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PRODUCTS AND SUMS OF ABSOLUTE PROPER RETRACTS

BY

R.B. SHER (GREENSBORO, NORTH CAROLINXA)

1. Introduction. In [12] we introduced the notion of absolute proper
retract (APR). This notion is more restrictive than that of absolute
retract (AR) and plays a role in the geometric theory of non-compact
spaces and proper maps. In this paper* we consider products and sums
of APR’s, obtaining results which (while differing somewhat in detail)
are analogous to the well-known results of Borsuk on products and sums
of AR’s (see [2], Chapter IV, Theorem 6.1 (i) and (iii), and Theorem 7.1).

2. Definitions, notations, and preliminary results. We begin by recalling
some definitions, establishing our notations, and stating a few results
which shall be needed for the sequel. At the risk of being overly verbose,
we shall try to make the current paper as self-contained as possible.

We use I to denote the interval [0, 1], idxy to denote the identity
function on the set X, and ~ to mean “is homeomorphic to”. We use E",
8", E%, and E" to denote Euclidean n-space, the n-sphere, the set of
points in E™ with non-negative n-th coordinate, and the set of points in
E™ with non-positive n-th coordinate, respectively. X ¢ AR (ANR) means
that X is an absolute retract (absolute neighborhood retract) for metrie
spaces. If X is a space and A < X, we use Cly A to denote the closure
of 4 in X.

Suppose X and Y are topological spaces. Let f: X — Y be a map
(i.e., a continuous function). Then f is said to be proper if f~'(C) is compact
whenever C is a compact subset of Y.

Remark. Call a set U in the space Z unbounded if U lies in no compact
subset of Z. Then, for X and Y Hausdorff, f: X — Y is proper if and only
if f(U) is unbounded whenever U is unbounded. This preservation of

unboundedness helps explain why proper maps make good sense as & tool
for the study of the geometry of non-compact spaces.

* The author gratefully acknowledges the support of the National Science
Foundation. '
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We shall say that f: X — Y is perfect if f is closed and f~!(p) is com-
pact for every pe Y.

Remark. The reader is warned that the terminology used for these
notions is varied in the literature. Every perfect map is proper, but not
conversely. However, the two concepts are equivalent if X and Y are
Hausdorff and Y is locally compact. Later on our attention will be restricted
to spaces having these properties, and we shall adopt the term “proper”
for exclusive use at that time.

Maps f: X > Y and g: X— Y are properly homotopic if there exists
a proper map H: X x I — Y such that H(z, 0) = f(») and H(x, 1) = g(x)
for all z¢ X. (This is not the same as declaring that there is @ homotopy
joining f and g each of whose level maps is proper.) If f and g are properly
homotopic, we write f =9 The relation = is easily seen to be an equiva-
lence relation on the set of proper maps from X to Y. If there exist maps
f: X > Y and g: Y - X such that gff_;_'idx and fg%idy, then X and

Y are of the same proper homotopy type and we write X & Y, the relation
= being an equivalence relation as expected. If only gf = idx is known

to hold, then we say that Y properly homotopically dominates X, and
we write X < Y or Y > X. The following lemma is easily proved and
p D

will be useful in the next section:
LeMMA 2.1. Suppose X, X', Y and Y’ are spaces.
(i) If X%X’ and Y% Y', then XXY%X'XY'.
(ii) If X%X’ and Y% Y, then X xY < X' xY'.

p

A compactification of the Hausdorff space X is a compact Hausdorff
space containing X as a dense subspace. We say that the compactifica-
tions Z and W of X are equivalent, Z = W, if there exists a homeomorphism
h: Z — W such that h(x) = x for all 2¢ X. The space X is rim compact
if each point of X has a local basis of open neighborhoods with compact
frontiers. Let A denote the class of rim compact Hausdorff spaces and,
for Xe A, let FX denote the Freudenthal compactification of X (see [8]
or [10]; or, for separable metric spaces, [6]). Let EX = FX — X. The
points of EX are the ends of X. The following result is established in
[10] (as Theorem 1) and is restated here for convenience:

THEOREM 2.1. Suppose Xe A. Then

(a) each point of FX has a local basis of open neighborhoods whose
frontiers lie in X, and

(b) if Z is a compactification of X such that each point of Z has a local
basis of open neighborhoods whose frontiers lie in X, then there exists a map
g: FX — Z such that g(x) = x for all ve X.
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Furthermore,
(¢) if FX is a compactification of X having properties (a) and (b),
then FX = FX.

