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Boundary value problem for functional
differential equations

by JOzZEF MYJAK (Krakéw)

Abstract. By using the contingent equations technique we have proved the
existence of solutions of the boundary value problem for non-linear functional differ-
ential equations. We have assumed that the right-hand side of functional equations
satisfies the Carathéodory type conditions and comparative contingent equations sat-
isfy the uniqueness conditions. We have also proved the existence of a solution of
certain contingent equations.

1. Introduction. Let R™ be a real Euclidean m-space with the norm
|| and denote by ¢f(R™) a family of all non-empty, compact and convex
subsets of R™.

Let C; denote a space of all continuous functions [¢—*h, a]l>R"™,

h > 0, with the norm of uniform convergence 2| = sup{lz(t)|:te [a—h, al}.
" For a continiuous function #: [a —h, b]—>R™ and te [a, b] define ¢ C,
by a,(z) = «(t+7—a), ve[a—h,al. '

Let
f: [a,b]xCy > (I, a)—>f(t, a)e B™
and
F: [a,b]xC,2(t, a)>F(t, a)e ¢cf(R™)
be given.
For b > a-+h consider the non-linear functional differential equation
(1) - g =f(t,o), a<<i<b

and the non-linear functional differential equation with multi-valued
right-hand side

(1.2) . veF(t,z), a<t<b.
Equations (1.1) and (1.2) will be considered with the boundary con-
dition
(1.3) Mz,+ Nx, =0,
where M and N are m xXm matrices.

By a solution x(-) of the boundary value problem (1.1), (1.3) (resp.
(1.2), (1.3)) we mean any absolutely continuous function on [a—h, b],
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satisfying (1.1) (resp. (1.2)) almost everywhere on [a, b] and such that
condition (1.3) holds. ,

Problem (1.1), (1.3) presents a non-linear version of a boundary
value problem posed by Cooke [1]. This problem has been studied by
R. Fennell and P. Waltman [2]. Using an approximation method, the
above-mentioned authors have proved the existence of solutions of (1.1),
(1.3) in the case of f(¢, a) continuous and bounded or Lipschitzian.

In this paper it will be shown that an application of the contingent
technique to (1.1), (1.3) due to A. Lasota and Z. Opial [4] allows us to
obtain the existence theorems under the more general assumption that f
satisfies Carathéodory type conditions. The results of [2] are a special
case of our theorems.

2. Preliminaries. Let B denote a Banach space with the norm |-|.
For we B, A =« B we write

6(u, A) = inf{llu —v|: ve A}, |A| = sup{lull: ve A}..

Denote by ¢(B) the family of all non-empty, convex subsets of B.
Let H: B—>c¢(B). The map H will be called compact if for any bounded

subset D of B the closure of the set | ) H(u) is compact in B. The map H
ueD

will be called homogeneous if for every ue B and any real 4, H (Au) = AH (u).
The map H will be called upper semi-continuous if the set {(v,v): ue B,
ve H(u)} is closed in B x B. The map H will be called completely continuous
if it is compact and upper semi-continuous.

It is easy to see that a homogeneous map H is compact if and only

if the closure of the set () H(u) is compact.
It =1

~ In the space ¢f(R™) we introduce the Hausdorff distance by

d(C, D) = max{sugé(p, C), sucpd(p, D)}, C,Decf(R™).
pe pe

A map F: B-cf(R™) will be called continuous if it is continuous
in the Hausdorff topology.

We say that a map F of the compact interval [a, b] « R' into ¢f (B™)
is Lebesgue measurable if, for each closed subset A of R™, the set {te A:
F(t)nA # O} is, Lebesgue measurable [5].

We say that a map F(t,u) (resp. f(t,u)) of [a,b] x B into ¢f(R™)
(resp. R™) satisfies the Carathéodory condition if F (or f) is measurable
in ¢ for each ue¢ B and continuous in « for each te[a, b].

