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Abstract. A result of F. Hartogs [7] on singularity sets in C? and a result of E. Bishop on
the existence of analytic structure in maximal ideal spaces of certain Banach algebras [5] are
discussed. The validity of the maximum principle for certain associated algebras of functions
turns out to connect these two results.

Let X be a relatively closed subset of a domain Q in C". We call X a
singularity set in Q if 3 function f analytic on Q\ X such that f admits no
analytic extension to any point of X. When n = 1, such singularity sets are
completely arbitrary closed sets.

In one of the early papers on analytic functions of several complex
variable, F. Hartogs considered singularity sets in the cylinder domain

Q={zw)| |2 <1} in C?

and showed that they were far from arbitrary. Simple examples are obtained
by choosing a polynomial P in z, w and taking X = {(z, w)e 2| P(z, w) = 0}.
Then the function f = 1/P is analytic on Q\X and singular on X so X is a
singularity set in Q. For each fixed z, P(z, -) has at most k roots, where k
= degree of P in w. So X lies at most k-sheeted over the disk |z] < 1. In 1909
F. Hartogs proved the following converse.

HARTOGS’ THEOREM [7). Let X be a bounded singularity set in £ such
that, for some integer k, X lies at most k-sheeted over |z| < 1. Then X is an
analytic subvariety of Q. In particular, if k = 1, then X is the graph: w = @(2)
of some analytic function on |z| <|.

"In 1934 K. Oka gave in [9] a stronger version of Hartogs’ theorem by
assuming merely that X is a bounded singularity set in  which lies finite-
sheeted over a subset e of |z] <1 such that e has positive logarithmic
capacity. He concluded, as before, that X is an analytic variety. There were
no proofs in [9]). The proofs were later published by T. Nishino in [8], in
1962.
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Meanwhile, and independently of the preceding, people had begun to
study maximal ideal spaces of certain function algebras. For X a compact
Hausdorfl space, a uniform algebra A on X is a closed subalgebra of C(X)
such that A separates the points on X and contains the constants. Denote by
M the maximal ideal space of A. Then X has a natural imbedding in M and
we may regard the functions in 4 as defined and continuous on all of M. In
1963 Errett Bishop proved the following result:

BisHor’s THEOREM [5]. Let A be a uniform algebra on X and let M be its
maximal ideal space. Fix fe A. Choose a connected component W of C\f (X).
Assume that 3A < W such that

(1) For each ie A the set
[ = lyeM| f(x) = 4]

is a finite set.
(2) A has positive area.
Then .
(3) Ik < oo such that the cardinality of f~'(A) < k for each ie W, and

(4) A a discrete set S in W such that f ~*(W\S) can be given the structure
of a Riemann surface and every function in A is analytic with respect to this
structure.

Later it was shown, independently in [4] and [12] that hypothesis (2) in
the theorem can be weakened to

(2') A has positive logarithmic capacity,
without affecting the conclusion.

Indeed, (2') cannot be weakened further, as is shown by an example of
H. P. Lee given in [4] (as well as by an example in C? by H. Alexander,
unpublished).

Both this stronger version of Bishop’s theorem and the Oka-Nishino
generalization of Hartogs’ theorem have as a hypothesis a finite sheeting over
a set of positive capacity and as conclusion the existence of analytic
structure. What explains the similarity of the two theorems? It turns out that
a certain maximum principle is valid in both contexts, which extends the
usual maximum principle for analytic functions.

Given an algebra U of continuous complex-valued functions on a locally
compact space Y, we say that U is a maximum modulus algebra on Y if

(i) A separates points on Y and contains the constants, and

(i) For each compact set K < Y, with topological boundary dK,
|h(y) < max|hl, yeK, heA.
oK
Fix fe A and choose a domain W < C such that f maps Y on W. If, for

every compact set K = W, f7!(Y) is a compact subset of Y, we say that:
(Y, f) lies over W.
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ProposiTiON 1 [15]. Let X be a bounded singularity set in Q = |||
< 1) © C2 Denote by U the algebra of restrictions to X of all polynomials in
z and w. Then U is a maximum modulus algebra on X. Also (X, z) lies over
|z| < 1.
ProrosimioON 2 [10]. Let A be a uniform algebra on X, and let M, f, W be
as in Bishop’s theorem. Let U be the restriction of A to M\X. Then W is a
maximum modulus algebra on M\X. (It follows that the restriction of A to
S HW) is a maximum modulus algebra on f~'(W). Also (f~"(W),f) lies
over W)
The general result on maximum modulus algebras which is required is

THEOREM [16]. Let U be a maximum modulus algebra on a space X and
let feW. Let W be a domain in C such that (X, f) lies over W. Assume 3 a
subset E of W such that f~'(A) is a finite set for each /€ E, such that E has
positive capacity. Then 3 a discrete set S = W (which may be empty, finite, or
countably infinite) such that f~*(W\S) can be made into a Riemann surface
and each he W is analytic on that Riemann surface. Also k such that {~*(A)
has at most k points, Ale W.

Using the Theorem in conjunction with Proposition 1 we get Hartogs’
theorem, and similarly using Proposition 2, we get Bishop's theorem.