An important fact [14] is that if X, Ye 4 and f: X — Y is perfect,
then f extends to a unique map of pairs Ff: (FX, EX) - (FY,EY).
(There are several versions of this result in the literature.) Note that,
by uniqueness, F' is functorial; that is, F preserves compositions and
identities. We shall say that the perfect map f: X — Y is end-preserving
if Ff| EX is injective. We write (X, X,)e A'if Xe A4, X, is a closed subset of
X, and the inclusion of X, into X is end-preserving. It is easily verified
that (X, Xy)e A’ if and only if Clyzx X, = FX, whenever Xe 4 and X,
is closed in X.

LEMMA 2.2. Suppose X,, X,, and X, = X,NX, are closed subsets of
X, VX, = XeA. Suppose further that (X,, Xy)e A" and (X,, Xy)e A'.
Then (X, X;)e A" for i = 0,1 or 2.

Proof. Since (X,, X,)e A" and (X,, Xy)e A’, we may regard FX,
as being a closed subspace of each of X, and FX,. Pasting X, and FX,
together via the identity on FX, yields a compactification K of X such
that ClgX; = FX,; for + =0,1,2 and ClgX,NnClgX, = ClgX,. It is
easily verified that each point of K has a local basis of open neighborhoods
whose frontiers lie in X. For + = 1 or 2, let j; denote the inclusion of X;
into X and let f;: ClxX; > FX; be a homeomorphism such that f;(x) = »
for all ze X;. Let ,

(Fj)f: =G ClgX; - FX.
Then

G1‘(CIKX1)n(ClKX2) = G1|CIKX0 = GlelKXo = Gzl(CIKXﬂn(ClKXz)’

and hence the union of G, and G, yields a map G: K - FX such that
G(x) = x for all ze X. It follows immediately that K satisfies condition
(b) of Theorem 2.1, and hence, by condition (¢) of Theorem 2.1, K = FX.
Since ClgxX; = FX, for ¢ =0,1,2, it follows that ClpxX; = FX,,
and hence (X, X;)e 4. )

Given X,, X;, X, and X as in the statement of Lemma 2.2, let ¢+ = 1
or 2 and let j: X, > X;, k: X; > X, and h: X, > X be inclusions. Then
h = kj, so Fh = F(kj) = (Fk)(Fj). Thus F; is injective if Fh is. Hence,
if (X, X,y)e A, then (X;, X)e A" and (X,, Xy)e A'. However, it is possible
to have (X, X,)e A’ and (X, X,)e A’ while (X, X,), (X, X,), (Xg, Xo)¢ 4.
This is the case, for example, if X, = F and X, = E*> . Combining these
observation3 with Lemma 2.2, we obtain the following
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THEOREM 2.2. Suppose X,, X,, and X, = X,NnX, are closed subsets
of X, X, = XeA. Then

(Xy, Xo)e A" and (X,, X,)e A’

oy
(X, Xy)e A
(TR

(X, Xl)e A" and (X, X2)€ A,

We shall be particularly interested in the situation in which FX is
metrizable, and this will occur if X is a locally compact separable metric
space for which QX, the quasi-component space of X, is compact (see [8],
Chapter VI, Theorem 42). (Local compactness is not a necessary condition
for the metrizability of FX, but shall be required in Sections 3 and 4.)
We shall let X' denote the class of such spaces and make the standing
hypothesis that all spaces henceforth considered in this paper shall be of the
class 2. If (X, Xy)e A’ and X, X, ¢ 2, we write (X, Xy)e 2"

LeMMA 2.3. Suppose X is a connected, locally compact and locally
connected melric space having more than one end. Then there exists an end-
-preserving embedding h: E' — X.