3. Existence and uniqueness. We make the following assumptions.
(i) F(t, a) satisfies the Carathéodory conditions, is homogeneous
with respect to a and '
S’lip |F(t, a)] < @(t),

la]l=1
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where ¢(t) is integrable on [a, b];
(ii) f(¢, a) satisfies the Carathéodory conditions and
b

lim f sup 8(f (¢, a), F(t, a))dt = 0

n—oo N J lali<n

(ili) M and N are m xm matrices such that the matrices M + N and
I—(M+N)'N are non-sigular.

THEOREM 3.1. Suppose that (i), (ii) and (iii) hold. If x = 0 is the only

solution of problem (1.2), (1.3), then there exists at least one solution of prob-
lem (1.1), (1.3).

Proof. Let T = —(M+N)™'. Let the mappings ¢ and H of B
= Clq_p,5 Into B and ¢(B) be defined by

(3.1)  G(x)(t)
b—a+t
I+TN)~ 1_’I'N( f f(8, z,)ds+TN ff(s m,)ds) for a—h<t<a,

ff(-?,fve)ds-kTN ff(s,w,)ds for a < t<b,
a a

and
L (32)  H(@)()

I(I+TN)“TN(bJ?H (s)ds+ TN fu(s)ds) for a—h<t<a,

|fu(s)ds+TN fu(s)_ds for a <t <b,

respectively, where u(s)e¢ F(s,,) is an arbitrary measurable function.

We will prove that « is a fixed point of the map @ if and only if
is a solution of (1.1), (1.3). Let #: [a —h, b]—>R™ be the solution of (1.1),
(1.3). Integrating (1.1) over [a, t] yields

4
(3.3) 2(t) = [f(s,n)ds+2(a), a<i<b.

Substituting (3.3) into (1.3), we have
b—~a+i

(3.4) Mm,,(t)+1v(f (s, w,)ds+a:(a))—-0 a

r<t<a.

Hence for ¢t = a we obtain

b
(3.5) z(a) = TN [f(s, a,)ds.
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By (3.4) and the definition of T
b-a4i

(36) @ity =(I+TN)TN( [ f(s,m,)ds+w(a)), e—h<t<a.

(3.3), (3.5) and (3.6) imply that « is the fixed point of h.
Suppose now that a function ze Cj,_;,; i8 the fixed point of @G. Then
(3.7) (1) -
b—a+t b
(I+TN)"TN( [ f(s,2)ds+ TN [ f(s, m,)ds), a—h<t<a,

-1, :
[ f(s,z,)d8 + TN [ f(3,3,)ds, a<t<b.

Differentiating the second part of (3.7) gives
o) =ft,m), a<t<b.

For a—h <t < a from the first part of (3.7) we obtain
b—a+t b

' (3.8) Mat) = —N( [ fs,2)ds+TN [ f(s,a,)ds).

By (3.8) and (3.7) z satisfies (1.3). In the same manner one can prove
that z is a fixed point of a map H if and only if x is a solution of (1.2),
(1.3). '

Thus, in order to apply Theorem 1.1 in [3] it remains to verify that

1° @ is completely continuous;

oo 1iy 26(@), H(z) _

llzioo |l

3° # = 0 is the unique vector of C,_j, satisfying the condition
ze H(z).

4° H is homogeneous and completely continuous.

By (ii), G and H satisfy 2°; moreover, ¢ is completely continuous.
If ze H(x), then z is a solution of (1.2), (1.3); hence # = 0.

For 4° it suffices to show that H is completely continuous since the
homogeneouity of H is an immediate consequence of the definition H
and (i).

First of all we show that H is compact. By (i) |u(?)| < ¢(t), where
@(t) is an integrable function on [a, b]. Hence the function H () is uniformly
bounded and equicontinuous on [a,b]. Hence by the Arzeld theorem

the closure of {_J H(x) is compact.
llzi=1

Let {z"}, {y"} be the sequences of Cj,_,, such that y"¢ H(2") for
n =1,2,..., and z">2°, y"—>y° a8 n—>o00. We will prove that y°¢ H(z°),
which will imply that H is upper semi-continuous.

0;



Functional differential equations 27

By (3.2)
' bh—a+i b
(I+TN)'TN [ w*(s)ds+TN [u(s)ds, a—h<i<a,
39) o) ={, “ ‘
fu"(s)ds-{—TNfu"(s)ds, a<t<b,
where

u"(8)e F(s,z5) (n=1,2,...).

