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Existence-uniqueness and iterative methods
for right focal point boundary value problems
for differential equations with deviating arguments

by Ravi P. AGARwAL (Singapore)

Abstract. For nth order delay differential equations with right focal point boundary
conditions we provide necessary and sufficient conditions for the existence and uniqueness of
solutions. Next, we give a priori conditions so that the Picard iterative method converges to the
unique solution of the problem. Necessary and sufficient conditions for the convergence of an
approximate Picard method are also obtained. Finally, we supply sufficient conditions so that the
Picard method converges monotonically to a solution of the problem.

1. Introduction. We shall consider the nth order ordinary differential
equation with deviating arguments

(1.1 x®(t) =f(t, xow(t)), a<t<b,

where xow(t) stands for (x(wo,. (), ..., X(Wo,poy(®); ..., X9 (Wa.piar ()
0 < g < n—1 (but fixed), and p(i), 0 < i < ¢, are positive integers. The function
f(t, {x>) is assumed to be continuous on [a, b] x R¥, where (x) represents
(XQJ, cony X0,p(0) ¢+ s xq’p(q)), and N = Z?=0 p(i). The functions Wi.1s 1 <] < p(l),
0 <i<gq, are continuous on [a, b], and w; ;(t) < b for all te[a, b]; also,
they assume the value a at most a finite number of times as t ranges over [a, b].
Let
a=min{a, inf wy), 1<j<pl), 0<i<q}.
a<1<h

If @ < a, we assume that a function ¢ € C¥[«, a] is given. Let k be a fixed
integer such that 1 < k < n—1, and let r = min{q, k—1}. We seek a function
xe® = C"[a, bJnC9(e, a]nC9[a, b] having at least a piecewise con-
tinuous nth derivative on [a, b], and such that:

(12) ifa<aand g>k—1, then
xX0(@) = o), 0<i<g, telo,a);
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if ® <a and g < k—1, then
xO() = ™), 0<i<q, tela,al; xPa)=4,, g+1<i<k-1;
if & = a, then
ay=4;, 0<i<g<k-1;
and
(1.3) xb)=B;, k<ig<n-1;

also, x is a solution of (1.1) on [a, b].

Second order boundary value problems with deviating arguments arise
naturally in the study of variational problems in control theory. Sufficient
conditions for the existence and uniqueness of a solution and several
constructive methods for these boundary value problems have been given in
[5], [7]-[17]. While for higher order differential equations with deviating
arguments initial value problems have been studied extensively, not much
seems to be known for boundary value problems except some existence and
uniqueness results are obtained in [1]. Due to their importance in several
engineering applications, right focal point boundary value problems for
ordinary differential equations have recently been studied in [2]-[4], and
references therein; the motivation of the present paper is in line with this work.

2. Some basic lemmas.

LEMMA 2.1 [2]. The Green’s function g(t, s) of the boundary value problem
21) x™=0, xP@) =0, 0<i<k-1, xP®)=0, k<i<n—1,

can be written as

_;'_‘il("j1)(t—a)'(a—s)"-f-l, s<t,

~= 1)'2( )(t afa—s)""""Y,  s2t,

and
(=1 g9, )20, 0<i<k, (t, s)e[a, b]x[a, b];
(=1)"ig9, )20, k+l<ign—1,(t, s)ela, b]x[a, b];

sup I g, s)lds < Cpyb—ay ™!, 0<i<n—1,

ast<ba

where g (t, s) = d'g(t, s)/ot' and
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FE )

l

—i

1
(n=ir’

Cn.l=
k<i<n-1.

 Lemma 22 (2. The unique polynomial P,. (1) of degree n—1 satisfying
PO (@)=0a, 0<i<k—1,and P (b)= B, k<i<n—1, can be written as

—k-l(t_a)i a~k-1/ j (t—a)“'(a—b)’"
(2.2) P,,_l(t)—‘;o il o+ Eo (':;o P )ﬁu-,.

Lemma 23 {1]. Let B be a Banach space and let u>0, peR,
S(uy, u) = {ueB: |lu—ue|l < p}. Further, let T be an operator which maps
S(uy, p) into B, and

(i) for all u, veS(ug, w), ||Tu—To|| < Allu—0v||, where 0 < 1 < 1,
(D) po = (1—=4)"|Tug—ull < p.
Then

(1) T has a fixed point u* in S(u,, u,),

(2) u* is the unique fixed point of T in S(ug, p),

(3) the sequence {u,}, where uy,, = Tu,, m=0, 1, ..., converges to u*
with |[u* —u,|l € A"y, and |u*—u,| < A(1-2)" lllu —tp—1l,

4) for any ueS(uy, po), u* = limy,_ o T™u.