Proof. Since X is connected, FX is a continuum. Moreover, FX
is locally connected by Theorem 4.1 of [4]. Hence FX is arcwise connected
and, since EX contains at least two points, there exists an arc pq in FX
such that pe EX and ge EX. Since EX is closed in FX and has dimension
zero, we may assume, by a standard “first point - last point” argument,
that the interior of pq lies in X. Now we need only map E' homeomor-
phically onto the interior of pq to obtain h.

We say that Z, Z < W, is a proper retract of W if there exists a proper
map r: W —Z such that r(z) = 2z for all ze Z; such a map r is a proper
retraction of W onto Z. Similarly, we define a proper deformation retraction,
etc. Suppose X ¢ 2. Then X is an absolute proper retract, for which we shall
write X ¢ APR, if, for each Y ¢ X and end-preserving embedding h: X — Y,
h(X) is a proper retract of Y. This notion was introduced and studied in
[12], and we wish now to restate the primary results of that paper; how-
ever, before doing so it will be convenient to first recall some definitions.
By a tree we shall mean a locally finite connected and simply connected
simplicial 1-complex. In [7], & geometric property was introduced called
property SUV™, and this was further studied in [11]. We need not recall
the original definition of property SUV®™ as given in [7] or [11], but shall
only require the fact (which follows from [11], Corollary 3.5, and [1],
Theorem 3.12) that the space Xe¢ ANR has property SUV®™ if and only
if there exists a tree T such that X < T. If X has property SUV®™, we

p
write Xe SUV™. Finally, Z' < Z is said to be an unstable subset [9] of



ABSOLUTE PROPER RETRACTS 95

a space Z if therc exists & homotopy H: Z x I —Z such that H(z, 0)= =z
for all ze Z and H(z, t)¢ Z' for all ze Z and 0 < ¢ << 1. Now, the main object
of [12] was to state identifying ecriteria for the APR’s, and this identifi-
cation is given by the following theorem (cf. [12], Theorems 4.1 and 4.2):

THEOREM 2.3. Suppose X is a locally compact metric space. Then
the following are equivalent:
(i) Xe APR.
(ii) X is mon-compact, Xe ANR, and Xe SUV™.
(iii) X is non-compact, FX ¢ AR, and EX is an unstable subset of FX.
Now, every proper retract of a non-compact absolute neighborhood

retract is a non-compact absolute neighborhood retract. Also, if X is

a proper retract of Y and Y <7, then X < Y < Z, and hence X < Z.
p p » 4

Thus, applying Theorem 2.3 (in particular, the equivalence of (i) and (ii))
and the characterization of property SUV*™ mentioned before, we obtain
the following result:
THEOREM 2.4. If X is a proper retract of Y and Y ¢ APR, then X e APR.
Now, F(E") ~ 8" if n > 1, while F(E') ~ I. Hence, by Theorem 2.3
(in particular, the equivalence of (i) and (iii)) we have the following
'THEOREM 2.5. E"e¢ APR if and only if n = 1.

3. Cartesian products. Let X and Y be two spaces. Then X x Ye AK
if and only if X¢ AR and Ye AR (see [2], Chapter IV, Theorem 7.1).
Such is not the case for APR’s and, indeed, neither of the analogous
implications holds. For example, using Theorem 2.5, E'¢ APR, but

E'xE' = F*¢ APR.
Also, E*¢ APR, but
E* %[0, o) ~ F° = [0, oo),

so that E?x [0, co)e APR. This latter example can be generalized as
follows:

THEOREM 3.1. Suppose X is a locally compact metric absolute retract.
Then {p} x[0, co) is a strong proper deformation retract of X x[0, oco)
if pe X.

Proof. We may suppose X is non-compact, for otherwise the proof
follows in the obvious manner from the fact that {p} is a strong deforma-
tion retract of X. Let f: X — [0, oo) be a proper map such that f(p) = 0.
(The existence of f follows easily from [11], Lemma 2.1.) Let

A = {(#,t)e X X[0, co) |t < f(w) or & = p},
B = {(x,t)e X x[0, o0) |t > f(x) +1 or & = p}.
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Then A and B are each closed in X x[0, co). Let us define a map

xz if (x,t)e 4,

H,(z,t) =
(1) p it (a,1)¢B.