* From (i) it follows that |u"(?)| < @(t) for e [a, b], where @(i) is inte-
grable on [a, b]. By Lemma 2.1 in [3] there exists a function 2° and se-
quences {z"} of the form

(3.10) () = D) haut(t),
k=n
where

O
Dhm=1, Mp>0, a,>n,
k=n

converging to z° almost everywhere on [a, b] a8 n—cc.
We write

F,(t,a) = [ge R™: b(q, F(t, a)) < e, &> 0}.

Obviously F, is compact and convex. Since F(t, a) is continuous
in a, for each te [a, b] there exists a positive integer n(tf, ¢) such that,
for n>n(t,e), F(t,af)c F,(t,a]) for tel[a,db]. u"(t)eF,(t,) for
n > n(t, £) implies that

(3.11) (e F,(t,z;) for n>n(t,e), e <<t<h.
¢

The condition‘y"e H(2") can be written in the form (3.9) Multiplying
(3.9) by 4,, and summing over k, we get

b—a+t b
ap® (I+TN)TN( ffz"(s)ds-l—TNfz"(s)ds), a—h<t<a,
Dyt t) =1 . ’

k=n

[#"(s)ds+ TN [ 2"(s)ds, a<t<b.
From the inequality

s S| =

it follows that the sequence ) My converges to y° uniformly on [a, b].

k=n

|3 huay0— o4 < sup ot — 901
k=n




28 J. Myjak

By the continuity of the operators TN, (I +TN)™! and the Fatou
Lemma we obtain, passing to the limit in (3.9), '

b—a+t b
I+TN) TN ( | z°(s)ds+TNfz°(s)ds), a—h<t<a,

=1, b
[2(8)ds+ TN [ 2(s)ds, a<t<b.
a a

This and condition (3.11) complete the proof.

Now we shall formulate the condition for the existence and uniqueness
of solutions of the boundary value problem (1.1), (1.3).

Namely, we assume that

(iv) f.is measurable in ¢ for each a¢ C, and satisfies the conditions
b
flt,a)—f(t, Be F(t,a—p),  [If(t, 0)ldt < +oo.

THEOREM 3.2. Suppose f, F, M and N satisfy (i), (iv), (iii), respectively. .
If x = 0 is the only solution of problem (1.2), (1.3), then there exists exactly
one solution of the problem (1.1), (1.3).

Proof. Indeed, (i) and (iv) imply (i) and (ii). Hence the existence
of a solution of problem (1.1), (1.3) is a consequence of Theorem 3.1.

To show the uniqueness, assume that z, and z, are two solutions of
(1.1), (1.3). By (iv) and the linearity of M and N the function z = ¢, —»,
satisfies (1.2) and (1.3). By the hypothesis of the theorem, z, —z, = 0.

In the case where the matrix M is invertible, the boundary condition
(1.3) can be written in the form (P = M~'N)

(3.12) Ta+Pxy = 0.

An easy calculation shows that in this case (I+TN)'NT =¢—P,
TN = —(I+P)"'P. If |P|| <1, where ||P| denotes any norm of P, then
I+ P is invertible. Theorems 3.1 and 3.2 imply the following

THEOREM 3.3. Let f: [a,b] xC,—R™, F: [a, b] xC,—cf(R™) and let P
be a matriz such that ||P| < 1.

If x = 0 i8 the only solution of problem (1.2), (3.12), then

1° if the functions F and f satisfy conditions (i) and (ii), then the problem
(1.1), (3.12) has at least one solution; '

2° if the function F and f satisfy conditions (i) and (iv), then problem
(1.1), (3.12) has exactly one solution.

4. Application of differential inequalities. In this section we will
prove some lemmas concerning the existence of solutions of the boundary
value problem for certain contingent equations. As a consequence of those
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Jemmas and the previous results we will obtain the existence and uni-
queness theorems for the equations with deviated arguments. Our results
generalize the theorems due to Fennell and Waltman [2].

LEMMA 4.1, Let M and N be m xXm matrices such that M - N 18 non-
singular. Then the problem

(4.1) # =0, Mz,+Nz, =0
has only the trivial solution x = 0.