As another application, we can take X to be a domain in the complex z-
plane. Let A be a maximum modulus algebra on X such that A contains a
non-constant holomorphic function f. Fix ae X with f"(a) # 0. Then 3r > 0
such that, restricted to the disk 4: |z—a| <r, 2 is a maximum modulus
algebra and f maps 4 one-to-one onto the domain f(4). It follows by the
theorem that A\S has analytic structure and since fe 9 this is the usual
analytic structure. Hence every ge U is analytic in 4\S and hence analytic in
A. Every a with f'(a) # 0, ae X, is then a removable singularity for each such
g. We thus have RupiN’s THEOREM [11] that each maximum modulus algebra
on a plane domain which contains one non-constant holomorphic function
consists entirely of holomorphic functions.

It was discovered by Bernard Aupetit that, associated with each analytic
map from a plane domain into a Banach algebra, there are certain
phenomena related to Bishop’s and Hartogs’ theorems [3], and later a
theory was developed in [13] by Zbigniew Stodkowski, concerning a class of
set-valued functions, which unifies these different situations.

Finally, one wishes to explain the maximum principle which is known to
hold for maximal ideal spaces away from the Silov boundary and for
singularity sets (Propositions 1 and 2) by means of the maximum principle
for analytic functions on analytic spaces.

It was tempting to try to do this by introducing analytic structure on
suitable subsets of the space, relative to which to given functions are analytic.
However, a series of examples ([6], [14], [17]) beginning with an example of
Stolzenberg in 1963 shows that this cannot always be done. There remains
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the hope that in some sense one can approximate the given space X by
analytic spaces. A particular example of this question arises when X is the
polynomially convex hull in C? of the intersection X n(jz| = 1).

ProBLEM. Let X be a compact set in C? such that X meets (jz| < 1) and
X is the polynomially convex hull of X n(|z] =1). To exhibit analytic
subvarieties of |z] < 1 arbitrarily near X.

Herbert Alexander and I have found some results in this direction. Let
r> 0 and let T be the tube

T={(zw)| Iw—a@) <r, |zl <1},

where z - a(z) is a continuous map of |z} < 1 into the unit disk. Assume that
X (as above) is contained in T. Then 3 an analytic variety X, where 2 is the
graph of an analytic function on the unit disk, with X contained in the tube

T' = {Gz, w)| w—a@| <4r, ld<1}. (1)

We also have a generalization of this result to the case when X is contained
in a tube whose intersection with each complex line: z = z, is contained in
the union of n disks of radius r, with r, n fixed [2].

References

[1] Herbert Alexander and John Wermer, On the approximation of singularity sets by
analytic varieties, Pacific J. Math. 104, No. 2 (1983), 263-268.

[21 -, —, On the approximation of singularity sets by analytic varieties 11 (submitted for
publication).

[3] Bernard Aupetit, Propriétés spectrales des algébres de Banach, Lecture Notes in Math.
735, Springer-Verlag (1979).

[4] -, and John Wermer, Capacity and uniform algebras, J. Funct. Anal. 28 (1978); 386—400.

[5) Errett Bishop, Holomorphic completions, analytic continuations, and the interpolation of
semi-norms, Ann. of Math. 78 (1963), 468-500. '

(6] Brian Cole, One point parts and the peak point conjecture, Ph. D. dissertation, Yale Univ..
(1968).

[7] Friedrich Hartogs, Uber die aus den singuldren Stellen einer analytischen Funktion
mehrerer Vertinderlichen bestehenden Gebilde, Acta Math. 32 (1909), 57-79.

[8] Toshio Nishino, Sur les ensembles pseudoconcaves, J. Math. Kyoto Univ. (1962), 225~
245.

[9] Kiyosi Oka, Note sur les familles des fonctions analytiques multiformes etc, J. Sci.
Hiroshima Univ. 4 (1934), 93-98.

[10] Hugo Rossi, The local maximum modulus principle, Ann. Math. 72 (1960), 1-11.

[11] Walter Rudin, Analyticity and the maximum modulus principle, Duke Math. J. 20 (1953),
449-457.

[12] V.N. Senichkin, Subharmonic functions and the analytic structure in the space of
maximal ideals of a uniform algebra, Mat. Sb. 108 (1979), 115-133 (in Russian).

[13] Zbigniew Slodkowski, Analytic set-valued functions and spectra, Math. Ann. 256 (1981),
363-386.

[14] Gabriel Stolzenberg, A hull with no analytic structure, J. Math. Mech. 12 (1963), 103-
112,



Theorems of Hartogs and Bishop 369

[15] John Wermer, Maximum modulus algebras and singularity sets, Proc. of the Royal Soc.
of Edinburgh 86A (1980), 327-331.

[16] ~—, Potential theory and function algebras, Texas Tech. Univ., Math. Series, Visiting
Scholars Lectures 1980, No. 14 (1981), 113-125,

[17] —, Polynomially convex hulls and analyticity, Arkiv fSr Mat. 20 (1982), 129-135.

DEPARTMENT OF MATHEMATICS
BROWN UNIVERSITY
PROVIDENCE, RHODE ISLAND, USA

Regu par la Rédaction le 4.01.1984

4 — Annales Polonici Mathematici XLV1



