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1. Introduction. This paper is a continuation of an earlier work [5] of the
first-named author. In [5] the initial-boundary value problem for the parabolic
€quation

(1) Autu, =f

was studied in a time-dependent domain Q, = R", 0 <t < T. The problem was
reduced to that in a constant domain 2 of R" by means of a diffeomorphism.
Using two equivalent weak formulations, we proposed two approximate
methods of solution.

The aim of the present paper is to study deeply these methods and the
related error estimates.

2. Basic notation and assumptions. Preliminary lemmas. For convenience
of the reader we recall some notation used in [5].

For x, ye RY we denote by |x| the Euclidean norm and by <x, y) the scalar
product. Given an (N x N)-matrix C, we write

|ICl = sup |Cx| (xeR")

Ix1=1

for its spectral norm.
All the derivatives in the sequel are understood in the distributional sense.

Let.Q = R" be a bounded domain having the segment property. We put
4; = Q@x(0, T) and consider the operator A in divergence form

n n
A=~ Y Diaux, )D;+ Y aj(x, )D;+alx, 1)
Jk=1 i=1
assuming that
(a;) the coefficients ay, a;, a are bounded in Ag;
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(a,) there is a constant ¢ > 0 such that

n

Z ajk(x’ t)éjék > cl¢?

Jk=1
for (x, t)e Ay, £€R" (this means the uniform ellipticity of A).

For any linear normed space X we denote by I*(0, T; X) the set of all
functions [0, T]at—u(t)e X such that

T
{ lu(@®)3dt < .
0 . )

In what follows we use the following Hilbert spaces:

(i) the space L*(Q) with the scalar product (,), and the norm | ||,;

(ii) the closed subspace V of the Sobolev space H,(Q) satisfying
C3 (@) <= V < H,(€), equipped with the induced norm || ||, , (see [1]);

(iii) the space H(V) = {ueI*(0, T; V): u,e[*(4,)} with the scalar pro-
duct induced by H,(4,);

(ivy the space L*¥(0, T) = L?(0, T ; R") with the scalar product

T
(u, v) = | Cu(t), v(r)>dt
. 0 )

and the norm |lu| = (u, u)'/2.

The product of N copies of H,(0, T) is denoted by HY(0, T).
Remark. It is easy to prove that H(V)is a closed subspace of H,(4,), and
therefore a Hilbert space. Suppose namely that
lu,—ull;, 4. =0 as n—o0, u,e H(V).

This means that the sequence p,(t) = |ju,(-, t)—u(, )|l1.o tends to zero in
I?(0, T), and therefore it contains a subsequence {p, } which tends to zero:
almost everywhere in (0, T). This yields u(:, t)e V for almost every t€(0, T), so-
ue H(V).

We relate with the operator 4 two bilinear forms:

b 0. 9) = Y. (@nDy0, Dyt Y. (@00, Wlo+(ag, Vo

k=1

for ¢, yeH,(Q) and

2) B(u, v) = }b(t; u, v)dt-f(u, v)pdt+(u(, T), v(, T))go
; 0 (]

for u, ve H(V). For any ve H(V) we put (see [5], Lemma 3)
5 = [o, o(-, 0)] e H(V) x [2(Q).
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It was proved in [5] that after a suitable change of the unknown function
in (1) the inequality

(@3) b(t; v, v) = 2x|lvliie |
holds for any veV, te(0, T) with a positive constant x. Hence

LemMMA 1. The following inequality holds for any ve H(V):

T
B(v, v) = %( [ 03 ,edt+llo(-, O)IZ+ llv(, T)I3).
0

For the proof it is sufficient to integrate by parts the integral
T
[ (v, p)odt.
0

Suppose we are given two Hilbert spaces H,, H, with the scalar products
(3)os (, ). and the corresponding norms | o, || | ., respectively. We assume
that H, < H,, the inclusion is dense and continuous. Then every f € H, defines
a hnear continuous functional l.(g) = (f, g) over H .. It is easy to prove that
{I.: fe H,} is a complete set of functionals and that I < I fllo- Therefore,
identifying I, with f and putting H_ = (H,)* (with the usual norm which is
denoted by || |-), we have the continuous and dense imbedding H, < H _
Putting I(5) = (I, g), we extend the scalar product in H, to the bilinear form
over H_®H . The generalized Schwarz inequality

