As for real-valued lower semi-continuous functions, whenever \(U \) is open in \(2^\Gamma \), the inverse image \(\{ E : B(E) \in U \} \) is then of type \(F_\sigma \) in \(2^K \), and in particular the inverse image is Borelian. We shall show that \(B(E) \) is a w-set if and only if \(E \) is uncountable, or in different terms: \(B(E) \) is w\(\Gamma \)-\(E \) is uncountable. By a theorem of Hurewicz [4], the class of uncountable closed sets in \(2^K \) is analytic but not Borelian, whence w\(\Gamma \) is not Borelian. Clearly, \(B(E) \) is a w-set when \(E \) is uncountable, since \(E \) supports a continuous probability measure. For the more difficult implication, we first summarize the necessary results from [7] and [10].

Suppose that \(X \) is a 0-dimensional compact metric space and that \(S(X) \) is the (metric) group of all unimodular, continuous functions on \(X \).

(a) Every continuous character of \(S(X) \) is in the subgroup generated algebraically by the evaluations at the elements of \(X \).

(b) Bochner’s theorem is valid for \(S(X) \): every continuous positive-definite function on \(S(X) \) is represented as an integral over continuous characters on \(S \). Strictly speaking, the continuous characters have to be turned into a measurable set; this quibble does not affect the remaining argument. See also [1].

(c) Let \(H \) be an abelian group provided with an invariant pseudo-metric \(d; \)
let \((Y, \mu)\) be a finite measure space and \(S^*(Y)\) the group of unimodular, \(\mu\)-measurable functions on \(Y\). Let \(T\) be an algebraic homomorphism from \(H\) into \(S^*(Y)\). One of the following two cases must occur:

\((c_1)\) There is a measurable subset \(Y_1 \subseteq Y\), \(\mu(Y_1) > 0\), so that \(T\) is continuous as a mapping from \(H\) to \(S^*(Y)\).

\((c_2)\) For every neighborhood \(V\) of the identity of \(H\), the convex hull \(\text{co}(T(V))\) contains the function 0 in its closure (in \(L^1(\mu)\), for example).

We can now prove that when \(B(E)\) belongs to \(w\Gamma\), then \(E\) must be uncountable. Suppose, then, that \(\mu\) is a continuous signed measure such that \(\hat{\mu} \geq 1\) in \(B(E)\). In \(\Gamma\) we introduce a pseudo-metric \(d\) by the formula

\[d(\gamma, 0) \equiv \sup\{|\gamma(g) - 1|: g \in E\}.
\]

We apply \((c)\) to the measure space \((G, |\mu|)\). Now \(B(E)\) is a neighborhood of 0 in \(\Gamma\) (using the pseudo-metric \(d\)) and for every function \(f\) in the convex hull of \(B(E)\) we have

\[\int |f| d\mu \geq \text{Re} \int f d\mu \geq 1
\]

(since the last inequality is true for characters in \(B(E)\)). Therefore, alternative \((c_2)\) must be rejected, and \((c_1)\) accepted. We now define

\[p(\chi) = \int \hat{\chi} |d\mu|, \quad \chi \in \Gamma,
\]

so that \(p\) is positive definite on \(\Gamma\), and continuous for the pseudo-metric \(d\).

Since \(K\) is a 0-dimensional Kronecker set, \(E\) is one as well, and \(p\) determines (by uniform approximation) a continuous positive-definite function on \(S(E)\). Comparison with \((b)\) in the summary above shows that

\[p(\chi) = \int \hat{\chi} d\lambda
\]

with a measure \(\lambda\) concentrated in the algebraic subgroup generated by \(E\). If \(E\) were countable, then we would have \(|\mu| Y_1 = 0\), whence

\[p(1) = |\mu| Y_1 = 0;
\]

this concludes the proof for groups of type I.

3. **Groups of type II.** In this case there is a prime \(p\) such that \(\Gamma/p\Gamma\) is infinite, for the inequality

\[o(\Gamma/m_1 m_2 \Gamma) \leq o(\Gamma/m_1 \Gamma) \cdot o(\Gamma/m_2 \Gamma)
\]

is valid for all pairs of integers \(m_1, m_2 \geq 1\). Then \(\Gamma/p\Gamma\) is an infinite sum \(\mathbb{Z}_p^\infty\), and, by Lemma 1, we can assume that \(\Gamma\) is one of these groups.

In this case \(G\) contains a perfect \(K_p\)-set \(F_1\) (see [3] and [8]); this means that every continuous function on \(F_1\) to the group of \(p\)-th roots of unity is the restriction to \(F_1\) of a continuous character of \(G\). Now \(F_1\) is homeomorphic
to a Cantor set, and therefore to a union of three disjoint Cantor sets. Thus F_1 can be represented as a product

$$F_1 = F \times \{1, 2, 3\},$$

F being also a Cantor set. To each closed set E of F we attach objects $\alpha(E)$, $\beta(E)$, and $B(E)$.