LemMMa 24. Let (E, <) be a partially ordered space, let x, < y, be two
elements of E, and let [x,, y,] denote the interval {xe€E: x, < x <y,}. Let
T: [x4, Yol = E be an isotone operator (T(x) < T(y) whenever x < y) and let it
have properties (i)iv) or (iy—(iv) below:

(1) xo < T(xo);
(ii) the (nondecreasing) sequence {T™(x.,)} where TO%(x,) = x,,
T 1(xy) = T[T"(x,)] for each m =0, 1, ... is well defined, i.e., T"(xo) < yo
for each natural m;
(iii) the sequence {T™(x,)} has supxeE, ie, T™(xy)Tx;
(iv) T"** (xo)1 T(x);
(1) T(yo) < Yos
(i) the (nonincreasing) sequence {T™(y,)} is well defined, i.e., T™(yo) = X,
for each natural m;
(iii) the sequence {T™(yo)} has infyeE, ie., T"(yo){y;
vy T ' (yo)l TO).
Then x = T(x) and x < z for any other fixed point ze[xq, yol of T, or,
respectively, y = T(y) and z <y for any other fixed point ze[x,, yo]l of T
Moreover, if T has both properties (i) and (i), then the sequences {1"(x,)}.
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{T™(yo)} are well defined and if, further, T has the properties (iii), (iii) and (iv),
(iv) then

Xo S T(X) €...€T"(xg) €...<x<Ky< ... < T"(Yo) £ ... < T(o) < Yoo

and x=T(x), y=T(y); also any other fixed point z€[x,, yo] satisfies
xX<z<KY.

Proof. This is stated in [18] and its proof is based on Viswanatham’s
lemma [20] and an existence theorem due to Bange [6].

LEMMA 2.5 [19). Let M > 0 and let {x,(t)} be a sequence of functions in
C®™[a, b] such that |x,(t)) < M and |x®(t)] < M for all m. Then there exists
a subsequence {x;(t)} such that {x%); ()} converges uniformly on (a, b] for each
Lb0<i<n-1.

3. Existence and uniqueness. To prove the existence and uniqueness of
solutions of the boundary value problem (1.1)-(1.3) we shall convert it to its
equivalent integral equation representation. For this, we define functions £ and
v as follows:

8(1) = {(1), te[a, a],

, otherwise.

If « <a and g = k—1, then

_ o, te[a, a],
Ve = {Pn_l(r). e(a, b1,

where «; = ¢"(a), 0<i<k—1, and f,=B,, k<i<n-—1.
If a<a and g <k—1, then

o), tela, ],

Ve = {P,.ﬁl(t), tela, b],

where a;,=¢%(a), 0<i<g; o;=A4, q+1<i<k-1, and B, =B,
k<ig<n-—1.
If « = a, then

V() =P, 1), tela,al,

where o, = A4, 0<i<k—1, and B,=B, kgign—1.

It is clear that Ye4, and for all te[a, b] with w;;(t) = a, ¥?(w, (1)
= P{;(a+0). Further, the boundary value problem (1.1)~(1.3) is equivalent to
the integral equation

b
(3.1) x(t) = () +0@t) [ g(t, s) f (s, xow(s))ds.
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THEOREM 3.1. Suppose that

(i) K; >0, 0<i<gq, are given real numbers and Q is the maximum of
| f(t, {<xD)| on the compact set [a, b] x D,, where

Do = {0 Ixpul, ooy IXip) < 2K, 0<i < g},

(i) sup.<,<s W) € K;, 0 < i< q, wherever y¥(t) exists,

) K, \!e-0
- < = i ~ .
(i11) (b-a) ( 0 C....') 0<i<gqg
Then the boundary value problem (1.1)—(1.3), or equivalently (3.1), has a solution
in #.

Proof. We define an operator T from the Banach space (4, || |l), where

llx|l = max { sup |x®(¢)|, wherever x*(t) exists},
O0€iISq agI€h

into # by
b
(3.2) (Tx)(t) = Y(©)+0(t) f g(t, 5) f (5, xOW(s))ds.

The following properties of T may easily be established:

(1) (Tx)(¢t) satisfies the boundary conditions (1.2), (1.3),

(@) (Tx)™(2) = f(t, xow(?) at all points of continuity of f(t, xow(t)) with
te(a, b],

(3) Tis a completely continuous operator,

(4) fixed points of T are solutions of the boundary value problem
(1.1)—(1.3).