Then, since ANB = {p} x[0, o), H, is continuous. Since X is an
absolute retract, there exists an extemsion H: X x[0, o0) - X of H,.
Now define

K: (X x[0, co)) xI - X x[0, o)
by
K((@,1),8) = (H(m,s(f(w)+1)),t+sf(w)) for (z,t)e X x[0, o), se .

Then K is a proper map. To verify this, it will suffice to show that

K '(C x[0,n]) is compact for all compact C =« X and n > 0. Letting C

be a compact subset of X and n > 0, assume that D is a compaet subset
of X such that

CufY([0,n+1]) < D
We shall show in (1) and (2) below that
K[(Xx[O, oo)) XxI —(D x [0, n]) ><I] < (X x[o0, o0)) —(C x[0, n]),

thus proving that K !(C x[0, »]) lies in the compact set (D x[0,n]) xI.
Let
(2, t)e [(X x[0, o)) — (D x [0, n])].

Then (z,t)e X X(n, ) or (x,t)e(X—D)Xx[0, o).
(1) If (#,%)e X X(n, o0) and sel, then

K ((@,1), 8) = (H 2, s(f(x) +1)), 1 + 5f(2)) ¢ € x [0, n],

since t+ 8f(x) >n +sf(x) = n
2) If (wyt)e(X—D)x[0, ©0) and sel, then f(x)>n+1, so if
t+38f(x) < n, then

s(f@)+1) =sf(@w)+s<n—t+s<n—t+1<n+1< f(w)

and, therefore, .
H(z,s(f(#)+1)) =2¢X—D < X—C.

Hence, either t-sf(z) >n or H(m, 8(f(=w) —|—1))e X —C. In either case

E((@, 1), 8) = (H(w, s(f(=) +1)), t+sf(m))¢ C x[0, n].
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The proof is now completed by noting that if xe X, te [0, o0), and
se I, then

(i) K((@,1),0) = (H(z, 0(f(z) +1)), t+ 0f(a))
= (H(wy 0), t) = (,1),
(if) K ((@,1),1) = (E (2, 1{f(@) +1)), t+1f(w))

= (H(z, f(2) +1), t+f(x))

= (P, t+f($))€ {p} x [0, oo),
and

(iii) K((p,),3) = (H(p, s(f®)+1)), t+ /() = (H(p, 5),8) = (p, ).

COROLLARY 3.1. Suppose X is a locally compact metric absolute retract.
Then X x[0, co]e APR.

Proof. By Theorem 3.1, X x [0, oo)% [0, oo). Hence X X [0, oo) i8
non-compact, X x[0, co)e ANR, and X x[0, o0)e SUV™, which implies,
by Theorem 2.3, that X x[0, c)e APR.

By the above, if

f]xie APR,

t=1

it need not be the case that each X;,¢ APR. In fact, it may happen
that no X,e APR (see Example 3.1 below). We can, however, obtain
some information about the X,’s as given by the following result:

THEOREM 3.2. Let X,, X,,..., X, be locally compact metric spaces.
Then [[ X;e APR only if
i=1

(1) exactly one of the spaces X,, X,, ..., X, i8 non-compact, or
(2) one of the spaces X,, X,, ..., X, has precisely one end.
Proof. Suppose that

f] X,c APR.
i=1

n
Then |] X, is non-compact, and hence so is at least one of the spaces

i=1
X,, X,, ..., X,,. Supposing condition (2) fails to hold, we may assume
(relabeling if necessary) that, for some k> 1, each of X,, X,,..., X,
is non-compact and has more than one end and that, for ¥ < n, each of
Xii1y Xiioy ooy X, 18 compact.

7 — Colloquiun: Mathematicum XXXIII.1
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Since ” X, is compact, ” X, is a proper retract of ] ]X It follows
i=k+1
from Theorem 2.4 that

f] X,e APR.