(3) I/, 9)ol < 11 -Nlgll

holds for any feH_, geH,.
Let us assume now that Z < H, is a finite-dimensional linear space and let
P be the operator of orthogonal projection in H, on Z. We have

[Pull ;. < cliPyllo < cliullo < cllull.
for ueH,, and therefore

Pu, v u, Pv || v|l
|IPu||_ — Sup l( )Ol = su |( )OI \ “ ”“ +
verr, 00 em. Mol ueH+ o] +

¢ lufl -

Thus P may be extended to a continuous linear operator P: H_— H _; we
denote this extension also by P.

LemMA 2. For any ueH_, ve H, we have PueZ and
@) , (Pu, v)y = (u, Pv),.
| Proof. Let u,—»u in H_, u,e Hy,. Then
(Ptty, D)o = (uy, P0)o,
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and passing to the limit we get (4) in view of (3). Moreover, Pu,— Pu in H_ and
Z is closed with respect to each norm. Therefore PueZ.

LeMMA 3. Let ueH_. Then Pu =0 is equivalent to the identity

(5) ' V (u, z), = 0.

zeZ .

Proof Let u,—»uin H_, u,€ H,. We have the orthogonal decomposition
u, = Pu,+u;, and therefore for any zeZ we obtain

(u,, 2)o = (Pu,, 2),.
Passing to the limit we get |
(6) (u, z)o = (Pu, z)o.

Putting now z = Pu in (5) we obtain }|Pufj, =0, and therefore Pu = 0. The
converse statement is obvious in virtue of (6).

LEMMA 4. Suppose L: H, — H _ is linear and continuous. Then T:= PL|,
is a linear continuous mapping in Z equipped with the norm || |,.

Proof. As all the norms are equivalent on Z, we have for zeZ
|PLzllp < ey |[PLz| - < ¢, || Lzl| - < c3lizll 4 < cqllzllo
with some positive constants c;.

We consider now some examples of the triplet H, <« H, < H_.

ExampLE 1. H, = H(V), Hy = I*(4,). The inclusion H(V) < I*(4,) is
obviously continuous and dense because C§(4;) = H(V). The space H_ is
denoted by H*(V) and the extended scalar products by (, )y, (, ),,., respec-
tively.

ExampLE 2. H, = H(V)x (), H, = [*(4;) x L*(). The scalar products
are defined as

(9)0=(,)AT+(9)Q'

Every linear functional le H_ is of the form

v, 9) = (f, )4, +(@, ¥)g  for veH(V), ye*(Q)

with some fe H*(V), e *(2). So H_ = H*(V)xL*(Q) and the following
equality holds:

1% = 1Lf 1o+ ol 3.

A special case of the approximate methods of solving (1), considered in [5]
and in this paper, is the finite element method. Using the notation of [3] we
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suppose that {7} is a family of triangulations of the considered domain Q < R”
(wWhich is assumed to be a polyhedron) with

h = maxdiamK
KeTy

and that the following conditions hold:
(f,) the family {7,} is regular; this means that there is a constant ¢ such
that

where
hy =diamK and gg=sup{diamB: B is a ball in K};
(f,) (K, Py, Z) with Ke{ ) T, is the family of finite elements of class C°;
> .

() (K, Pg, Zy) is affinely equivalent to a pattern finite element (K, Py,

21() s
(f,) P, < P < H,(K), where P, is the set of all polynomials of degree < r;

(fs) the set X is defined by means of the derivations of order < s (so s =0
In the case of finite elements of Lagrange type);
(fs) there is a positive constant « such that .