Consider the closed convex subset %, of (4, |'|]) defined by
R, ={xeB: X)) <2K;, 0<i<q, wherever x(r) exists}. We shall show
that T maps 4, into itself. For this, let xe 8, . If t e [a, a], then from (1) and (ii)
it is obvious that }(Tx)?(t) < K;,, 0<i<q. If te[a, b], then since w, (t)
efa, b], 1 <j < pli), 0<i<g,itis clear that xow(t)e D,, and hence from
Lemma 2.1 and (ii) and (iii), we find

b
(Tx)P(e) < sup WO+ sup [lg(, s)l|f (s, xow(s))|ds

agt<h ast<bha
< K+0C,ib—a ' <2K;, 0<is<gq.

Thus, if tefa, b], we have |(Tx)(t) <2K;, 0 <i< g, wherever (Tx)“(r)
exists, and hence T#, < #,. Using the Ascoli-Arzela theorem one may easily
prove that T4, is sequentially compact. Hence by the Schauder-Tikhonov
fixed point theorem T has a fixed point in 4. From (4) this fixed point is
a solution of. (1.1}+1.3).
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COROLLARY 3.2. Suppose that the hypotheses (i), (iii) of Theorem 3.1 are
satisfied and let le C9[a, alnC" Y[a, b] be given. Then the differential
equation (1.1) together with the conditions:

(33) ifa<aand q=k—1, then
x0@)=19(0), 0<i<gq, te[a,al;
if o <a and ¢ <k—1, then
) =19(0), 0<i<gq, te[a,a]; xP(@=1Pa), q+l1<i<k-1;
if « =a, then

xMa)=1%a), O0<i<k-1;

and
(34) xO(b) =190b), k<ign—1,
has a solution in # if
(3.5) sup (I < K;, 0<i<y,
est&a

(b a)p (b a)k-l—J( n—1 (b a)p—-k+1 )
3.6 —M_ <K,
9 2 O Mt =1\, 2, ke D) ’

0<j<k-2,
n=1¢p__ \p—J

(3.7) y OV Ty <K, k-l<j<a,

= o))
where supae < 100 < M, 0<j<n—1.

Proof. We need to verify the hypothesis (ii) of Theorem 3.1 for the
function Y, defined by
_ i, tela, a],
Vil = {P,_l(r), tela, b),

where o, = ["(a), 0<i<k—1, and B, =I(}), k<ign—1,
If te[a, a], then (3.5) is the hypothesis (ii) of Theorem 3.1, If te[a, b],
then since P,_,(t) is a polynomial of degree n—1, we find

IPR= (@) = IPRSDG) = 19"~ Vb)) < sup 1g° V() < M,y

ag1<h

Next, from
b b
PYZP(t) = PO (b)) — [ PY= N (s)ds = g~ 2(b) — | PN (s)ds
t H

we get

IPY=2() S M- 2 +(b—1)M
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Using the same arguments repeatedly, we obtain

38 P2, <y &= :
( ' ) l 'l"l(t)l S pgj (p"'j)! Mp’ kg.] s n—lo

Further, we have
Pé- (1) = P&- 1’(a)ﬂ'P"" 1(8)ds = g~ Y(g)+ j P®. ((s)ds

and hence [rom (3.8) it follows that

_ n—l(b a)p—k+1 n—1 (b_a)p-k-l-l
k=1) = e
(3‘9) |P$l-l (t)l Mk l+ Z (p k+l)' M _%1_1 (p—k"'l)! Mp‘
Finally, since
k= 2(: a) ’ (t s)k 2—-J )
Pl(ll‘)'l(t) ng (p)' P( )1( )+j (k 72— ) (k ”(s)ds, 0 $J < k_'2’

from (3.9) we find

k- Z(t_a)p (t_a)k-l—,[( n—1 (b_a)p-k+1
3.10) |PYL,(0) = M+ , —M

G10 1P 0= 2 T Mot o1t 2, ke ) )
Inequalmes (3.8)-(3.10) together with (3.6), (3.7 imply that
PP, (0l <K, 0<j<q. Thus, W) <K, 0<j<gq, for all te[a, b],
wherever y{'(t) exists.

COROLLARY 3.3. Suppose that
a pli)
(3.11) £, GONS L+ Y Y Ly, ,I*™?
i=0j=1

for all (¢, {x))e[a, b] xRN, where 0 < a(i,j) <1 and L, L, are nonnegative
constants. Then the boundary value problem (1.1)—(1.3) has a solution in 3.

Proof (3.11) implies that on [a, b] x D,

q pl)

£, N <SL+ Y Y LK)y =0,, say.
=0Jj=1
Next it is easy to verify that K,/Q, -0, 0 < i € g, as K;— o0. Thus, Theorem
3.1 is applicable by choosing K;, 0 < i < ¢, so large that the hypotheses (ii) and
(iii) are satisfied.