By Lemma 2.3, if ¢ =1,2,...,k there exists a topological line
L; « X, such that (X;, L;)e 2". Since L;e APR for ¢ =1,2,...,k, there
exists a proper retraction »; of X; onto L;. Then

Ijri:ﬁx,-»I?Li

is a proper retraction. But then, by Theorem 2.4, ] [ L;e APR.
However, ” L; ~ E*, and hence, by Theorem 2.5, k = 1. Thus condi-

tion (1) holds
We are now ready to combine our results to obtain our main theoreni
on products of APR’s.
. THEOREM 3.3. Suppose X,, X,,...,X,e APR, where n >1. Then
[] X;e APR if and only if X;== [0, o) for some j, 1 <j<n
=1 n
Proof. Suppose first that [[ X,e APR. Then, by Theorem 3.2,
i=1
there exists a j, 1 < j < n, such that X; has precisely one end. Now, since
Xje APR, X;e SUV™, and hence there exists a tree T such that X;>~T
(see [1], Theorem 3.12, and [11], Corollary 3.5). Since the number of
ends of a space is an invariant of proper homotopy type, T has precisely
one end, and hence T ~ [0, oo) by [11], Theorem 2.4. Thus X,-’%“ [0, oo).
On the other hand,,suppose that X,-% [0, o) for some j,1 <)< mn
Relabeling, if necessary, we may assume that j = n. Since X,, X,,...,
n—1
X, _,¢ APR, it follows that X,, X,, ..., X,,_,¢ AR, and hence [[ X;e AR

i=1
(see [2], Chapter IV, Theorem 7.1). Now, using Lemma 2.1 and The-
orem 3.1, we have

!in~(U )xA’éJ(”X)x[o 00) = [0, o).

It follows that ” X;is a non -compact ANR having property SUV™>,
and hence, by Theorem 2.3, ” X;e APR.

Example 3.1. There emst spaces X and Y such that X ¢ APR and
Y¢ APR, but X xYe APR.
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Construction. Let B denote a polyhedral 3-cell and let A be an
arc in B such that

(1) A intersects 0B (the boundary of B) in a single point, that being
an endpoint of A4;

(2) A is a locally polyhedral modulo p, where p is the endpoint of
A lying in Int B (the interior of B); and

(3) A fails to be locally tame in B at p.

Let X = B— A. Then X is 3-pseudo-half space [13]; i.e. X is a 3-
manifold with boundary such that Int X ~ E* and 0X ~ E?. Now X has
precisely one end, which we denote by [a], and it is easy to show that
n, (X, a) # 0, where =, is the “proper fundamental group” functor of [3].
Hence, by [11], Theorem 4.3, X¢ SUV*® and thus, by Theorem 2.3,
X¢ APR. Let Y = E*. Then Y ¢ APR by Theorem 2.5. But M = X xY
is & b-manifold with boundary and

OM — (0X)xY ~ E* while Int M — (IntX)x Y ~ E°.

Thus, by [5], Theorem 1, M ~ E° ~ E*x[0, o) from which it
follows, by Corollary 3.1, that M ¢ APR.
Remark We have only considered finite products thus far. Of

course, ” X; is locally compact if and only if ea,ch X, is locally compact
t=1

and almost all are compact. Thus if, for example, ” X,e APR, then there
=1

exists an integer » such that X; is a compact absolute retract for ¢ > n.

Then

X; > X,

1 i=1

-,

1

i

and, by previously stated results,
[] X< APR.
i=1

In this manner we may reduce the study of infinite products to the
finite cases already considered.

4. Sums of spaces. If X, and X, are closed in X = X,u X, and X,n X,
= Xo, X,, X,c AR, then Xe¢ AR (see [2], Chapter IV, Theorem 6.1 (i)).
The corresponding statement for absolute proper retracts is not true.
For example, F°,E*, and E> NE’ < APR, but EX UE* = E*¢ APR.
However, the desired result does hold if (X, X,)e 2’ (or, equivalently,
by Theorem 2.2, if (X,, X,)e 2’ and (X,, X,)e2").

