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1. Introduction. A subset 4 of a topological space X is said to be
a fized-point set of X if there is a map (continuous function) f: X »>X
such that f(x) =« iff zed. Clearly, a fixed-point set of a Hausdorff
space X must be a closed subset of X. In [8] Ward, Jr., defines a space X
to have the complete invariance property if each of its non-empty closed
subsets is a fixed-point set of X.

The problem as to when a topological space X has the complete
invariance property has been investigated by Robbins [4], Schirmer [5]-[7],
and Ward, Jr. [8]. In particular, spaces known to have the complete
invariance property include n-cells [4], dendrites [5], compact manifolds
without boundary [6], arcwise connected subspaces of locally smooth
dendroids [8], a class of Peano continua containing the local dendrites
and the continua containing no continuum of condensation [8], and
compact triangulable manifolds with or without boundary [7]. However,
the general question as to what properties a space must possess in order
to have the complete invariance property is far from being resolved.
Indeed, in [8] Ward, Jr., asks if every Peano continuum has this prop-
erty.

The purpose of this paper * is to pose and study the following related
question:

If @ denotes a class of topological spaces, then what properties must
a @-space have to insure that, whenever it is embedded as a closed subset
of an arbitrary Q-space Z, it is a fixed-point set of Z?

We shall call a @-space which satisfies this condition an absolute
fixzed-point set relative to @ (abbreviated AFPS(Q)). It is shown that, for
many classes @, the class of AFPS(Q)-spaces contains the class of absolute
retracts relative to @ and lies in the class of connected, locally connected
Q-spaces. In the case where @ denotes the class of compacta in the plane,
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it is shown that every locally connected continuum in @ is an AFPS(Q)-
-space. However, for the case where ¢ denotes the class of compact Haus-
dorff spaces, more restrictive conditions would be required. Indeed, we
give an example of an ordered continuum which is not an AFPS(Q)-space.

2. Absolute fixed-point sets. All spaces will be Hausdorff and, unless
stated otherwise, ¢ shall denote one of the following classes of spaces:
compact metric, separable metric, metric, compact, Lindel6f, paracom-
pact, collectionwise normal, perfectly normal, normal. Definitions for
these spaces may be found in [2] and we shall adopt the notation used
in [2]. In particular, we shall let AR (@) denote the class of absolute re-
tracts relative to the class Q.

Definition. A space X is an absolute fized-point set relative to the
class @ (abbreviated AFPS(Q)) if X e @ and whenever X is embedded as
a closed subset of a @-space Z, then X is a fixed-point set of Z.

From this definition we obtain the following result:
THEOREM 1. Every AR(Q)-space is an AFPS(Q)-space.

Proof. Let XeAR(Q). Suppose X is embedded as a closed subset
of a @-space Z. Then there is a retraction r: Z— X, and hence X is a fixed-
-point set of Z. Thus X e¢AFPS(Q).

Example 1. Consider the plane continuum X = AuBu(, where
A denotes the closed interval [ -1, 0] on the z-axis, B — the closed
interval [ —-1,1] on the y-axis, and C — the set whose equation is
y = sin(n/z), 0 < < 1. Then 8 = {(—1,0), (1, 0)} is not a fixed-point
set of X. For suppose f: X— X is a map whose fixed-point set is 8. Then
f(X) must be a continuum containing 8. Since arc components must
be preserved under f, it follows that f(C) = C. Hence f(B) = B. But
since B has the fixed-point property, S is not the fixed-point set of f.

THEOREM 2. Every AFPS(Q)-space is connected.

Proof. Suppose Y is an AFPS(Q)-space which is not connected.
Then Y is a @-space which has at least two components, say H and K.
Let X denote the space defined in Example 1. Let Z denote the @-space
obtained by taking the disjoint union of ¥ and X, and then identifying
the point (—1,0) in X with a point p in H, and identifying the point
(1,0) in X with a point ¢ in K. Now Y is a closed subspace of Z, and
thus there is a map f: Z—Z such that f(z) =z iff 2zeY. Let T denote
the component in Z containing the sets H, X and K. Since p = (—1, 0)
and ¢ = (1, 0) must remain fixed under f, it follows that f(T) < T. Let
r: T—-X denote the retraction defined by

p if zeH,
r(z) ={q if zeK,
z if zeX.
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Let ¢ = f| X be the restriction of f to X. Then rg: X—X is a map-
ping from X into itself whose fixed-point set is {( —1, 0), (1, 0)}. This
contradiction shows that Y must be connected as required.

THEOREM 3. Every first countable AFPS (Q)-space i8 locally connected.

Proof. Suppose X is a first countable AFPS(Q)-space which is not
locally connected at p. Then there exists a neighborhood V of p in X
and points p,, p,, ... such thatlimp, = p and each of the points p, p,, ps;-..
lies in a different component of V. To complete the proof of the theorem
it suffices to construct a @-space Z containing X as a closed subset such
that X is not a fixed-point set of Z.