THeOREM 3.4. Suppose that
q pi)

(3.12) | f@, )<L+ Z Z L; jlx; ;)

i=0f=1
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for all (t, {(x))e(a, b]x D,, where
Dy = {<x): Xl oo [Xipp] € sup WO@I+HL+)1=2) 7 Coulb—a)™,

e<t<h

0 < i< q, wherever y(t) exists},

p(l)
(3.13) A= z Z L,,jC,,,,-(b—a"—' < 1,
i=0j=1
g pli) . .
(3.14) c=Y Y L sup WP(t), wherever y*)(t) exists.
(=0j=1  a<i<b

Then the boundary value problem (1.1)—(1.3) has a solution in 4.
Proof. Consider the closed convex subset #, of (&, ||'||) defined by
B, = {xeB: X)) < sup WOOI+(L+)(1-2)C,ib—a)™',

a<1<b
0 <i<gq, wherever y(r) exists}.

As in Theorem 3.1 it suffices to show that the operator T defined in (3.2) maps
A, into itsell. For this, let xe®,. If te[a, a], then [(Tx)P(t) = [y (),
0<i<gq, and hence T#,< %, is obvious. If te[a, b], then since
w () ela, b], 1 <j<p(i),0<i<gq, it is obvious that xow(t)e D,, and hence
from Lemma 2.1 it follows that

q pli)

b
(T (@ < sup WO+ sup flg™ (@, I[L+ Y 3 Lij[x®(wis(s))[] ds

ast<h ast<ba i=0j=1

q p(i)

< sup WO+ Comb—a) "[L+ Y ) Li,{ sup WO

asesh i=0j=1  ast<b
+(LA+)(1=N"1Cyyb—a)y ']
= sup [Y™(t)+Cpmb—a) "[(L+)+(L+c)(1—2)711]

asesh

= sup YOI+ (L+)1-A 7 Coulb—a) ™, 0<m<yq,

ast<bh
wherever y'™(t) exists.

Thus, if tela, b] then TH, < #B,. Hence, for all te[a, b] we find that
T8, < %,. )
THEOREM 3.5. Suppose that

(1) x, €4 is a solution of the boundary value problem (1.1)-(1.3) different
Sfrom ¥, so that
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llx; —¥li = max { sup "’%"'nﬂ«a—%«nu

osi<q lasr<sr Ca,

wherever x{(t) and Y (t) exist} #0,
(ii) the function f is such that

q pli)
(3.15) 1£@ <M< Y, Y, Liea—vO(wi )

i=0j)=1

Jor all (¢, {x))e(a, b] x D,, where

D, = {<x>: |xiy =¥ (wi )] < Crilb—a)llx, — ¥,
1<j<pl), 0<i<q}.
Then it is necessary that A > 1.
Proof. Since x,(t) is a solution of the boundary value problem (1.1)-(1.3),
and w;(t)e[a, b] for all te[a, b], it follows that

0 ) (b—a)
(3.16) [ x(w () =y (wi,(0)| < sup

astEh nd
< Ixy =Yl Cpilb—a) ™,

1<j<p@), 0<i<gq,

Pyt Crulb—a)~"

and hence (t, x,ow(t)) € [a, b] x D,. Thus, on using the hypothesis (ii) in (3.1),
we find

() -y ™)

b q pli)
< sup [lg™(t Y Y, LijxP(wiy @)~y O(w6)ds, 0<m<q.
aS1<ba =0 j=1
Hence, from Lemma 2.1 and (3.16), we get

q pli)

PO — Y™ @) < Comlb—a' ™" Y ¥ LiiCoilb—a)llx,— ¥,

i=0j=1
0sm<gq,
which gives
b=a)" (m) <
S PO -0 < Ak vl 0<m<g,

and finally ||x, —y|| < Alix, —¥ll, which implies that 1 > 1.
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Remark 3.1. If (3.15) is satisfied, then obviously ¥ € 4 is a solution of the
boundary value problem (1.1)—(1.3). Hence, if D, = RY and 1 < 1, then ¥(t) is
the unique solution of the boundary value problem (1.1)-(1.3) in &.

4. Picard method. Let 4, 0 <i< k-1, and B,, k <i<n-—1, be given
fixed numbers. For a given x € %, we define a new functlon w,ega as follows:
if a<a and g2 k—1, then

Valt) = x(2), te[a, a],
2 | Paoy(®), te[a, b], where a, = #(a), 0<i< k-1, and

B,=B, k<i<n-1;
if a<a and q<k—1, then

Vo) = {i(t). te[a, a,
P,_,(t), te[a,b], where a, —x"’(a) 0<i<g,
A, q+1\:<k 1, and
ﬂ.-=B,, ign-1;
if @ = a, then
Y,(t) = P,-(t), te[a,b], where o, = A4,, 0<i< k-1, and

ﬂ‘=B'-, k$i€n—l.