V V oh<hyg.

h KeTh

. 3. Simultaneous space-time Galerkin approximation. For given u, e [*((),
ge H*(V) (in particular, for ge [*(4y)) and any arbitrary ve H(V) let us put

lg,uo(v) = (gs U)AT+(u0= U(', O))Q:

where (-, 0) is- the trace according to [5], Lemma 3. We consider the
initial-boundary value problem for equation (1) in the following weak form:

(P,) Find ue H(V) sati§fying the identity
Y B(, ©) = lyuo(0)
for any ve H(V).

Let Z,c H(V) be a finite-dimensional linear subspace. In [5] the
following Galerkin method of solving (P,} was proposed: ,

(R, Find a function u,eZ,; such that
(8) B(uy, 2) = l,,,(2)
for any zeZ,.

Following [6] we are going to prove the stability of this method. For
this purpose we write identity (8) in a slightly different form. Applying

9 — Zactneamania Mas A
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the Schwarz inequality in I*(4,), for a fixed ue H(V) and arbitrary ve H(V)
we get

T .
l({ b(t; u, v)dt] < clull 1 ap 101,005

where c is a constant depending on the upper bounds of the coefficients of the
operator A. Thus

i i
I: v [ b(t; u, v)dt
0

is a linear functional over H(V), and therefore (see Example 1) there is an
Aue H*(V) such that

9) ' }b(t; u, v)dt = (Au, v),_,

(10) IIAuﬂmV) = Il < ellull1,ar-

Notice that if AueI?*(4,), then integrating by parts the left-hand side of )
with ve C$(4;) we obtain Au = Au. Integrating by parts with respect to t, we
see that the right-hand 31de of (2) (in view of [5], Lemma 6) yields now, for u,

veH(V),
(11) B(u, v) = (Au, v) 4 +(uy, v, +(u(:, 0), v(-, 0)),.

In the sequel we use the triplet H, = H, < H_ defined in Example 2. Defining
for an arbitrary ue H(V)

#=[u,u(,0]eHV)xI*() and
| La = [Au+u, u(-, 0] e H*(V)x [}(©Q)

we can rewrite (11) as

(12) ~ B(u, v) = (La, 9),,
and this yields the desired form of (8), namely
(13) (Litz, 2)o = (g*, 2)os

with zeZ,; and g* =g, u,].

Let Z, = {&: zeZd} and let P, be the orthogonal projection in H, onto
Z,. Obviously, Z, is a finite-dimensional subspace of H, and Lis a lmear
continuous operator H , — H _ in view of (10). Consequently, Lemmas 2—4 hold
true. We consider Z, as a normed space with the induced norm || lo- Putting
T, = P,L|z,, we can write (13) (or, equivalently, (8)) as the Galerkin operator
equation

(14) T, = P,g*.

THeOREM 1. Equation (14) is uniquely solvable for any ge I*(A,), ue I*(Q)-
The solution operator S, is bounded by a constant not depending on the space Z;-
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Proof. For any ZeZ, we have
(Tiz, 2)p = (LZ, Py2)o. :

Since P, is the identity on Z,, using (12) and Lemma 1 we obtain
(15) (T,Z, 2)o = B(z, 2) = x|,
Moreover, (T;z, 2)o < || TZllo IZllo- Thus

1T:zl0 = % l2Ho,
which means that the continuous operator T;: Z,— Z, is invertible and that its
range Y is closed in Z,. Moreover, one can also prove that Y is dense in Z,,
because if for some Z, e Z, and any Z e Z, the equality (T}Z, Z,), = 0 holds, then
Putting 7 = 7, we get Z, = 0 in view of (15). Thus Y= Z,,s0 Ty ! is defined on
the whole space Z, and || T; || < 1/x. Therefore, equation (14) has a unique
solution

iy = Ti'P.g*,
where g* = [y, u,]e H, and the solution operator S, = T;'P, satisfies

1 1
149* 0 < ~1Pag*llo < _l1g*lo-

Hence ||S,|| < 1/x and this completes the proof.

