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MINIMAX CONTROL OF A LINEAR SYSTEM
WITH MULTINOMIAL DISTURBANCES

ith disturbances
In the paper we consider the problem of minimax control of system (1) with distur

i ' ifferent i. It is
% distributed according to the multinomial laws with different parameters for d

loss function
assumed that the horizon of the control is random and bounded and that the
d

epends also on the parameters of the disturbances. This is defined in (3).

1. Preliminary remarks and definitions. Statement of ‘the problem. The
System considered in the paper is defined by the equatlon

: N, u, eR!
(1) xn+1 =Anxn+Bnun+CnZvin3 n=0’ 1""’ A’ Un ’
i=1
where
X, 1S the state variable,
u, is the control,

Vm(i=1,... s)are independent random variables distributed according
to the laws given by (2),

N is a random variable independent of Vi, I<N fclt\iflv,ely
A, B,, C, are (k X Kk)-, (k x1)-, (k x m)-matrices, resp . _
Obviouslyf Xns Ups U, are k-, I, m-dimensional column vectors, respect
ively; x, is given.

Let V be the set of values of the random variables

The matrices (,
=z for zelze
n=0,1,_”’M

satisfy the following assumptions: the linear equa_tions C, fy,;
R 3(yeV)(C,y = z)} have exactly one solution y, fo

It is assumed that the data available at time n are

Xn=(xo,x1,...,x,) and U,_{ = (ug, Uy, ..., Up_1).

It follows then from

the above that at time n the value of the random
variable v, .

i known.
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The control u, 1s a Borel function of (X,, U,_,).
It is assumed that the random variables v;,, have muitinomial distribu-
tions with parameters g, 4;;, ..., 4im, 1., their probability function is

' ) !
1 +1). _ q- 1) (m+1)
(2) p(v( ), “eey v(m ), 'lils teey lim+1) = U(l)' v(m+1)'l'ijl K :'Jm+1 E

where (v, ..., v} is the value of the random variable v,,,
m . m
o™ =g— Z v, Amer =1— Z Aij-
i=1 =1

The parameter g is known; the parameters A; are unknown.

The case ¢ =1 is of special interest.

It is supposed that the horizon 1 £ N < M of the control has a given
distribution P(N =n) = p,, pa > 0.

We put

- 1
j’=(j'1192'12,---a }'sm)s A‘J=§

In the paper we denote by A’ the matrix transposed to the matrix A.
Let us define the risk function for the control strategy U
—_—(UO, Uiy oves uM) as

» N
A3) R(A, U)=E, {E;[ ¥ (x4, A) T(x, XY +u; K;w)}},
i=0

where

E,(-) denotes the expectation with respect to the distribution of the
random variable N, -

Ez(-) denotes the expectation with respect to the distribution of the
random variables v;, for fixed 4, _

(x{, A) is the vector x; with added coordinates 4, ..., 4,,

T, and K, are (k+m) x(k+m) and | x! symmetric matrices, respectively,
nonnegative definite.
. We consider only control strategies U for which the risk function
R(A, U) exists for each 1e4 = A%, where

A={yp - ywWeR™ y; 20, ) y; <1}
i=1
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The set of all these strategies is denoted by 4.
A strategy U@ e4 such that
supR(T, U®) = inf supR(Z, U)
IeA Ued ieA
18 called a minimax control strategy.

The problem is to determine the minimax control strategy for the risk
function (3).

