Z. POROSIŃSKI (Wrocław)

OPTIMAL SELECTION OF THE MAXIMUM OF A DISCOUNTABLE SEQUENCE OF INDEPENDENT RANDOM VARIABLES

0. Introduction. Suppose that we observe the realization of the sequence of random variables $\xi_1, \xi_2, \xi_3, \ldots$ and we want to stop the observation at the moment in which the realization achieves the maximal value in the set of all realizations with maximal probability. This problem for a finite sequence of independent identically distributed random variables with a continuous distribution function was posed by Gilbert and Mosteller [3], and they solved it by a heuristic argument. Bojdecki [1] has confirmed this result and he solved also an optimal stopping problem for an infinite sequence with "costs of experiments". He has considered $\xi_n = X_n - cn$ with X_1, X_2, X_3, \ldots being a sequence of independent identically distributed random variables with a continuous distribution function and c (the cost of one experiment) as a fixed positive number.

This paper contains the solutions of the problems of seeking with maximal probability the maximal value of a finite or infinite sequence of independent identically distributed random variables with a continuous distribution function which is discounted by a non-increasing sequence of Positive numbers (for a precise formulation see Section 1).

The following situation is considered:

$$\xi_n = c_n X_n$$
 or $\xi_n = c_n \max(X_1, ..., X_n)$

and X_1, X_2, X_3, \ldots are interpreted as consecutive results of some experiment. We want to obtain the possibly largest result of the sequence $(X_n)_{n\in\mathbb{N}}$ but we take into account also various restrictions (for example: limit of time, costs of experiments) which discourage from a continuation of the observation. The sequence of discounts $(c_n)_{n\in\mathbb{N}}$ takes into consideration all those restrictions.

The above problems are reduced to the classical optimal stopping problems for some Markov chains with some reward functions ([4]). It is proved that optimal stopping rules in each case exist and their forms are found.

1. Formulation of problems. Assume that

(1) X_1, X_2, X_3, \ldots is a sequence of independent identically distributed random variables with a continuous distribution function F, defined on the probability space (Ω, \mathcal{F}, P) ,

and

(2)
$$P(X_1 > 0) > 0.$$

Let be given a numerical sequence $(c_n)_{n=1}^{\infty}$ such that

$$(3) 0 < c_{n+1} \leqslant c_n \leqslant 1 \text{for} n \in \mathbb{N}.$$

Define $\xi_n = c_n X_n$ for $n \in \mathbb{N}$.

Let \mathscr{F}_n be the σ -field of events generated by $\xi_1, \xi_2, \ldots, \xi_n$ (naturally $\mathscr{F}_n = \sigma(X_1, \ldots, X_n)$) and let \mathfrak{M} be the set of all stopping times with respect to the family $(\mathscr{F}_n)_{n=1}^{\infty}$.

Consider two problems: the first one:

 (S_N) Find a stopping time $\tau^* \in \mathfrak{M}$ such that

$$P(\tau^* \leqslant N; \, \xi_{\tau^*} = \max_{k \leqslant N} \, \xi_k) = \sup_{\tau \in \mathfrak{M}} \, P(\tau \leqslant N; \, \xi_\tau = \max_{k \leqslant N} \, \xi_k)$$

where N is a fixed positive integer number,

and the second problem:

 (S_{∞}) Find a stopping time $\tau^* \in \mathfrak{M}$ such that

$$P(\tau^* < \infty; \xi_{\tau^*} = \max_{k} \xi_k) = \sup_{\tau \in \mathbb{M}} P(\tau < \infty; \xi_{\tau} = \max_{k} \xi_k)$$

under additional assumptions

$$(4) E|X_1|^p < \infty,$$

$$\sum_{k=1}^{\infty} c_k^p < \infty,$$

for a certain $p \in N$.

The problem (S_{∞}) has sense because of the following lemma:

LEMMA 1. If conditions (1)-(5) hold then the relations

(a)
$$\lim \xi_n = 0$$
,

(b) there exists $k \in N$ such that $\xi_k > 0$, are fulfilled almost surely (a.s.).