TimorEM 4£.1. Suppose that X, and X, are closed subsets of X =
X, U X,,that X,, X,, and X, = X,NnX, are -absolute proper retracts, and
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that (X, X,)e 2" (or, equivalently, that (X,, Xo)el2’ and (X,, Xy)e2").
Then X is an absolute proper retract.

Proof. By Theorem 2.2, (X, X,)e 2" and (X, X,)e 2. Hence we may
regard FX as FX,UFX,, where FX,NnFX, = FX, (cf. the proof
of Lemma 2.2). By [2] (see Chapter IV, Theorem 6.1 (i)), FXe AR and
our proof will be complete, by Theorem 2.3, if we can show that EX is
an unstable subset of FX.

Now, since X,¢ APR, EX, is an unstable subset of #X,. Hence there
exists a homotopy H: FX,xI - FX, such that H(z,0) =« for all
xe FX, and H(x,t)¢ EX, for all ze FX, and 0 < ¢ < 1. Define

H': (FX, x {0})U(FX,xI) > FX,
by
H (2,0) =x if (#,0)e FX, x {0}
and by
H'(x,t) = H(z,t) if (x,t)e FX,x1I.

Since X,e¢ APR, EX, is an unstable subset of FX,, and since
(FX, x{0})u(FX,xI)is a closed subset of FX, xI, we apply Lemma 2.1
of [11] to obtain an extension of H' to a map H,: FX, xI - FX, such
that H(x,t)¢ EX, for all v« FX, and 0 < ¢ <1. Similarly, there exists
a8 map

H,: FX,x1 - FX,

such that H,(»,0) = x for all ve FX,, H,(x,t)¢ EX, for all xe FX,
and 0 <?t<1, and H,(x,t) = H(x, t) for all ze FX,and 0 < t < 1. Define

K: FXxI >FX
by
K(z,t) = Hy(2,t) if (#,t)e FX,xI
and by
K(w,t) = Hy(®w,t) if (®,t)e FX,xI.

Noting that EX = EX,VEX,, we see that K is a homotopy showing
that EX is an unstable subset of F'.X.

A slight modification of the argument of the preceding proof also
establishes the following two statements. The second of these includes
the first as a special case, and its proof uses [2], Chapter V, Theorem 9.1
and Remark 9.17, rather than [2], Chapter IV, Theorem 6.1 (i).

CoroLLARY 4.1. Suppose that X, and X, are closed subsets of X
=X,VX,, X, and X, are absolute proper retracts, and X, = X,Nn X,
18 a compact absolute retract. Then X is an absolute proper retract. (The
conclusion also holds if one of X,, X, is a compact absolute retract rather
than an absolute proper retract.)
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COROLLARY 4.2. Suppose that X, and X, are absolute proper retracts
such that X,NnX, = O, that X, is a compact absolute retract such that X, ¢ X,,
and that f: X, — X, is a map. Then X = Xl\fJX2 i8 an absolute proper

retract. (The conclusion also holds if one of X,, X, is a compact absolute
retract rather than an absolute proper retract.)

Borsuk has also shown ([2], Chapter IV, Theorem 6.1 (iii)) that if
X, and X, are closed in X = X,;UX,, Xe AR and X,nX, = X,e¢ AR,
then X,, X,e AR. In the sequel we establish a version of this result for
absolute proper retracts.

THEOREM 4.2. Suppose that X, and X, are closed subsets of X
= X,VX,, that X and X, = X,NX, are absolute proper retracts, and that
(X, X, e X' (or, equivalently, that (X,, X,)e X' and (X,, X,)e2'). Then
X, and X, are absolute proper retracts.

Proof. Since (X,, X,)e 2’ and X, ¢ APR, there exists a proper retrac-
tion 7,: X, - X,. Define #: X - X, by r(x) =2 if vxe X, and by r(x)
= 7,(x) if xe X,. Then r is a proper retraction of X onto X, and so, by
Theorem 2.4, X,e APR. Similarly, X,e APR.

Remark. Actually, the hypothesis (X, X,)e 2’ of Theorem 4.2 can
be weakened. However, the proof of this uses some work on homotopy
theoretical characterizations of APR’s (to appear later) which is beyond
the scope of the current paper.
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