_ 2 A filtration problem. Suppose that the random variables v;, have the
distribution defined in (2) with A;; = ;. Then the random variable v, has the

mu]ti.nomial distribution with the parameters gs and 4, ie., its probability
function pv, 4) is '

(qs) ! v(l) t’(m.'. 1) . ‘
@ plv, ) = 0‘1)!_'_U(m+1)!)~1 oAt if 1eA,

0 otherwise,

m+1
v= {0, om0y 09 =gs.
i=1

Let_ Us assume in this section that the parameter 1'is a random variable
Which has the (a priori) distribution 7,,, r = (ry, ..., ), With the density

re
(5) g(;[; ﬁ, r) = F(rl)...r(rm+ 1)
0 , , otherwise,

AT AmetTl e ded,

Tm+1 = B— Z T
k=1
Having observed X,, the a posteriori density g(i|X,, U,—;) of the
"Pil{ame_ter A given (X,, U,_,) is equal to the density of the parameter A given

& U and can be computed according to the Bayes rule to obtain

(6) g4l X,, Uney) = g(; By 7
Where

s n-1
Bn=B+ngs, rP=r+Y Yol k=1,...,m,
i=1 j=1 .

1 1
ofh pl)

Uiy =1..

Hﬁ)
[

]

m
k
- s rﬁm-l'_l) =ﬂn_ Z rs.)-
k=1
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Moreover, put

1
+
o oD =gs— Y 0@,

v, =
k=1

pim
Given (X,, U,-,), the conditional distribution of the random variable v, is
P(@al Xpy Up—1) = [ p(vn, D g(4; B, 7,) dA
A
_ b(w, Ag(4; B, 7)
g(’ls an+ 1 fn-f-l)

_ (gs)! I' (B +ngs)
oD LD L) Tt D)

e+ o0y L (rm+ D 4 pimt 1)
r(g+(n+1)gs)

Then
E (vgl)l Xm Un~ 1)

= Z’vsrl)p(vnlxm Un—l)
F(ﬁ+nqs) qs 'sgl) rle)"l ’s:n)_l m h
= r(ru)).ur(r(m+u) ! 1 X2 oo Xy (1— Z xj)

. (gs—1)!
\& oD@ oy

Moy o m momtD)

n

X X, X' Xy (1= Y x)) dx, ...dx,
j=1

(m)

I'(B+ngs) gs A o@
B T
(m+1) erl)

x(l_ E xj)r" _ldxl...dx,,,=qsﬂ s
Jj=1 n

where in )’ the summation runs over the set
v 20,.., om0 >0, oD 4omtD = g,
and in )" over the set

2L oP 20,00 >0, o4 . oD =gs.
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In general, we have

®
7) E@®|X,, Uy-,) =qs% (k=1,..., m+1).
In a similar way we prove that
0 (00 | 1)
(8) E(@®®—1)|X., U._,) = gs sy 1)
( n ( n ) n n 1) q (q )ﬂn(ﬁn+l)
and
® (D
9) E (p® 40 - _pTn P g
(U,, Up IXm Un-—I) qs(qs )Bn(ﬁn+1)’ ) 7&

k,i=1,...,m+1).
Moreover, taking into account equation (6), we have

r®

(10) Bl X, Uped) = -,
(11 ) _ PR+
) E(1 Xy Un-0) = 5555
and
(12 _ e
) B hi X Un-1) = 25 k1

k,1=1,...,m+1).
Consequently, for example, we have

E(xn+1|Xm Un—l) = E(Anxn+Bnun+Cuvn‘Xm Un—l)
Fa

B.

s\ ..
E(Fn+1|Xm Un— 1) = E(fn+vn|Xm Un— 1) = (1 +%)rn'
3. Bayes strategies. Let 7 be the a priori distribution of the parameter A
and let U be a control strategy. The function

r(z, U) = {R(Z, Uyn(dd) = E(R(Z, U))
4

(13) = A, x,+B,u,+C,qs

is called the Bayes risk.
A control strategy U,e4 such that

rim, U,) = inf r(n, U)

Uea

18 called the Bayes control strategy with respect to x.
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Suppoée that the disturbances v, have the distribution given by (4) and
the a priori distribution 7 =7, , of the parameter 4 is given by (5), where

r,>0, i=1,...,m Y r; <p. Consider the problem of determining the
j=1
control strategy

Ug, =, ut, ..., uxp

which minimizes the Bayes risk r(mg,, U). It is sufficient to minimize the
following function with respect to U™ =(u,, ..., uy) for given (X,, U,_,)
consequently for n=M, ..., 1,0 and for n =x,,:

N .
T"(R', U(ﬂ)) = Ep {E[Z ((x;: A’) Tg(x:{’ A")’+u|!Ki ui)l Xm Un—l], N ; n}

M .
} = E {Z :_rt_l'((x:’, j-’) Ti'(xl{, A’),+u; Kiui)IXm Un—l}’

i=n'n

where

M
T = Z Di-
i=k
Write

W, = minr,(r, U™).
)
Similarly as in [4], applying the Bellman’s dynamic programming optimality
principle, we can- prove that W, satisfy the recurrence equation

A,

19 W= “5.“{"""(“"”/3 T(Z)Hﬂu(ﬁ,. (R

1 .
+_—_B T +l)Row(T,fs))r,+u$.K,,u,,+"T+’-E[W,,HIX,,, U,,_I]},

where the matrix 7, is divided into submatrices
[:1;(1) 7;(2)’:'
Tl e

such that | : A |
(xns 4) T (xpy 4) = %, TV %, 4 20 TP %, + ' T A
and

Row(4) =[a;s, ..., Gpm)

if A= {[a;]7.
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We show that W, can be expressed in the form

(15) W, =x;D.,x,.+2;—"F,.x.,+f”,.6..f..+ﬂ,,f,,,

Where D, is a nonnegative definite matrix.
For n = M equation (15) holds with

1

DM= Tn(ll)a EM= TJ&Z)’ GM=_'—'T1£{3)’
—_ 1 3)
Hu =g G ROV (B

Assume that equation (15) holds for n+1. Since
Xp+y = A, x,+B,u,+C,v,,

W, exists in (14) and for determining the Bayes control it is sufficient to solve
the equation

=1 grad,, E (Wi 1l X, Up-1] =0,

(17 2K, u,+

Where grad.,nE[W,,H|X,,.', U,-1] is the .column vector defined as usual. But

(18) E[u/n*’l'xm Up-1l= E|:(A,,x,,+B,,u,,+C,,v,,)’D,,+1(A,,x,,+B,,u,,+C,,v,,)

+ (Fu+vn)’Fn+l(Anxn+Bnun+Cnvn)+(fn+vn)lGn+1(Fn+vu)

ﬁn+1

+Hn+1(fu+vn)’Xm Un—l:,'

Then from (17), using (7)+9) and (13), we obtain for the Bayes control u* the
€quation

(19) [K,,+ n,,; Y ) B,,]u:‘

n

F
2L [BLD, 1 Ay %+ By (@sDyss Gyt Fran) 5= 0.

Assume that equation (19) has a solution u}. Then the Bayes control is
Fa

(20) u: = _ann_Qnﬁ ’

Where

: +
(@ P..=";“(K,.+f;—*—‘-B:.D,.HB..) B,Dys1 Ay,
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nn RH 1 ¥ ’ {4
(22) Qn = ! (Kn+—f—anDn+l Bn) Bn(qSDn+1 Cn+Fn+1),

n n

and A™ is the Moore-Penrose pseudoinverse matrix to the matrix A (see [2],
p. 407).

Moreover, by (14) using (7)-(13) and (18) we prove (15) for n with D, and
F, satisfying the equations

@) D, =T +™ 4D, (4,~B,P,),
n
n, ,
(24) Fu=T2+="-(q5C,Dys1+Fpr1)(4,~ B, P)

n

and the boundary conditions (16).
From (21) and (23) we obtain also another form of the equation for D,:

(25) D, = T+ P,K, P+ 21 (4,~B,P) D, (4,—B, P,).
14

n

From (16) and (25) it follows (by inductive argument) that D, is a symmetric
nonnegative definite matrix.

In the paper we assume that for n =0, 1, ..., M—1 and for each x, eR¥,
/B, €R™, equation (19) has a solution u*.

For determining Bayes control strategies see [1], [3] and [5].