Theorem 1 says that the approximate method (R,) yields uniquely defined
approximate solutions of (P,), and (R,) is stable for any ge [*(4y), u,€ L*(Q).
Let {z;}Ms, be a basis in Z, and let us put

M4
ug =, &z;

With unknown coefficients & ;- Then (8) is equivalent to the linear algebraic
System of equations |

Mg .
Z ¢;B(z;, zi) = bz  (k=1,..., M.
i=1

Suppose, in particular, that Z, is a finite-element space connected with
4 triangulation T; of the space-time domain A4 satisfying (f,;}-(fs). Then M, is of
order d~®*1 and the density matrix [B(z;, z,)] is a mattix with one non-zero
band of width depending on the chosen triangulation, growing with n. It was
Proved in [5] that if the exact solution u is in H,;(4;) and s = 0 (so we use
finite elements of Lagrange type), then the error

T

(§ luC, —u,C, D3 0d)*

(¢}
18 of order 4.
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4. Two-step Galerkin approximations. Let us consider another weak
‘formulation of the boundary value problem for equation (1):

(P,) Given gel?(4;) and uy,eI?(Q), find ueH( V) such that
(1) the identity
(16) (uy, V) +b(t; u, v) = (g, v)g
holds for any veV and for almost all te(O, T);
(i) u(-, 0) = u. |
Problem (P,) yields the usual (see [4]) Galerkin semidiscretization in space
variables, namely

Q. Given a finite-dimensional linear space ¥, < Vwith a basis {v;}}2,
find a Ue H(V}) such that the identities

(17) (U ) D)Q+b(t; U, U) = (g, v).Qa
(18) (U(: 0)9 U)Q = (uoa U)Q
hold for all veV,, te(0, T).

By means of the decomposition
v .

(19)  UmD)=Y a0

j=1
problem (Q, ;) is reduced to the following one:
(Q.,) Find ae HY*(0, T) such that

(20) Ca+B(t)a = (),
21 Ca{0) = v,
where -

Cyj= (v, v)g,  By;(t) = b(t; vy, vy),
B =(gC. 1), v, n=05v)9 (. k=1,...,N,).

In [5] the Galerkin method for the approximate solution of (Q,.,) was
proposed. Let X, . be a finite-dimensional subspace of HY*(0, T) Wlth basis
{¢"™}Mr1, and let us put

d(ay ¢) = (Bd, (,b)—(COC, qB)+(Ca(T), ¢(T)>:
P55 (@) = (B, ) +<y, #(0)>.

We now formulate an approximate problem as follows:
(Qr.) Find a*e X, such that

(23) d(a*, ) = p.,()
holds for any ¢eX,,.

(22)
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Solving (Q¥,) we obtain an approximate solution of (P,) as

U*(x, t) = gf af (t)v;(x).
i=1 e
Let us put
_ "
(v ) (x, 1) = Z (%) . (2).
k=1

It is easy to check that for any a, ¢ € HY*(0, T) and U defined by (19) we have
voeH(V), de, ¢)=BU,v¢), ppyd)=louvd).

Therefore, «* is a solution of (QF.) if and only if U* satisfies

(29 B(U*, v ¢™) = lg,u,,(v'(b(m)) ‘

for m=1,.., M, .. The functions {v-¢™}2; form a linear independent
System in H(V). Suppose namely that

. M, Nn Mp,. |
Y a0 ™) (x, ) = Y v(x) Y, d() = 0.
m=1 k=1 m=1
Then
My, -

Y. a0 =0

for any t¢(0, T) and any k=1,..., N,. This means that

My, ¢
Z cmqb;cm) = O,
m=1
and therefore c, =0 for any m. Thus, the approximate problem (Qf,) is
4 particular case of the problem (R,) with the space Z, spanned by the system
{0 ¢™\Mrs  According to Theorem 1, this yields the unique approximate
Solution of (P,) (or, equivalently, of (P,)) and is stable for ge I2(4,), ue I*(Q).
' In the sequel we consider a special form of X, , namely X, = (¥)™,
Where Y, is a subspace of H,(0, T) with a finite basis {Y}%z,. Then the vector
functions ¢U" with ¢ = Oy, r=1,..., Ny j=1,..., R) form a basis in
X: and we have
@ #Y") (x, 1) = v,(x)y;(2).
Identity (24) and, equivalently, problem (Qf,) reduce now to the system of
ks = N,°R, equations
N» R,