Proof. The equation ' = 0 has only the constant solutions. Thus
the existence of (M 4 N)~' implies that (4.1) has only the trivial solution.

LEMMA 4.2. Let M and N be m xm matrices such that (M -+ N)' exists
and i8 bounded. If the constant K > 0 satisfies

1—|TN|

(4.2) X~
- ITN|

then the problem
(4.3) 2" ()] < K lkwll, Mz,+ Nz, =0
has exactly one solution = = 0.

Proof. Let # be a solution of (4.3). By integrating (4.3) over [a, t]
we get

t
{4.4) @(t) —w(a)] < K [ |lo,)ids.
Thus

. .
()] < o+ (@) + K [ li,|ds,
which implies
¢
u(t)gu(a)+Kfu(s)ds,

where
u(s) = sup{|z(v)|: ve[8—h,s]}.
By the Gronwall inequality
(4.5) u(t) < u(a)eXt-9,
Since |lz,]] = u(s), from (4.4) it follows that

f s
lz(t) —z(a)| < Kfu(a)e“(’—“’ds = u(a) (K¢ —1).

Hence for ze [a—%, a] we have the inequality
(1) —,(7)| < |2(t) —@(a)] + |z(a) — 2,(7)]
< u(a)(eFO~Y—1) +2u(a) = u(a)(e¥®~? +1).
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We write z(t,1) =x(t)—=z,(7r). By the last inequality, |z2| <
w(a)(e5®~94+1). Moreover, x,(t) = @,(r)+2(b—a+71,7) for a—h <<
< a. Hence the boundary condition may be written in the form

Mz,4 Nx,+ Nz =0,
ie.,
g, =TNz (T = —(M+N)™).
Thus
gl < NITNN- liell < ITNU(EEY +1)u(a).
This implies that «(a) = 0; hence by (4.5) # = 0.
THEOREM 4.1. If a function f: [a, b] X C,—R™ 18 bounded and satisfies

the Carathéodory conditions, and M and N satisfy (iii), then problem
(1.1), (1.3) has at least one solution.

Proof. Define the operator F,: [a, b] X C,—¢f(B™) by

Fy(t, a) = {0}.
Since f is bounded,

K = sup{|f(t, a)|: te[a,b],aeC}} < +o0.
Obviously _
sup 6(f(ta a), Fyo(t, a)) < K.
It is easy to see that the mappings F,, f satisfy assumptions (i)

and (ii). Hence Theorem 4.1 is a consequence of Theorem 3.1 and Lemma 4.1.
The last theorem immediately implies

THEOREM 4.2 (Fennell, Waltman [2]). Let f: [a,b]xC,—~R™ be
continuous and bounded and let M and N be m x m matrices such that M + N

is non-singular. If (M4 N)'N||l<1, then problem (1.1), (1L.3) has
a solution.

In the next two theorems we rep]ace the boundedness of f by the
Lipschitz condition.

THEOREM 4.3. Let f satisfy the Carathéodory conditions and the inequality
(4.6) If(2, a)| < Kllall +9(2),

where ¢(t) i an integrable and non-negative function.

If M and N satisfy (iii) and if (4.2) holds, then problem (1.1), (1.3)
has at least one solution.

Proof. We write
Fo(tya) = {ge R™: |g| < K |lall}.

It is easy to see that F', is homogeneous in ¢ and satisfies the Carathéo-
dory conditions. By Lemma 4.2 the problem

'eFy(t, o), Mzg,+Nx,=20
has only the trivial solution z = 0.
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By (4.6)
a(f“) a), F(t, a)) < Klall+¢(t),

which implies that #, satisfies conditions (i) and (ii). Now a straightforward
application of Theorem 3.1 completes the proof.
In a similar manner, from Theorem 3.2 we obtain

THEOREM 4.4. Let the hypothesis of Theorem 4.3 hold with (4.6) replaced by
b

f(ty @) —f(t, I< Klla—Bll, [ 1f(2, 0)idt < +oco.

Then problem (1.1), (1.3) has ezactly one solution.
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