Proof. For each $\varepsilon > 0$ we have

$$P\left(\bigcup_{k=n}^{\infty} \{|\xi_k| > \varepsilon\}\right) \leqslant \sum_{k=n}^{\infty} P(|\xi_k| > \varepsilon) = \sum_{k=n}^{\infty} P(|X_1| > \varepsilon/c_k) = \frac{\mathbb{E}|X_1|^p}{\varepsilon^p} \sum_{k=n}^{\infty} c_k^p \to 0$$

if $n \to \infty$. Thus, (a) is true. Moreover

$$P(\exists k \in N; \, \xi_k > 0) = P\left(\bigcup_{k=1}^{\infty} \{X_k > 0\}\right) = \lim_{n \to \infty} P\left(\bigcup_{k=1}^{n} \{X_k > 0\}\right)$$
$$= 1 - \lim_{n \to \infty} P\left(\bigcap_{k=1}^{n} \{X_k \le 0\}\right) = 1 - \lim_{n \to \infty} [F(0)]^n = 1.$$

The lemma is proved.

In order to apply the method used by Bojdecki ([1]) we define $\xi_n = \xi_N$ for n > N. We consider the problem:

 (S'_N) Find a stopping time $\tau^* \in \mathfrak{M}$ such that

$$P(\tau^* < \infty, \, \xi_{\tau^*} = \max_{k} \, \xi_k) = \sup_{\tau \in \mathfrak{M}} P(\tau < \infty, \, \xi_{\tau} = \max_{k} \, \xi_k),$$

taking the infinite sequence $(\xi_n)_{n\in\mathbb{N}}$ defined above.

Naturally, the solutions of the problems (S_N) and (S'_N) are identical. Note also that the problem:

 (S'_{∞}) Find a stopping time $\tau^* \in \mathfrak{M}$ which realizes

$$\sup_{\tau \in \mathbb{N}} P(\tau < \infty, c_{\tau} \max_{k \le \tau} X_k = \sup_{n} (c_n \max_{k \le n} X_k))$$

(therefore the situation when we have all the "past" results of the experiment) is equivalent to problem (S_{∞}) because $\sup_{n}(c_{n}X_{n})=\sup_{n}(c_{n}\max_{k\leq n}X_{k})$. Analogously as above we can define a new problem equivalent to (S_{N}) .

2. Reduction of problems. Denote

$$Z_n = P(\xi_n = \max_k | \mathcal{F}_n) \quad \text{for} \quad n \in \mathbb{N}, \quad Z_\infty = 0.$$

Thus, we have

(6)
$$Z_n = I_{\{\xi_n = \max_{k \le n} \xi_k\}} P(\xi_n \geqslant \max_{k \ge n} \xi_k | \mathscr{F}_n) \stackrel{\text{df}}{=} I_{\{\xi_n = \max_{k \le n} \xi_k\}} \cdot W_n,$$

where I_A denotes the indicator function of the event A.

If we denote $N^* = N$ for the problem (S_N) and $N^* = +\infty$ for (S_∞) then

$$W_n = P(\xi_n \geqslant \sup_{n < k \leqslant N^*} \xi_k | \mathscr{F}_n) = \prod_{k=n+1}^{N^*} F(\xi_n/c_k) \quad \text{for} \quad n < N^*,$$

$$W_n = 1$$
 for $n \ge N^*$

for both problems.

It suffices to consider stopping times belonging to the set

$$\mathfrak{M}_0 = \left\{ \tau \in \mathfrak{M}; \ \tau = n \Rightarrow \xi_n = \max_{k \leq n} \xi_k, \ n \in \mathbb{N} \right\}.$$

This is a consequence of the following

LEMMA 2 ([2], [1]). For every $\tau \in \mathfrak{M}$ there exists $\tau' \in \mathfrak{M}_0$ such that

$$P(\tau < \infty, \, \xi_{\tau} = \max_{k} \xi_{k}) \leqslant P(\tau' < \infty, \, \xi_{\tau'} = \max_{k} \xi_{k}).$$

Let now $\tau_1 = 1$, $\tau_{j+1} = \inf\{n; n > \tau_j, \, \xi_n \ge \xi_{\tau_j}\}$ for $j \in \mathbb{N}$. Naturally, $\tau_j \in \mathfrak{M}_0$ and $\tau_j \le \infty$.