Let q; denote the point (1/¢, 0) in the plane R* and let 0 denote the
origin in R®. For each integer ¢ = 1,2,..., we construct a plane con-
tinuum A;, homeomorphic to the continuum in Example 1, joining ¢; to
¢:+1. Let a denote the midpoint of the closed interval [q;,,, ¢;]. Then A, is
the union of a triod consisting of the horizontal interval [g;.,, a] and
the closed vertical interval with midpoint a and length 2/i, and the curve
in the plane whose equation is given by

1 (1 — az) 1

Yy= —8in——— fora<az<-—
) 1(x—a) v

Let Y be the plane continuum defined by
Y = U Ai U{O}.
i=1

Define Z to be the space obtained by taking the disjoint union of X
and Y, and then identifying p; with ¢; for ¢+ =1,2,..., and p with 0.
Then Z is a @-space and X is a closed subset of Z.

Suppose f: Z—-Z is a map whose fixed-point set is X. Let U be
a neighborhood of » in Z such that UnX < V. Since f is continuous
at p, there is a neighborhood W of p in Z such that W < U and f(W) = U.
Now W contains infinitely many sets of the form 4;. Thus, for some j,
f(4;) is a continuum in U containing p; and p;,,. Moreover, no sub-
continuum of f(A4;) containing p; and p;,, can lie in V, for otherwise
p; and p;_., would belong to the same component in V. Thus f(4;) = 4;
and, as in Example 1, it is easy to show that some point of A; other
than p; or p;,, must remain fixed under f. This contradiction shows
that X must be locally connected as required.

The preceding theorems show that, for many classes @, the class
of AFPS(Q)-spaces contains the class of AR(Q)-spaces and lies in the
class of connected, locally connected @-spaces. The following theorem
shows that if  denotes the class of compacta in the plane, then every
connected, locally connected @-space is an AFPS(Q)-space.
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‘THEOREM 4. If Q i8 the class of planar compacta, then every Peano
continuum in Q is an AFPS(Q)-space.

Proof. Suppose X is a Peano continuum which is embedded in
a compact subset Z of the plane R’. Let {4,}, n =0,1,2,..., be the
set of components in R* — X, with 4, denoting the unbounded component.
Let B, = ZnA, for n'=0,1,2,... If we add to X all the bounded com-
ponents of the set R*— X, we obtain a locally connected continuum
X, = R* — A, which does not separate the plane R®. Then X, is an AR-
-space and, by Corollary (13.5) in [1], p. 137, there exists a retraction
Jo of the closure Cl 4, of the set 4, to its boundary Bd 4,.

Now consider a bounded component A; of the set R*— X. Then
either (1) B; = A;or (2) B, = A,. For B; # A,;, let a; be a point in 4, — B;.
Now if we add to X all the bounded components of R*— X different from
A;, we obtain a locally connected continuum X; whose complement in
R? consists of the two components A, and 4;. Then X; is an ANR-space
and there exists a retraction f; (see [1], p. 139) of the set (ClA,)— {a;}
to BdA4,;.

Suppose B; = 4;. We may assume that the metric d on R?
is such that d(z,y) <1 for all ,y in B;. Let p be a point in BdB
such that C = (IntB;) U {p} is homeomorphic to the convex subset of R?
defined by {(z, y) | #* +9* < 1} u {(1, 0)}. It then follows that there is a
homotopy H: C xI—C such that H(x,0) = 2z for all # in (, and if
z #pandt >0, then H(z, t) = x ([8], p. 554). Define f;: C1B; — C1B,; by

H(r,d(x,BAB;)) if x<C,

fite) = la: if #¢BdB,.

Then f; is a map whose fixed-point set is precisely Bd B;.
Now set

if zeX.

Then, clearly, f: Z - Z is a mapping from Z into itself whose fixed-
-point set is X. Therefore, X is an AFPS(Q)-space as required.

We note that the proof of Theorem 4 actually shows that every
planar Peano continuum is an AFPS(Q)-space, where @ denotes the
class of planar spaces (compact or not).

Example 2. Let @ denote the class of compact Hausdorff spaces,
and let Y be the one-point compactification of the long line. Then Y
is an ordered continuum (i.e., a tree without branch points) with two
endpoints, say « and b ([3], p. 56). However, Y is not an AFPS(Q)-space.
For suppose otherwise. Let X denote the space defined in Example 1.
Let Z be the @-space obtained by taking the disjoint union of ¥ and X,

fi(Z) if ZEC].B,‘-, ": = 0, 1, 2, ceey
o
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and then identifying the point (—1, 0) in X with a, and identifying the
point (1, 0) in X with b. Since Y is a closed subset of Z, there is a map
f: Z—Z such that f(z) =z iff 2¢ Y. Now f(X) is a continuum containing
a and b. Moreover, we cannot have f(X) o X, for then some point in X
different from @ and b would remain fixed under f. Since every point
in Y —{a, b} is a cut point, it follows that f(X) > Y. But X is separable,
and hence f(X) is separable, while Y is not separable. This contradiction
shows that Y is not an AFPS(Q)-space.

The preceding example shows that, for the class @ of compact Haus-
dorff spaces, only a very restricted subclass of the class of connected,
locally connected @-spaces will be AFPS(Q)-spaces.

Our initial study leaves the following general problem to be con-

sidered:
ProBLEM. Characterize the AFPS(Q)-spaces for the classes @ listed
at the beginning of Section 2.. (P 971)
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