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Introduction. Let B denote the family of regular functions
1) S fle) =2+ al?+...Fal"+...

defined in |z| < 1. We denote by r, the upper bound of those values of r
for which f(2) is univalent in |2| < . The number

(2) rgp = inf 7,
feB
will be called the radius of conformity of the family B. In [4] vz has been
found in the case when B is the class of bounded function.
This paper is concerned with an investigation of the radius of con-
formity of some classes of funetions (bounded or unbounded) which may
be represented in the form of a Stieltjes-integral.

1. Theorems on the radius of conformity. We shall prove the following

THEOREM 1. If feB, then r,> 0.
Proof. For |z;| = |2,] = ¢ <1 we have

o) —f(za)l > e —2al (L — D nlagle™ ).

Let g, be such that the last term is positive for ¢ = g,. Then the
function f(z) is univalent on the circle |2| = g,, hence in the dise [2] < g,.
So r;> o> 0. Another proof of this theorem can be found e.g. in [2].

Let B, be any family of regular functions f(z) =z+ale* +... +al 2" +...
defined in |2| << 1 such that

(a) for every m there exists A(n) such that |a)]| < 4 (n),

3 n____
@ (b) limsup VA(n) < .

THEOREM 2. The radius of conformity of the family B, is positive.
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Proof. We have, similary as in the proof of Theorem 1,
F(22) —f(2)] = 1oy — 2l (1— 3 md (m)g""Y).
n=2

There exists a g, > 0 independent of f, such that 1 — 3" nd (n) "' > 0.
Therefore 75 > 0, > 0. : n=z
We denote by M the set of real functions a(f) which are non-decreasing
b

on a certain segment [a,b] and such that [da(t) = 1. Let E, be the
subclass of the family B, consisting of functions of the form

: b
“)  f@) = [ gz Dda(y),

where aeM, g(2,1) is a function continuous with respect to ¢ and such
that for every fixed te[a, b] the function ¢(:,?)eB,. By Theorem 2 we
conclude that rg, > 0.
Consider the functional
J(21) —f(2)
() F(f) =—1—-,

%1%

where feE,, [2,| = [¢3] = ¢ <1,2; # 2,. On account of (4) we have

) b
1t - 29 t
(6) F(f) :fg(zl zi_i(z )dat),  a(t)eM.

2

The set of values of functional (6) is the convex hull of the curve (cf.
e.g. [1])

Wlat - w,t
(7) 2(t) =2(t) ¢y 91, P2) = g(ee ) —g(ee™, 1)

eeiwl __ Qeiv-’z

,

where g€t = 2,, 06%2 = 2,, 4 <t <b.

- Let W(g, ., ,) denote the convex hull of the curve (7) and I its
boundary. Let g, be the upper bound of those values of ¢ for which for
every ¢, ¢.¢[0,2x=) with ¢, # ¢, the closed region W(p, ¢, p,) does
not include the point F = 0. From Definition (2) and Theorem 2 it fol-
lows that

(8) @ =7y, and rg >0.

As an example consider the family of functions f(z) of the form

(8") f(z) = f (2+ 2" da(t), a(t)eM.
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In this case the curve (7) is defined by the equation

-1

2(t) = 1+¢%"™ ) expil(n—k—1)p, + kp,].
k=0

The region W (g, ¢, ¢,) is the closed disc with centre z = 1 and radius

n—1

r=[e"" Y expil(n—k—1)p,+Kgps)|.
k=0
‘We have

n—1
" Y expil(n— K —1)p, +Kg,]| < ng™
k=0

Thus for ¢ < (1/n)™=Y the point F = 0 does not belong to the region
W(o, @1, p;) for any values of ¢,,@,. It is not difficult to notice that
the estimation is sharp. Thus the radius of conformity of the family E,
defined by (8') is g, = (1/n)Y=Y, '

2. The radius of conformity of the family 7. Let T denote the class
of regular functions f(z) =z+al®+...+al2"+... defined in [¢] <1
which have real values if and only if 2 is real. This family has been in-
troduced by Rogosinski [3]. The functions of this class are called typi-

cally-real. Tt is known that sup |a/| = .
- feT
Thus, for B, with A(n) = n,

(9) T<c<B, and r;y>0.