(25) IPIEM: CRICRAEY IR

m=1r=1

(k=1,...,N,;s=1,...,R)
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if we put
Nn R

U*(x9 t) = Z 21 fmr m(x)yr(t)
m=1r=

with unknown coefficients £,,. It is easy to verify that the matrix of the system
(25) (the density matrix) consists of blocks which are (R, x R )-matrices. If, in
particular, n =1 and ¥, Y, are finite element spaces containing sectionally
linear splines only, then the density matrix is a three-diagonal block matrix and
each block is a three-diagonal matrix.

From now on we suppose that
(a;) © is a polyhedron in R”";

(as) ¥, is a finite element space of Lagrange type connected with the
triangulation T, of Q and (f,)Hf5) hold;

(ag) Y, is a finite element space of Lagrange type connected with the
tnangulatlon T, of the segment [0" T] and (f,}f5) hold with h replaced by
T and r replaced by I;

(a,) the derivatives Dig are in I*(4;) (j=0,1,...,1);
(ag) the derivatives in the classical sense
7 a i
6_t'aﬂ" §aj, —a—f—a r=0,1,...., 1)
exist, are bounded in 4, and continuous with respect to t.

Our aim is to estimate the error U— U* in a suitably defined norm. This is
easy to do using the Schwarz inequality

Nn
(26) 1U—U*|3; < lla—a*|2 Y v 3
k=1
and
T Nun
@n SIUC, 9—=U*(, 9l pdt < la—a*)? 3 v lie.
0 k=1 ,

In [5] some estimates for the error a—a* were obtained with constants
depending on the coefficients of (20) or, equivalently, on the space-disc-
retization parameter h. We are now going to estimate the right-hand sides of
(26) and (27) in terms of h and 7 "

In the sequel we denote by ¢, ¢
For a fixed triangulation T,

» Cjs etc positive constants not depending on h.
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We denote by y; (j=1,..., N} the knots and assume that v,(y,) = d;. We
also write '

T, = {s: K;eT, yjeKs}.

We now prove some lemmas:

LEMMA 5. There exists an integer § with the property that for every h > 0,
J=1,..., N, the set 1;, contains at most § elements. '

Proof (a contrario). Let us assume that

v3adzg;, >m,
mhj

Where 7, , is the cardinality of 7;,. Let D(x, r) denote the ball with center at
X€R" and radius r. The inclusion

U K, =D(y;, b)

SETf,h

holds for arbitrary y;€1;y Thus
(28) vol( | K,) < Vol(D(y,, k) = h"v,,

Where v_ is the volume of the unit ball in R". Now, in view of (f;) and (f;),
bounding the lefi-hand side value from below, we have
Vol( |J K}= ), VolK,> ) ok,v,> m(e/o)'h"v,
SET),h SETS I SETH,h

Wwhich is a contradiction with (28) because m may be arbitrarily large.

LEMMA 6. There exists a positive constant ¢ such that for an arbitrary h > 0
the_ inequality N, < ¢h™" holds true. ’

Proof. Let us denote by C(h) the n-dimensional cube with the side length
®qual to h. Then diamC(h) = n'*h. The inclusion

Q.:=c,CA)>Q

holds for some positive c,. Let us divide the cube Q into ¢, n*h™" cubes with
the side length equal to n~/2h (and diam < h). Using (f,) and (fs) we can write
the inequalities :

ox/oh = gg/hgy = 1/ or  ogg/a = h,

Which imply the possibility of covering the whole 2 with ¢,n"/*h™"ag ™" cubes
of diam < ox for an arbitrary K € T,,. Since the pattern element K has § knots,
the number of all knots in € is less than fc, n" h™"ag "

Lemma 7. Let us put K, = F(K) with
9 Fiy=Ax+a, (5=1,...,t)
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according to (f;). Then
(30 : ¢ h" < |detAd] < ¢, h”
holds for any s and h. |

Proof For a measurable set'Z < R" let us write |Z| for its Lebesgue
measyre. Then the substitution y = F(x) in the integral gives

K| = [ dy = |detd,| [ dx = |det A, |K],
R

Ks
SO

Kl
detA | = _‘s.