(i) $\alpha(E)$ is the subgroup of G generated algebraically by $E \times \{1, 2, 3\}$, and $\beta(E)$ is the closure of $\alpha(E)$ in G.

(ii) $B(E)$ is the subset of Γ defined by this condition: for each x in E, $\gamma(x \times i) = 1$ for at least two numbers $i = 1, 2, 3$. $B(E)$ takes the place of the set $B(E)$ used before. (Attempting to follow the method used for groups of type I, we would consider the characters on a certain group — but that group is discrete.) The analytical part of the proof is contained in

Lemma 2. There exists a sequence (λ_n) of probability measures in $B(F)$ such that $\lambda_n(g) \to 0$ on $\beta(F) \setminus \alpha(F)$.

Proof. For each $k = 1, 2, 3, \ldots$ let (A_1, \ldots, A_r) be a partition of F into disjoint closed sets of diameter $< k^{-1}$. Let $\gamma(i, j)$ be a continuous character of G such that $\gamma(i, j) = \omega_p = \exp(2\pi ip^{-1})$ in $A_j \times i$ and 1 in the remainder of $F \times \{1, 2, 3\} = F_1$ ($i = 1, 2, 3, 1 \leq j \leq r$). This recipe determines the value $(\gamma(i, j), g)$ for each g in $\beta(F)$. Finally, let

$$\lambda_k = \prod_{j=1}^{r} \left\{ \delta(0) + \delta(\gamma(1, j)) + \delta(\gamma(2, j)) + \delta(\gamma(3, j)) \right\}.$$

A constant $c_p < 1$ is defined by

$$c_p^2 = (7 + \cos 2\pi/p)/8.$$

Suppose that $g \in \beta(F)$ and $\limsup |\lambda_k(g)| \geq \eta > 0$, while $c_p^M < \eta$ for some integer $M \geq 1$. For infinitely many $k = 1, 2, 3, \ldots$, fewer than M of the factors of λ_k have modulus $< c_p$ at g. Since the value of $\gamma(i, j)$ is always a p-th root of 1, the equations $(\gamma(i, j), g) = 1$ for $i = 1, 2, 3$ are valid for every j with at most M exceptions. Let Γ_k be the subgroup of Γ generated by the characters $\gamma(i, j)$ introduced at the k-th step. Then there is an identity

$$(\gamma, g) = \prod_{1}^{M} \gamma(g_n)^{e_n} \quad \text{for every } \gamma \in \Gamma_k,$$

with elements g_n of F_1 and numbers $e_n = 0, 1, \ldots, p - 1$. This holds for infinitely many integers k, but since $g \in \beta(F)$, it is clear that a single relation of this kind must hold for every γ in Γ, i.e., $g \in \alpha(F)$.

We can now complete the main theorem for II. The mapping $E \to B(E)$ is continuous, in fact homeomorphic from 2^E to 2^F. When E is uncountable, we take a continuous probability measure ν in E and set

$$\mu = \nu \otimes (\delta(0) + \delta(1) + \delta(2)),$$
whence \(\text{Re} \hat{\mu} \geq 1 \) in \(B(E) \). Suppose, in the opposite direction, that \(B(E) \) is in \(w\Gamma \) and \(\hat{\mu} \geq 1 \) in \(B(E) \) for some continuous measure \(\mu \) in \(\Gamma \). Since \(B(E) + \beta(E) \perp B(E) \), this will remain true for a continuous measure concentrated in \(\beta(E) \). We apply Lemma 2, replacing \(F \) by \(E \) throughout. For the sequence \((\lambda_k) \) of probability measures in \(B(E) \),

\[
\int \lambda_k(g) \mu(dg) = \int \hat{\mu}(X) \lambda_k(d\chi) \geq 1
\]

and Lemma 2 confirms that \(|\mu| \) has positive mass in \(\alpha(E) \), whence \(\alpha(E) \) — and consequently \(E \) itself — must be uncountable. The theorem of Hurewicz cited earlier then shows that \(w\Gamma \) cannot be a Borel set in \(2\Gamma \).

In the proof just concluded, the mapping of \(E \) to \(B(E) \) is a homeomorphism, but for groups of type I it is possibly discontinuous. (That has no effect on the succeeding argument.) To remove this defect, let \(\sigma \) be a continuous measure on \(K \), and \(t \) a number in \((0, 1/3) \) such that

\[\sigma\{g : |\chi(g)| - 1 = t\} = 0 \quad \text{for each} \ \chi \ \text{in} \ \Gamma. \]

There is a closed set \(K_1 \subseteq K \) such that \(\sigma(K_1) > 0 \) and \(\chi - 1 \neq t \) in \(K_1 \) for each \(\chi \). We then define \(B'(E) \) for \(E \subseteq K_1 \) by the inequality \(|\chi - 1| < t \) in \(E \). This is a homeomorphism from \(2^{K_1} \) into \(2\Gamma \) and the remaining steps are the same.

REFERENCES

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF ILLINOIS
URBANA, ILLINOIS 61801, U.S.A.

Reçu par la Rédação le 21.5.1987;
en version modifiée le 11.4.1988