We define the sequence of random variables

$$Y_{j} = \begin{cases} (\tau_{j}, \, \xi_{\tau_{j}}) & \text{for } & \tau_{j} < \infty, \\ \partial & \text{for } & \tau_{j} = \infty, \end{cases}$$

where ∂ is a label for the final state. $Y = (Y_n)_{n=1}^{\infty}$ is a homogeneous Markov chain with respect to the σ -fields $(\mathscr{F}_{\tau_n})_{n=1}^{\infty}$ with the state space $(N \times R) \cup \{\partial\}$.

For $m \le N$ the assumptions (1) imply that

$$P(Y_{j+1} \in \{m\} \times (-\infty, y] | \mathcal{F}_{\tau_j})$$

$$= \sum_{n=1}^{m-1} I_{\{\tau_j = n\}} P(\tau_{j+1} = m, \, \xi_m \leq y | \mathcal{F}_n)$$

$$= \sum_{n=1}^{m-1} P(\tau_j = n, \, \xi_{n+1} < \xi_n, \, \dots, \, \xi_{m-1} < \xi_n, \, \xi_n \leq \xi_m \leq y | \mathcal{F}_n)$$

$$= \begin{cases} \prod_{k=n+1}^{m-1} F\left(\frac{\xi_{\tau_j}}{c_k}\right) \left[F\left(\frac{y}{c_m}\right) - F\left(\frac{\xi_{\tau_j}}{c_m}\right)\right], & \text{for } \tau_j < m \text{ and } y > \xi_{\tau_j}, \\ 0, & \text{for } \tau_j \geqslant m \text{ and/or } y \leqslant \xi_{\tau_j}. \end{cases}$$

Therefore the transition function of the Markov chain Y is given by

(7)
$$P(n, x; m, (-\infty, y]) = P(Y_{j+1} = m, \xi_m \leq y | Y_j = n, \xi_n = x)$$

$$= \begin{cases} \prod_{k=n+1}^{m-1} F\left(\frac{x}{c_k}\right) \left[F\left(\frac{y}{c_m}\right) - F\left(\frac{x}{c_m}\right)\right], & \text{for } n < m \leq N^* \text{ and } y > x, \\ 0, & \text{for } n \geq m \text{ and/or } y \leq x, \end{cases}$$

where we adopt the convention that $\prod_{k=n+1}^{m-1} F(x/c_k) = 1$ if m = n+1. The transition function for other states can be obtained in a similar way (∂ is an absorbing state).

Next, for any $\tau \in \mathfrak{M}_0$ we define

$$\sigma(\omega) = \begin{cases} j, & \text{for } \omega \in \{\tau = \tau_j < \infty\}, \\ \infty, & \text{for } \omega \in \{\tau = \infty\}. \end{cases}$$

Here σ is a stopping time with respect to $(\mathscr{F}_{\tau_j})_{j=1}^{\infty}$ and (6) implies that

$$Z_{\tau} = \begin{cases} W_{\tau_{\sigma}}, & \text{for } \tau < \infty \\ 0, & \text{for } \tau = \infty \end{cases} \stackrel{\text{df}}{=} f(Y_{\sigma}),$$

where

(8)
$$f(n, x) = \begin{cases} \prod_{k=n+1}^{N^{\circ}} F(x/c_k) & \text{for } n < N^*, \\ 1 & \text{for } n \ge N^*, \end{cases}$$

and $f(\partial) = 0$.

Thus we reduce the initial problems (S_N) and (S_∞) to the problem of optimal stopping of the Markov chain Y with the reward function f. To solve these problems we use the lemma proved by Cowan and Zabczyk [2].