Since for any K € T, we have cgk < |K| < b with some positive ¢, (29) follows
from (f;) and (fy).
LeMMA 8. Using the notation of Lemma 7 let us put
A;=[Apsl, A7 =[Dy,l.
Then
@y |Djsl < ch™?t.
Proof. For a fixed p let us choose two points X, xe K such that
(X—x);=¢,0,;, (=1,...,n).
Then for any k=1,..., n we have -
h > |F(X)—F(X)| > ¢,|Aipl,
and this yields (31) by using (30). '
LEMMA 9. Let

Nn
C(§)= Z ijékéj'

jk=1
Then
(32) - C(6) = 28R
Proof Let us put

Nn
PO = ) && § v;0)n()dy

Jk=1 K,
and suppose that K, contains the knots y, s« U =1,..., r) only. Equivalently,
the only base functions not vanishing on K, are v, 1(5) (j=1,...,7), and
therefore -

PO= 3 Eniolure 90 0)is )y

Jk=1
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or, after transforming the integral by means of (29),
(33) P& = Y && (5,08, (x)dx|det A,
jk=1 Fe

where Unys)(¥) = 8;(x), &nyis) = ffj (j=1,..., r). It follows from (33) and Lemma
7 that

p,(&) = 2h"¢| 82
Then summing over all s we get (32).
LemMma 10. Let

Bt,O= Y By0)&s,

jk=1
Then
(34) B(t, &) > 2h"¢)E?
Jor te[0, T1.

Proof. Let us put

Ny
ve= 2, &v;
j=1
Then
B(t, &) = bit; vy, vy = 2xC({)

in view of (a,), and (34) follows from (32).

We need the following special form of the theorem of Gerschgorin in
further calculations (for its proof see [2]).

LeEMMA 11. Suppose A is an eigenvalue of a symmetric matrix A = [A;] and
put

| r; = Z IAjkl-
: k%
Then for some j we have

Using this lemma it is easy to prove
LEMMA 12. We have
(36) IC] < éh".
Proof. Since
suppy; = ) K,

SETj .k
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we have
(37 | Cy = Z 5 v;(Mo(y)dy,

setj nti,h Ks

and therefore putting

(38) e; = {k: y,eK, for set;,},
we get
39 < Y X | omunGdy.
kegjsetjn Ks
k%)

According to Lemma 5, the number of terms on the right-hand side is bounded
by a constant p. Transforming the integrals in (37) and (39) by means of (29)
and using (30), we get

|Cyl +r; < ™.
Since C is symmetric, we can use Lemma 11 to obtain
|C| = max|i| <|C;|+r;,
which yields (36). | | |
It follows from (ag) that B,;eC'[0, T). Putting

B,=sup|BY] (j=0,1,...,)
(0,71 ,

we have
LEMMA 13. The inequality

(40) B < ah2 (j=0,1,....1
holds true.

Proof. According to (f) there is, for a fixed j, a basis function 6; over
K such that v, ;(¥) = 6;(x) with x, y related by (29). Differentiation of both sides
yields, in view of Lernma 6, :

2
ov i

r

n

ob

-2 J
sgl ax
Integrating both sides and using Lemma 7, we obtain

(41) lo;13 .k, < E0"2

~

for every K;eT,. Now, in view of (41) and Lemma 5, we have

42) ‘ ||U,-||f,g = Z ||Uj||%,x, < 624’?"_2"

SETH,h

and therefore

(43) | 1Byl < &sllvjllsellvgllie < éh" 2
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Moreover,
Nn
(44) 1Bl <( ), lBkjlz)”Z'

jk=1

But for a fixed j the term |By;| does not vanish only for ke g; (see (38)), so the
second sum contains at most p terms. Therefore using (43), (44) and Lemma
6 we get (40) for ] = 0. The proof for j > 1 goes along the same lines and is
omitted.