A function xe& is called an approximate solution of (3.1) if there exist
nonnegative constants ¢ and é such that wherever ¢*(t), y{(¢) and x(¢) are
defined,

4.1) sup WOy <eCoub—a)y™, 0<i<ygy,
ase<H

@2) sup |x9() -y B(t)jg“)(t s) f (s, Xow(s))ds| < 6C,;(b—a)"~",
asersd

0i<yg.

Inequalities (4.2) imply that there exist functions #,(t), 0 € i < g, defined
on [a, b] such that

43) () =P +6() [, 9)f (s, Tow(s)ds+n,(t), 0<i<yq,

and

sup In(o) < 5C, (b—ar~".

a<t<h

The function f is said to be of Lipschitz class if for all (¢, (x)),
(t, <y))ela, b] x Dy, D, = RV,
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q p(i)

(4.4) 1, GX)=f(t, N Y, Y Lijlxij—yiyl-

1=0j=1
In what follows we shall consider the following norm in the space #:

Il = max {C"_-°(..b_:‘li

0Si<q

sup |x"(t)] wherever x“(¢) cxists}.
qcns' asStsh

THEOREM 4.1. Suppose that (3.1) has an approximate solution Xc %, and
(i) fis of Lipschitz cless on [a, b]x D,, where
D, = {(x): i,y = %O (wi(0))| < “'c,.o((:Ti—a) 1<j<p(), 0<i< q},
(i) A< 1 and
(4.5) Ho=(1—2"1(e+8)Cpolb—a) < u.
Then

(1) there exists a solution x*(t) of (1.1)~(1.3) in S(%, uo),
(2) x*(¢) is the unique solution of (1.1)-(1.3) in S(x, ),
(3) the Picard sequence {x,(t)} defined by

Xm+1(t) = Y(t)+ B(t);:g(t, ) f(s, x,ow(s))ds, m=0,1,...,
(4.6) ’
xO(t) = x-(t)’
converges to x*(t) with
* =Xl € A"ty %= 2ll € AL =2 =X

(4) for any x,(t) = x(t), where x e S(X, u,), the iterative process converges
to x*(t).

Proof. Define an operator T: S(x, y)— % as in (3.2). If xeS(x, p), ie.,
Ix—%|| < u, then whenever x(t) and x“(¢) exist,

sup |x®(8) =X (t) < p——7*

—, 0<igqg,
a<t<h Crolb—a) ST

and hence

® 1) = 2O(w (O) € p=—r—;, 0<is<y.
sup 0wy (0) = %0m0) < me—5 s )

Thus, if te[a, b], then xow(t)eD,. Now let x, yeS(x, w). If te[qz, a], then
from (3.2) we have (Tx)?(t)—(Ty)"() =0, 0 < i < g, which implies that

N
4.7 sup Crolb—a) |

a<ts) Cn.i

(T —(Ty) () < Allx—yll.
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If te[a, b], then from (3.2) and the Lipschitz condition (4.4) we find

NTx)® () —(Ty)? () < I g, ) Z Z Ly j|x®(w;, () =y (wi,/(s)| ds

i=0j=1
5 LSyl
n. b n— l x
Crtlb=er™ 2 %, Lug =gy~
3. x —
e Sl
and hence
¥ ]
@48) sup S8 o) ~ (T < Allx— il

asi1%h Cn.i

Combining (4.7) and (4.8), we get ||[Tx—Ty|| < Alix—yl.
Next, for all te[a, b] equations (3.2) and (4.3) give®

(4.9) (TR -0 =y —¢PO—nl), 0<i<yg,

wherever the derivatives exist.
Using (4.1) and (4.2) in (4.9), we obtain

sup [(TR)(O)—50()] < (e+8)Cilb—a)™",

astsh
which gives
C ¥
sup u.O(b a)
ast<bh Cn.i
and hence from (4.5) it follows that

A=A Tx—x) A=)~ +)C,oo(b—a)" = po < p.

(T () — (@) < (e+0)Cpolb—a)

Thus the assumptions of Lemma 2.3 are satisfied and the conclusions (1)—(4)

follow.