4. Determining the risk. We say that (8,r) belongs to S and write
B, nNeS, r=(@y,....,rp, ifr;,>0,i=1,....,m, i r <p.
Let u* be the control defined in (20)424) and let
U, =ud, ut, ..., ulp.
For (B, r)eS we put
R,(, U3,) =E; [fj 205, 4) Tixi, 4Y +uf K,ur] X, U:_.],

where U¥_; =(u§, uf, ..., u*_,). We have
(26). R(Ia UE,D‘) = RO (I’ U;,r)
and the functions R, satisfy the equations

(27)  R,(, U}) = (xp, 2) T (xp, XY + 0 K, u

n
+

Ty i=n+1n+1

“ru
"“Ex[Ei[ Y [0 A) Fix, /1')’+u?"KauE"]|X,.+1,UI]

Xn’ U:—l]
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= (Xp, A) T,(x,, A) +u¥' K, “:+%Ei [Ru+1 (4, U Xy, UR-1].

n

The risk R(1, U%,) can be determined by (26) and (27). Similarly as in
the previous section we prove that R,(4, U%,) is of the form

@) R,(X, U,) = 5,8, %, + 2x, b, A+ Fycofot X € A+ 27, £,
+indt Y K,
i=1
where

(29) A =|.

and, for n=0,1,..., M

b

1
an:Dn, bn=F;l’ cﬂ=
T

1 M-1 ; M-1 i_n)z
e,.=;"[z.,+qsl';——2qs > : "Sl__l_qzsz ) ( 7S |»

n i=n+1 ﬁi ' i=n+1 i
(30) .
1[ ™zt M1 _p
ﬂn=——|;— 2 wSitas Y —'z_'Si:Ia
Tin |l i=n P i=n+1 Pi
h=--Row|¥,+ ¥ —=5| L=-2|v+ ¥ =I5/,
Tn [ i=§l—1 Blz ] T, i=§+l ,2 _
where

Sn = Q;(nnKn+7ru+1 B::Dn+1 BH)QH’

M-1
(31) Y, = Z Tiv1 CiDi 4y G,

M-1
Z,=m, T+ 2 Mir195(gs—1)C Dy Ci+qs(Fiyy i+ CiFiny) + )

From (28)31) we obtain

3 i M-1 j M-1 i2
B2 R Up)=x [Zo+quo—2qs Y = Si+q’s? BESiJ’l
' i=1 i i=1 i

M-1

M-1 i
+[2x;,F;,—2r’ Y —=8;+gsRow (Yo+ Y —zsf)]i
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M-1

+ x5 Do Xo+1 Z Z)»'(Yo'l“ Z )
i=1 l

10! j=1

5. Extended Bayes strategies. Denote by U, = (ug, uy, ..., us), meA,
the control strategy for which

(33) U =0, u}=—-P,x,—Qm(n=0,1,..., M=1),

where 0, is an /-dimensional zero column vector.
Moreover, let U, = (ug, uy, ..., uy), meA, be the control strategy for
which
upy =0, ug =—Pyxo—Qom,
(34) n-1

From (20) and (31)(34) we obtain
(35) R(4, Uy) = lim R(4, U}), R(Z,U,)= lim R(4, U})

t—a t—0
tfy—m 1}y —»m

for (¢, y) €S, meA.

6. Some lemmae. In the next section we need the following lemmae:

Lemma 1 (Sion Theorem). Let f be a function mapping X xY into R!.
Suppose that
(@ X and Y are convex and compact subsets of R™, mell, 2,...);
(b) for each yeY, x = f(x, y) is convex and continuous;
(¢) for each xeX, y = f(x, y) is concave and continuous.
Then there exists a saddle point (x, y)€X xY such that

inf sup f(x, y)—SUPf(x ) =f(%, y) = inl f(x, })

xeX yeY . yeY _xeX

= sup inf f(x, y).