3. Solutions of problems. Let $Y = (Y_n)_{n=1}^{\infty}$ be a homogeneous Markov chain on (Ω, \mathcal{F}, P) with state space (E, \mathcal{B}) and let $p(\cdot; \cdot)$ denote the transition function, i.e. $p(y; B) = P(Y_{n+1} \in B | Y_n = y)$ for $B \in \mathcal{B}$. Let $h: E \to R$ be a bounded function. Define

(9)
$$\mathbf{P}h(y) = \int_{\mathbf{F}} h(x) \, p(y; \, dx),$$

(10)
$$\Gamma = \{ y \in E; \ Pf(y) \leqslant f(y) \}.$$

LEMMA 3 ([2], [1]). If

(11)
$$p(y; \Gamma) = 1 \quad \text{for} \quad y \in \Gamma,$$

(12)
$$\sigma_{\Gamma} \stackrel{\text{df}}{=} \inf\{n; Y_n \in \Gamma\} < +\infty \ a.s.,$$

then σ_{Γ} is the optimal stopping time for stopping the Markov chain Y with the reward function f, i.e. the expected value $\mathrm{E}(f(Y_{\sigma}))$ is maximal for the stopping time $\sigma = \sigma_{\Gamma}$.

Now we prove the following theorem giving the solutions of our problems.

Theorem. Under the assumptions (1)–(3) there exists a solution of the $Problem(S_N)$ which has the form

(13)
$$\tau^* = \inf\{n \leqslant N; \ \xi_n = \max_{k \leqslant n} \xi_k, \ \xi_n \geqslant x_n\},$$

where $x_N = 0$ and x_n , n < N, is the least root of the equation

(14)
$$\sum_{m=n+1}^{N} \left(\prod_{k=m}^{N} F\left(\frac{x}{c_k}\right) \right)^{-1} \int_{\{x/c_{mn}+\infty\}} \prod_{k=m+1}^{N} F\left(\frac{c_m \cdot y}{c_k}\right) F(dy) = 1.$$

Under the assumptions (1)–(5) there exists a solution of the problem (S_{∞}) (therefore (S'_{∞}) , too) which has the form

(15)
$$\tau^* = \inf \{ n \in \mathbb{N}; \ \xi_n = \max_{k \leq n} \xi_k, \ \xi_n \geqslant x_n \},$$

where x_n is the least root of the equation

(16)
$$\sum_{m=n+1}^{\infty} \left(\prod_{k=m}^{\infty} F\left(\frac{x}{c_k}\right) \right)^{-1} \int_{[x/c_{mn}+\infty)} \prod_{k=m+1}^{\infty} F\left(\frac{c_m \cdot y}{c_k}\right) F(dy) = 1.$$

Proof. In order to apply Lemma 3 we have to describe the set Γ defined by (10). Taking advantage of (9) we have $Pf(\partial) = 0 = f(\partial)$, therefore $\partial \in \Gamma$. For the problem (S_N) the equality (8) implies that Pf(n, x) = 1 = f(n, x), for $n \ge N$, therefore $\{N, N+1, \ldots\} \times R \subset \Gamma$. For $n < N^*$ the equality (7) implies

$$Pf(n, x) = \sum_{m} \int_{R} f(m, y) p(n, x; m, dy)$$

$$= \sum_{m=n+1}^{N^{\circ}} \prod_{k=n+1}^{m-1} F\left(\frac{x}{c_{k}}\right) \int_{[x/c_{m}, +\infty)} f(m, c_{m} \cdot y) F(dy)$$

$$= \sum_{m=n+1}^{N^{\circ}} \prod_{k=n+1}^{m-1} F\left(\frac{x}{c_{k}}\right) \int_{[x/c_{m}, +\infty)} \prod_{k=m+1}^{N^{\circ}} F\left(\frac{c_{m} \cdot y}{c_{k}}\right) F(dy).$$

For $n < N^*$ we consider the inequality (see (10))

$$(17) \quad \sum_{m=n+1}^{N^{\star}} \prod_{k=n+1}^{m-1} F\left(\frac{x}{c_k}\right) \int \prod_{\substack{k=m+1}}^{N^{\star}} F\left(\frac{c_m \cdot y}{c_k}\right) F(dy) \leqslant \prod_{k=n+1}^{N^{\star}} F\left(\frac{x}{c_k}\right).$$

To transform this inequality we use the following

LEMMA 4. (a) For each $n \in \mathbb{N}$ f(n, x) is positive at least for x sufficiently large.