In the sequel we shall find the exact value of r4.
LeMMA 1. The curve defined by the equation

(10)  p(t) = (14202, +2}) (1 42ty +23), . 2 = g™, 2, = 0€™,
P1y P2€(0, ), 0€e(0,1),te[—1, 1],

18 convex and arg u(t) is an increasing function.
Proof. It is not difficult to prove that

Er.‘un —ﬂ"ﬁ”

d
——argu’ () = 2

dt
After detailed calculations we obtain

ﬁ",u”—ﬂ"ﬁ”

{11) 9

= —16(0®— 0°)(sing, +sing,) < 0.
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Thus the curve (10) is convex. It is casily verified that

d 2(g— 0®)sing 2(¢—¢%sing
(12) —a’rg.u(t) = i 2 lz'cp 2 ip 2 zziw 2
dt 11+ 2tpe'r + p? €271 |1+ 2tpe*?2 + o €*%2|
Hence also
(12) BEZEE .
21

From equality (12) we conclude that arg u(t) is an increasing function.
LeEmMMA 2. The curve defined by the equation

1
(13) 2(t) =-——
pn(t)’
18 convex, argz(t) s a decreasing function and argz(—1)—argz(l) < 2.

Proof. argu(t) is an increasing function and therefore argz(t) is
an increasing function. It can proved that

te[—1,1]

2’-z"—z"2” 1 (ﬁ"ﬂ"_ﬂ"ﬁ’,

pp —pp
2 = e |+ 2 | |2)-

29 24
By (11) and (12) we get

zl.zll__zl.zll
< 0.

21

Thus the curve (13) is convex. It is not difficult to notice that the
incresement of the argument of the function z(¢) in the interval [ -1, 1]
is greater than —2m.

THEOREM 3. 7, — V3—2V2 ~ 0.41...
Proof. It is known [3] that the family T may be represented by
a structural formula of the form

(2) =__[ By g el el

The curve (7) in this case is defined by the formula

1 —zl°22
(1 —22,cost+2%) (1 —22,co8t+22) ’

(14) 2(t) =

2, = 067, 2y = 062
The set of points of the curve (14) coincides with that of the curve

_ 1—z1'22
T (142t +22) (1 + 22,4 22) ]

(14") (1) te[—1,1].
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Since the image of the half-circle 2] = p,imz > 0 under the transforma-
tion w = f(z) is symmetrical to the image of the half-circle |2| =g, im2z < 0
with respect to the straight line imw = 0, we may assume that ¢,, p,€(0, x).

By Lemma 2 we conclude that the curve (14) is convex, argz(t)
is a decreasing function and the incresement of the argument is greater
than —2=n. Thus the convex hull of this curve is the closed region
W(e, @1, ¢,) Which does not contain 2z = co and whose boundary is the
union of the segment

1—2y-2, 1—%%
15 1) =1 1-4 ’
( ) 21( ) (1+Z1)2(1+zz)2 +( ) (1_z1)2(_22)2

Ae[0,1]

and the curve (14') (Fig. 1). By (9), for ¢ sufficiently small the point
z = 0 does not belong to W. Let g, be a number from the interval (0, 1)

/T-@
1%

1-2¢-273 =

(=2)10-2))’

Fig. 1

such that z = 0 belongs to I" for some values ¢,, ¢,. Since z() # 0, the
point z = 0 belongs to the segment (15) (Fig. 2).

1—21'12
(1+2,)2 (1+2,)?
Fig. 2 ‘
Thus we have
1 2(1 2
Atz o

(1 —2)*(1 —2,)*
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Hence

(1+z1)(1+zz)_ . 3
(1—z1)<1—z2)_‘3" p=¢

Putting z, = 0,6, 2, = 0,€"*2 we obtain

(1 — g5+ 2igo8ing,) (1 — gj +2ising,)

16 ) .
(16) (1 — go€*™1) (1 — go€™2)?

B,
re(1 — g3+ 2i 0o8ing,) (1 — g} + 2ising,)
= (1 —gp)" —4¢jsing; sing, > (1 — g})* — 4¢;.
The only root within the interval (0,1) of the equation

(1—g5)—405 =0
is the number

Qo = 1/3—21/;.

It is easily noticed that for 0 < ¢ < g, the real part of the left-hand side
of formula (16) is positive with arbitrary ¢,, ¢,. By (9) we conclude that
the point z = 0 does not belong to the set W with pe(0, g,) for arbitrary
values ¢, ,. The function

1 z 2
" z?((l—z)z * (1+z>2)

belongs to the family T and 2'(2) =0 for 2 — i¥3—-2V2. Thus 0o

= l/3 —2V2 is the radius of conformity of the family of typically real
functions.
Let H denote the family of meromorphic and typically real functions

F() =+ f a,[t" defined in || > 1.
n=0

It is not difficult to prove that between the functions of the classes T
and H the following relationship

1
fag

F(o) =

holds.
COROLLARY. In the region || > rg, where

o =ﬁé_ =V3—2V2(3+2V2),

all functions of the family H are univalent.
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