5. Approximate Picard method. Theorem 4.1 has an important feature of
being constructive: moreover, a priori as well as a posteriori bounds on the
diflerence between the iterates and the solution are available. However, in
practical evaluation of the sequence {x,(t)} generated by (4.6) only an
approximate sequence, say {y,(t)}, is computed. To find y,,+,(t), the function
JSis approximated by f,,. Therefore, the computed sequence {y,,(t)} satisfies the

recurrence relation

b
Yme 1 () = Y(O)+0() § g(t, 5) S5, ymow(s))ds, m=0,1,...,
(5.1 ‘
: Yo(t) = xo(t) = X(¢).
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For y9(t), « <t < b, 0< i< q (wherever exist), obtained from (5.1) we shall
assume that f, satisfies

(52)  sup | fu(t, ymOW(D) =S (t, ymow(®)| < 4 sup |£(t, yuow(®)|,
ast<b astsh

m=0,1,...,

where 4 is a nonnegative constant.
(5.2) corresponds to the relative error in approximating the function f
by f,, for the (m+ 1)th iteration.

THEOREM 5.1. Suppose that (3.1) has an approximate solution Xe®, and
(i) inequality (5.2) is satisfied,
(ii) hypothesis (i) of Theorem 4.1 holds,
(i) 4, =(1+4)i <1,
(iv) 4y =(1=4,))" e +6+4F)Cpo(b—a) < p,
where F = sup,,;,s,,|f(t, iow(t))|.

Then

(1) all the conclusions (1)-(4) of Theorem 4.1 hold,

(2) the sequence {y,(t)} constructed from (5.1) remains in S(X, u,),

(3) the sequence {y,(t)} converges to the solution x*(t) of (1.1}+1.3) if and
only if limp-q @, = 0, where

b
O = [|Vm+1 &)=Y O =0 [ g(t, 5) f (s, ymoW(s))ds]|;

(4) the following error estimate holds:
(53)  I*—=Ymeall SA=2T [AlYm+ 1= Vall
+4C,o(b—a) sup |f(t, ynow(®)[].

ast<h

Proof. Since A, <1 implies that A <1 and obviously u, < y,, the
hypotheses of Theorem 4.1 are satisfied and the conclusion (1) follows.

To prove (2) obviously X = y, € S(X, y,), and for ¢ < t < a equations (5.1)
and (4.3) give

Wi (®)—x00) =y —yPO)—m), 0<i<g, m=0,1,
and hence from (4.1) and (4.2) we get
|y 1 @) —x0()] < (e+8)Cpilb—a)y ",

which implies that

(54) sup 08~ o 50 < e+8)Cpolb—a)
aft<a (:mi
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Now assume that a <t < b; then from (5.1) and (4.3) we have

yP(t)—xO ) .
< WO —gP@1+[1g(, 9| fols, yoow(s)—f (s, Xow(s))|ds + In,(e)

< (€+0)Coylb—a)" '+ C,(b—a)" '4F
=(e+0+4F)C,i(b—a)!,
which implies that

(5.5) sup Cn.o(b - a)‘

O30 < (e+8+AF)C,o(b~ay.
os1<h n.{

Combining (5.4) and (5.5), we obtain ||y, — || < u, and hence y, € S(%, u,).
Next we assume that y, € S(%, 4,) and show that y,,,, € §(%, u4,). For this,
from (5.1) and (4.3) we have

|y&s 1 (8) = X))
b
< WO =R+ [ gDt 9| Suls, ymow(s)—f (s, Zow(s))|ds + In;(¢)]

< (+8)Cpilb—a)' ' +C,i(b—ay " sup [| fu(t, ynow(®) =S (t, ymow(t))|

asr<h

+‘|f(t, ymow(t)) —f(t- fow(t))l]
< (e+8)Coilb—ay "+ Coslb—ay ™!

x sup [(L+4)[f(t, ymow()—f (¢, Xow ()| + 4| f(t, Tow(r))[]

FEIEY )
S (E+6+4F)C (b—a) '+ C, (b—a) i (1+4)

X su " .
astspb. o‘,;, JC" o(b )l”y x|l
and hence
Crolb=a) |

astSd Cn-l
e+6+4F)C,o(b—a)+(1+A)Ally,, — %Il

(
(1=A)p+A py = py.

Comtining (54) and (56), we find |ym+;—X|| <y, and hence
Ym+1€8(X, pt;). This completes the proof of (2).
Next, from the definition of x,,4,(f) and y,.,(t) for a <t < a, we have

<
<

X0 (=¥ 1 (6) = O, 0<i<qg, m=0,1,
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and hence

(5.7) sup Cr ((; )| e ()—y0, (1) = 0.

as1<a nd

Further, if a <t <b, then

X+ 1(8)=Ym+1(t) = '/’(t)"f'IG(t, s)f(s, ymow(s))ds"}’mﬂ(f)

b
+fg(t, [ f (s, xpow(s))~f (s, ymow(s)]ds
and as earlier, we find

(58) sup M—_ﬂ)

C X84 1 ()= y@s 1 (8)] < G+ Al Xp=Ymll-
FESES) ni

Combining (5.7) and (5.8), we obtain

(5.9) 1%m+ 1~ Ym+ 11| < @t Allxp,— yall.
Since x,(t) = yo(t), @ <t < b, inequality (5.9) gives

(5.10) Nm+ 1= Ym+ 1 Il < 2 A" lay.