(b) If f(n, x) = 0 then the inequality (17) is false.

Proof. For $N^* = N$ the statement (a) is obvious. For $N^* = +\infty$ it is a consequence of the assumptions (4) and (5). In this case for x > 0 we have:

$$\sum_{k=1}^{\infty} P\left(X_1 > \frac{x}{c_k}\right) = \sum_{k=1}^{\infty} \left(1 - F\left(\frac{x}{c_k}\right)\right) < \infty.$$

Thus the product $\prod_{k=n+1}^{\infty} F(x/c_k)$ is convergent (i.e. f(n, x) > 0) if only $F(x/c_{n+1}) > 0$. Moreover f(n, x) = 0 for $x \le 0$, because the condition (4) implies $F(x/c_k) \le F(0) < 1$ for each $k \in \mathbb{N}$.

To prove statement (b) it suffices to show that if f(n, x) = 0 then the first term of the left-hand side of (17) is positive, i.e. $I_{n+1} > 0$, where

$$I_{m} \stackrel{\mathrm{df}}{=} \int \prod_{k=m+1}^{N^{*}} F\left(\frac{c_{m} \cdot y}{c_{k}}\right) F(dy), \quad \text{for} \quad m < N^{*}.$$

If f(n, x) = 0 then there must be $F(x/c_{N^*}) = 0$ when x < 0 and $F(x/c_{n+1}) = 0$ when $x \ge 0$ (here and in the sequel we adopt the conventions that $c_{\infty} = 0$, $-1/0 = -\infty$, $0 \cdot (-\infty) = 0$). Hence the distribution of X_1 is concentrated on $[x/c_{N^*}, +\infty)$ when x < 0 and on $[x/c_{n+1}, +\infty)$ when $x \ge 0$. On the other hand, it follows from (a) that

$$\left\{y > 0; \prod_{k=n+2}^{N^*} F\left(\frac{c_{n+1} \cdot y}{c_k}\right) = 0\right\} \subset \left\{y > 0; F(y) = 0\right\}.$$

This property and the assumption (2) imply that $\prod_{k=n+2}^{N^*} F(c_{n+1} \cdot y/c_k) > 0$ on a certain set of positive measure F. Thus the integral I_{n+1} is positive and the lemma is proved.

From this lemma we have immediately that the inequality (17) may be written as

$$\sum_{m=n+1}^{N^*} \left(\prod_{k=m}^{N^*} F\left(\frac{x}{c_k}\right) \right)^{-1} \int \prod_{\substack{\{x/c_m + \infty)}}^{N^*} F\left(\frac{c_m \cdot y}{c_k}\right) F(dy) \leqslant 1.$$

Denote the left-hand side of this inequality by $h_n(x)$. Let $a = \sup\{x; F(x) = 0\}$. Naturally $-\infty \le a < +\infty$. The function $h_n(x)$ is well defined on the interval $(c_{n+1}a, +\infty)$ when $a \ge 0$ and on the interval $(c_{N^*}a, +\infty)$ when a < 0. It is a continuous (as a sum of a uniformly convergent series of continuous functions) and non-increasing function. Moreover

- (a) $\lim_{x\to c_{n+1}a+} h_n(x) = +\infty$ when $a \ge 0$,
- (b) $\lim_{x\to c_{N^*a}+} h_n(x) = +\infty$ when a<0,
- (c) $\lim_{x \to c_{n+1}b^-} h_n(x) = 0$, where $b = \inf\{x; F(x) = 1\}$. Naturally $0 < b \le +\infty$ by (2).