LEMMA 14. Suppose that B(t) is symmetric for te[O T] Then
(45) |B|<ch" 2 (j=0,1,...,D.

Proof. It follows from Lemma 11 that for some j we have

Ny
|B(O)l < Z IBk,-(t)l-
The sum contains at most p terms, so (43) yields (45) for j = 0. For j > 1 the
proof is quite the same. A
LEMMA 15. The inequality |C™ Y| < éh™" holds true.
The above lemma follows from Lemma 9.
LemMA 16. The following inequalities hold:

(46) Iyl < én2,
(47) ' 18Ol <en>  (j=0,1,...,1).
Proof. Denoting the support of v; by v; we have
(48) , , “u(,vjdy]2 < [uddy [ vidy.
vy vy vy

Since for any j we have
fviydy =} [vj()dy,
vy SET4,h K,
transforming the integral on the right by means of (29) and usmg (30) together
with Lemma 5 we get
“9) fvidy < é h.
vy '

Inequalities (48) and (49) yield

(50) . b= Z | | uov;dy|* < aé,h" -

i=1 vy
with
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Suppose that the pattern element K constains 7 knots. Then each point of
2 belongs to v; for at most 7 different j. Therefore

(51) | a <7 [uddy
0

and (46) follows from (50) and (51). The proof of (47) goes along the same lines.
We can prove now our main result:

THEOREM 2. Suppose that the assumptions (a,)~ag) and (| fufs) hold true.
Then

(52) |U=U*|,,. < coyfz, b)
and
T
53 (JIUC, 9=U*(, Di13.0dt)'? < ch™ ' y(z, b),
0
where
(54) b,(z, B) = tlh~ ™2+ 3)=20+2)

and c is a constant not depending on t and h. : ‘
If the bilinear form b is symmetric in u, v for any t€[0, T], then we can put

(55) ¢l(1;, h) = Tlh—(n/z)—z(1+z)_

Proof. We denote by ¢; any positive constant not depending on # and «.
It follows from (49) and Lemma 6 that -

Nn
(56) 2 nlld < ey
k=1
Similarly, using (42) and Lemma 6 we get
Nk
(37) Z "Uk”iﬂ < czh—z-
k=1

In view of (26) and (27) it remains to estimate the error [o—a* lo>» Where
o and a* are the solutions of (Q, ;) and (Qf,), respectively. It follows from the
lemmas proved above and from [5] (Theorems 1, 4, 5 and estimate (27)) that
ae H'(0, T) and the following estimates hold true:

(58) lo—o*|| < cypet et Vfe,
59) e < 22 (181 + Iy,

where x = k" and p = h*'»~2 in the case of an arbitrary form b, and p = k"2
when b is symmetric. It remains to estimate [|a®* V. As « satisfies (20), we have

L /1
a(l+1)= C—l (1) B(k) (I—k) ,
- (po+ (4 )paty)
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and therefore

e+ V) < IC""I(Ilﬁ“’IH i (i)B"" Ila"""’ll)-
k=0

Consequently, using induction on [ and estimates obtained in Lemmas 12-16
together with (59), we obtain

(60) e+ V) < C h =)= 20+ D
and
(61) e+ V) < Csh"(n/?.)—2a+ 1)

in the case where f is symmetric in « and v. Thus the theorem follows from (26)
and (27) by using (56)-(60).

Suppose now 7 = h* with some a > 0. Then using (54) we get
b (1%, h)=h?  with § = za;z(l+2)—g(z+3)
and a sufficient condition for ¢,(h*, h)—0 as h—0 is

o> [2(1+2)+§(1+3)]r1.

In the simplest case n = [ = 1 this yields « > 8, in the symmetric case using (55)
we obtain '

a>[2(l+z)+;]rl,

80 in the case n = I = 1 the inequality « > 6.5 is sufficient for ¢, (h*, h)—0 as
h-0. '

It is evident that the estimates of the error (52), (53) obtained in the general
case are most unsatisfactory. It seems that for some special choice of spaces Vi
and X, the estimate of the error could be improved, but this needs further
investigations.
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