yveY xeX

Lemma 2. Let {m,}° be a sequence of a priori distributions on A and let
U and {r(m, Ul be the corresponding sequences of Bayes strategies
and Bayes risks. If U'? is a strategy for which the risk function R satisfies the
condition

supR(4, U®) < limsupr(n,, U,),

Ae A k—~w

then U is a minimax strategy.
LemMMA 3. If the matrix A is nonnegative definite and A€A, then
A AL < Row(A) 4.
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Lemma 4. For AeA and 1; defined by (29), we have

s M-1 i R M-1 i
(36) gy A;.[Yo+ y —2S,-]lj2qsl’[}’o+ —35,.],1.
j=1 - i=1 Vi : i=1 Bi
_ Lemma 1 is well known in game theory. Lemma 2 is well known in
decision theory (see, e.g, Theorem 6.5.2 in [6]). Lemma 3 follows from the
theorem that a convex function considered in a convex polyhedron takes its
maximum at a vertex of this polyhedron and that a nonnegative definite
Matrix 4 can be presented as a limit of positive definite matrices. To prove
Inequality (36) it is sufficient to notice that the matrix in the square brackets
IS nonnegative definite. '

+ 1. Minimax theorem. Put ¢ = r/. From Lemma 4 and equation (32) it
follows that

(37 R, Uz, <t [zo+ b ( _14f 2;2‘”" )S,-]/l
i=1 i

M—1ﬂ2 M-1 i

+|:2ng;,—29’ Y —S;+g9sRow (Y0+ Y —ZS,-)]}t
i=0 VMi i=1 Fi
M-1p72

+x3Doxo+0" Y 8,0 SV ZV(BAI+ZP(B, 9 A+ZD(B, )

i=0 Fi
With equality if A;=A, (i=1,...,s;j=1,..., m). Then

(38) F(Rp.op, Ubop)

= % 'Zm(ﬁ)Q+ﬁ—j_-1-R0W(Z(”(ﬁ))Q+Z(2)(ﬁ, Qe+Z (B, o).

def Notice that matrices S,, Y,, Z, are symmetric and §,, Y, are nonnegative
Chmte.

THEOREM. T, If the matrix —Z, is nonnegative definite, then the minimax
control strategy is U,T,o, where

(39 ) M-1
) mo[Zo— Y 8] mo+[2x, Fy+gs Row (Yol mp
| i=0

= max {m'[Z,—

o

S o

M-1
Z 8;] m+[2xp Fy+4gs Row (Yo)] m}.

0

YiglV
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II. If the matrix
M-1gsi+1

Zo— Y

i=1 4gsl

is nonnegative definite, then the minimax control strategy is U mgs Where

Si

' M-1
(40) e m’O So Mo + [be 6+ Row (Zo + qs Yo - Z Sl)] mgy
i=1

, M-1
= max {—m'Som+[2x5 Fo+ Row(Z,+gsYy— Y §))] m}.
i=1

meA

III. If there is B (0 < B < o0) such that

M-1 Bz_qsi
1) Zo— Y (—1+ B )S;=0,

where 0 is the zero matrix, then the minimax control strategy is

5 %k — *
Umos = lim U,

m—*mo
where
M-1p2 i Mot
—my Z —ZS;mo+[2x{, b+quow(Y0+ > —Esi)]mo
=0 1 i=1 Pi
M-1p2 M-1 ;
=max{-ml —zSim+|:2xi, 3+quow(Y0+ _z‘si)]m}-
med =0 B i=1 Bi

Proof. Let us notice that the function (82— gsi)/B? of the variable g > 0
is increasing and the matrices S; are nonnegative definite. This implies that if
the matrix

—Zy = lim [-Z"(B)]
B+
is nonnegative definite, then —Z™ () is nonnegative definite for all g (0 < B
< ). '

Suppose that case I occurs. By (35) and (37) for meA and pelnt A we
have
42) R(4, U;) = lim R(Z, U},.p)
e
. M_l
< (&—m)’Zo(i—m)+[2m’(Zo— Y S)+2x; 6+quow(Yo}:,A
i=0
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M-1
+X6Dox0+ml( Z Si—'Zo)m
i=0