The statement (a) is valid because the integral I_{n+1} is positive and $\prod_{k=n+1}^{N^*} F(x/c_k) \to 0$ when $x \to c_{n+1} a + .$ The statement (b) can be proved analogously as (a); a component for m = N or m = n+1 is divergent when $N^* = N$ or $N^* = +\infty$, respectively. To prove the statement (c) it suffices to show that each component is convergent to zero. This is a consequence of the fact that the integral I_m is convergent for each m.

^{4 -} Zastosowania Mat. 18/4

These properties of the function $h_n(x)$ imply that a solution of the equation $h_n(x) = 1$ (therefore (14) when $N^* = N$ and (16) when $N^* = +\infty$) exists. A solution of the inequality $h_n(x) \le 1$ is the half-line $[x_n, +\infty)$ where $x_n = \inf\{x; h_n(x) = 1\}$.

In effect we obtain for the problem (S_N)

$$\Gamma = \{\partial\} \cup \bigcup_{n=1}^{N-1} (\{n\} \times [x_n, +\infty)) \cup \bigcup_{n=N}^{\infty} (\{n\} \times R),$$

where x_n is the least root of the equation (14), and for the problem (S_{∞})

$$\Gamma = \{\partial\} \cup \bigcup_{n=1}^{\infty} (\{n\} \times [x_n, +\infty)),$$

where x_n is the least root of the equation (16).

These sets satisfy the assumptions of Lemma 3. Indeed, the condition (12) holds because for (S_N) we have

$$\sigma_{\Gamma} \leq \inf\{n; Y_n \in \{\partial\} \cup \bigcup_{n=N}^{\infty} (\{n\} \times R)\} < +\infty \text{ a.s.}$$

For (S_{∞}) also

$$\sigma_{\Gamma} \leq \inf\{n; \ Y_n = \partial\} < +\infty \ \text{a.s.}$$

To prove (11) it suffices to verify that the sequence $(x_n)_{n=1}^{N^*-1}$ is non-increasing. To this effect note that

$$h_{n}(x_{n+1}) - h_{n+1}(x_{n+1})$$

$$= \left(\prod_{k=n+1}^{N^{*}} F\left(\frac{x_{n+1}}{c_{k}}\right)\right)^{-1} \int_{[x_{n+1}/c_{n+1}, +\infty)} \prod_{k=n+2}^{N^{*}} F\left(\frac{c_{m} \cdot y}{c_{k}}\right) F(dy) \geqslant 0$$

for $n < N^* - 1$. Hence $h_n(x_{n+1}) \ge h_{n+1}(x_{n+1}) = 1 = h_n(x_n)$ and this implies that $x_{n+1} \le x_n$. Finally, by Lemma 2 and condition (6) we obtain that the solutions of the problems (S_N) and (S_∞) are given by (13) and (15), respectively. The theorem is proved.

4. Example. If the sequence $(c_n)_{n=1}^N$ is constant then the condition (2) for the problem (S_N) is superfluous and the solution is identical with the results of Gilbert and Mosteller [3] and Bojdecki [1].

References

[1] T. Bojdecki, On optimal stopping of a sequence of independent random variables probability maximizing approach, Stochastic Process. Appl. 6 (1978), p. 153-163.

4

- [2] R. Cowan and J. Zabczyk, An optimal selection problem associated with the Poisson process, Теория вер. и её прим. 23 (1978), p. 606-614.
- [3] J. Gilbert and F. Mosteller, Recognizing the maximum of a sequence, J. Amer. Statist. Assoc. 61 (1966), p. 35-73.
- [4] А. Н. Ширяев, Статистический последовательный анализ, Москва 1976.

INSTITUTE OF MATHEMATICS TECHNICAL UNIVERSITY WROCŁAW 50-370 WROCŁAW

> Received on 20.7.1983; revised version on 16.3.1984