Using (5.10) in the triangle inequality, we get

(511) [1x* — Ym+1ll < 'Zofl"'_'a,-l-llx,,,“—x*ll.
Theorem 4.1 ensures that lim, . ||x,+1—X*|| =0. That the condition
lim,,. ,, a,, = 0 is necessary and sufficient for the convergence of the sequence
{yn()} now follows from Toeplitz’ lemma: For any 0<a<]1, let
S, =dreoa™ 'd, m=0,1, Then lim,.,s,=0 if and only if
lim,od, =0".

Finally, we shall prove (5.3). For this, if a <t <a, then obviously
x* () —y®. () = 0 and hence

m

(5.12) sup C"—'°(b—_llx"“’(t) Yo+ =

a$t<a "

Further, if a <t < b, then we have

X*(8) = Ym+1 (1)

b
= [g(t, $)[f (s, x*ow(s) =1 (s, YuOW(S) +1 (s, YmOW(S)) =15, ymOW(s))]ds
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and as earlier, we find

Cu.O(b - a)

(513)  sup ilx*"’(t)—yﬁ.".% 1 ()]

a<t<h Cn.!
< Alx* =y, ll+4C,0(b—a)" sup |f(t, ymow(®)-

astsbh

Combining (5.12) and (5.13), we get
(5.14)  |[x* = Ymasll € AlIx* =yl + 4Cpo(b—a)" sup |f(2, ywow(®))|-

'ESEY )
From (5.14) inequality (5.3) follows immediately.
Remark 5.1. If 4 <1, then from (5.2) it is easy to obtain

sup |f(t, ymow(®)| < (1=2)7" sup |f(z, ynow(®).
agt<h ast<h

Thus, in this case (5.3) can be replaced by a more practical error estimate
Ix* = yull S A=A [Alym+ 1 = yull+ 41 =47 C, o(b—a)

x sup | fu(ts ymow(®)|].
uitib

In our next result we shall assume that for y9(¢), a <t <b, 0<i<g
(wherever exist), obtained from (5.1) the function f,, satisfies

(5.15) SUp | fults ymow(®)—f(t, yuow®)| <V, m=0,1,

ases<d

where V is a nonnegative constant.
(5.15) corresponds to an absolute error in approximating the function f by
J, for the (m+1)th iteration.

THEOREM 5.2. Suppose that (3.1) has an approximate solution %€ &, and
(i) inequality (5.15) is satisfied,
(1) hypothesis (i) of Theorem 4.1 holds,
(i) A<1 and p, =(1-2)"e+8+V)C,o(b—a)" < u.
Then
(1) all the conclusions (1)—(4) of Theorem 4.1 hold,
(2) the sequence {y,(t)} constructed from (5.1) remains in S(x, u,),
(3) conclusion (3) of Theorem 5.1 holds,
(4) the following error estimate holds:

* = Yms 11| < L= D) 7 [AllYm+ 1~ Ymll+ 4 Carolb—a)"].
Proof The proof is similar to that of Theorem 5.1.

6. Monotone convergence. In this section we shall assume that r = q or
o =a, so that the space # is C9[a, b]. In C9[a, b] we shall introduce
a partial ordering. For this, we need to consider the following four cases:
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(1) n is even, k is odd,

(2) n is even, k is even,

(3) n is odd, k is odd,

(4) n is odd, k is even.

We shall consider only .case (1); the other three cases are analogous. For
x, ye C9[a, b] we say that x < yif and only if x*(t) < y¥(t)for 0 <i < k and
for k <i (odd) < g, and y®(t) < x?(¢) for k < i (even) <€ g for all te[a, b].
Since n is even and k is odd, Lemma 2.1 implies that g®(¢, 5) < 0if0 < i< kor
k < i(odd) < q,and g(t, s) > 0if k < i (even) < q for all (¢, s)e[a, b] x [a, b].

A function x,eC®[a, b]nC™[a, b] is called a lower solution of (1.1)
provided

(6.1) xP@) = f(t, xoow(t), tela, b].

Similarly, a function y,e C@[a, b]NC™[a, b] is called an upper solution of
(1.1) if

(6.2) y8O) <f(t, yoow(®), tela, b].