M-1 . M-t
<[2m(z,— ¥ s§)+2x, o+ qsRow(Yo)]A+xoDoxo+m' (Y, S;—Zo)m
i=0 i=0

g RI (ls m)

The function R, (4, m) is a convex function of m for fixed 1 and a concave
function of 4 for fixed m. Then from Lemma 1 it follows that there exists a
Point (4y, mg) €A x A such that

(43)  inf supR, (4, m) = sup R, (4, my) = R, (A, me)} = inf R, (A, m)

meAd AeA iea meA
= sup inf R, (1, m).
AeA meA
It is well known that Ao can be chosen — independently — from the
€quation
(44) max inf R, (4, m) = inf R, (Ao, m).
ied meAa me A

M-1
Assuming that the matrix ) S,—Z, is positive definite, we infer that the

. i=0
only infimum inf R, (4, m) is attained at m = A. Then by (44) we have

meA

(45) max R, (4, 1) = R, (4o, Ao).
Aea
Mqreover, Ry (4o, m) is a strictly convex function of variable m and atmo = o
1S s unique minimum. Then from (43) it follows that (4o, A¢) is the only
Saddle point of the function R, (4, m).
M-1

If the matrix ¥ §,—z, is nonnegative definite, then each (4,, 4,)

. . l=0
Satisfying (45) is a saddle point.
Then we have

(46) SIUER(I, U,}:O) S Sup R, (4, mo) = Ry (mg, mo) = him 7(7g 45, US ,p),
ien (f-»ma:)
Where the last equality follows directly from the equations for the functions
T (g o, Ukes) and R, (4, m) given in (38) and (42), respectively. o
. _.\S Was proved, the strategy UjZ.s is Bayes with respect to the a priori
distribution Tg.es for o €Int A. Then from Lemma 2 we infer that the control
Strategy U, 'is minimax. Formula (39) for m, follows from (45).
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Suppose that the matrix
M-1asi+1

Z—
° i=Zl qsi
is nonnegative definite. Then Z'")(B) is nonnegative definite for all 8 (0 < B
< o0). In this case we have '

S; = lim Zz"(p)
B0+

R(I, U;) = lim R(, U},
B—0+
e—m

M-1 :
gsi+1
SA|Z,— A
h [0 i=zl qsi Sl:,

M-1 1
+[2x(,F{,—2m’So+Row (qu0+ ) ES,-)]A+x3Doxo+m'Som
i=1

M-1

< [2x5 Fo—2m' So+ Row (Zo+ qs Y, — Y S)]A+xoDgxo+m Som
i=1

< Ry (4, m),

where the last inequality follows from Lemma 3.
The function R,(4, m) is convex with respect to m for fixed A and is
concave with respect to A for fixed m. Moreover,

inf R, (4, m) = R, (4, 4).

meA

Then there exists a saddle point (19, m,), 1o = m,, which is determined from'
the condition

R3(49, 40) = max R, (4, A).
AeAd

Moreover,

R, (my, my) = pﬁg{’_ r(nﬂ.eﬁ’ U?i‘.eﬂ)'

e—~mq

Then, similarly as in case I, we prove that the control strategy Upg» When mg
is determined from (40), is minimax.

- Assume that the case IIT occurs. Then from (37) for g satisfying (41) we
have | :

R(L, Upp) SZD(B, 004+ Z9(B, 0) £ Ry (1, @),

and it follows from (37) that this function is convex with respect to 0 for

fixed 4, is concave with respect to A for fixed g, and the infimum inf R, (4, o)
_ geA
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1S attained at A = 9. Moreover, we get

R3 (QOs QO) = hm r(nﬁ,qﬁ’ U?,Qﬂ)’
‘ : e—ep
Wwhich can be verified directly from the equations for the functions R; and r.
Then the control strategy U}, s, where

R; (00, 0o) = max R;(e, 0),

ecA

i minimax. This proves part III of the Theorem.

‘Notice that a minimax control strategy exists for all natural k, | and s in
(1) when m= 1‘
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