THEOREM.6.1. For the boundary value problem (1.1)-(1.3), suppose that n is
even, k is odd and the function f(t, (x)) is nonincreasing in x;; for all
1<j<pli), 0<i<k, k<i (odd)<q and nondecreasing in x;; for all
1 <j < pli), k <i(even) < q. Further, assume that there exist lower and upper
solutions xq, yo of (1.1) such that

(6.3) Xo < Yo

(6.4) Vo SV SV

where Y, is defined as y with ¢ replaced by x,, o; = x0(a), 0<i<k—1, and
B, = xP(b), k <i<n—1; and similarly for Y. Then the sequences {x,}, {y.}
are well defined by the iterative schemes ’

b
6.3  Xme1(t) = Y(©)+6(0) fg(t, 5)f (s, XpoW(s)ds,

b
(6.6)  Ym+1(t) =Y @+0) {9, 5} f(5, ypow(s)ds, m=0,1,

and {x,} converges to an element x€ C?[a, b], {y,,} converges to an element
ye C9[a, b] (the convergence being in the norm of C9[a, b], which is defined as
lIx|| = maxo <i<q {SUPasi<s XV ()]}). Further,

Xg X €. €%, €...8XKy< €Y, € €)1 €Y

x and y are solutions of (1.1)—(1.3)and each solution z of this problem such that
z€[xq, Yol satisfies x <z < y.

Proof. First, we shall show that the operator T'defined in (3.2) is isotone.
Let x, yeC9[a, b] and x < y. Then from the partial ordering it follows

2 — Annales Polonici Mathematici LIL3
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that xP(t) < y@(f), 0 i<k, k<i (odd) < g, te[a, b], and y(1) < x9(1),
k<i (even) < gq, tela, b]. If tela, a], then from (3.2) we have (Tx)(t)
= (Ty)(t) = ¥(t), and hence T(x) < T(y) is obvious. If te[a, b], then the
monotonicity property of fimplies that f (t, yow(t)) <f(t, xow(t)). Thus, from
the sign property of the Green's function g{t, s), we find

gz, 5) f (s, xow(s)) < g?(t, 8)f (s, yow(s))
for all 0<i<k, k<i (odd)<gq, (t, s)e[a, b] x[a, b],

g, ) f (s, xow(s)) = g(t, 5) (s, yow(s))
for all k <i (even) < g, (t, s)e(a, b] x[a, b].

From these inequalities it follows that T(x) < T(y), and this completes the
proof of T being isotone.
Next, since X, is a lower solution, for 0 < i<k, k < i (odd) < g we have

x(t) = Y&+ G(I)I go(t, s)x(s)ds

< lll(i)(t)+0(t)’fg(i)(t, s) f (s, xgow(s))ds = TO(x,)(t).

This together with the inverse inequality for k < i (even) < g implies that
X < T(x,) in C?[«, b]. The inequality T (y,) < y, can be proved analogously.
Thus, the conditions (i) and (i) of Lemma 2.4 hold, and in conclusion the
sequences {T™(xo)}, {T™(yo)} are well defined.

Since T™(x,) = T[T™ '(x,)], we have T™(x,) = x,, and T"(y,) = ¥,,. For
each i, 0 < i<k, k < i (odd) < g, the sequence {x(z)} is nondecreasing and
bounded from above by y{(t), te[a, b]. Also, for each i, k < i (even) < q,
{x9(t)} is increasing and bounded from below by y§(t), te[«, b]. A similar
argument holds for {yP(t)}. Hence, the sequences {x& (1)}, {yD(t)}, 0 <i<yq,
are uniformly bounded on [«, b].

Now on using the above monotonicity properties, it is easy to verify that

IO < S(t, yoow(®)) < xhy (6) S f(t, xo0w(t)) < x§(1),

te[a, b], for all m. A similar argument holds for {y{’(1)}. Hence, {x¥(t)},
{y®(2)} are also uniformly bounded on [a, b]. Thus, from Lemma 2.5 there
exist subsequences {xﬁ,‘,}ﬁ(t)}, {¥8n(0}, 0 €i < g, which converge uniformly on
[a, b]. However, since x,, and y,, are in C9[a, b] and x,,(t) = y,,(t) = (1),
te[a, b], this uniform convergence is in fact on [a, b]. Further, since for each
i the sequences {x(t)}, {y(z)} are monotonic, we conclude that the whole
sequences {x,(t)}, {yn(t)} converge uniformly to some x(r), y(r) such that
x, ye C9[a, b], i, T"(xg)Tx and T™(y,)ly.

Finally, from the continuity of T it is obvious that T™*!(x,)
=T[T"(xe)]1 T(x) and T""!(yo)| T(y).
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Hence, the assumptions of Lemma 2.4 are satisfied and the conclusions of

Theorem 6.1 follow.

We conclude this paper with the remark that from the computational

point of view monotone convergence has advantage over ordinary convergence
proved in Section 4.

The author is grateful to the referee for his comments on the first draft of

this paper.
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