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OPTIMAL SELECTION OF THE MAXIMUM
OF A DISCOUNTABLE SEQUENCE
OF INDEPENDENT RANDOM VARIABLES

0. Introduction. Suppose that we observe the realization of the sequence
of random variables &, &, &3, ... and we want to stop the observation at
the moment in which the realization achieves the maximal value in the set of
all realizations with maximal probability. This problem for a finite sequence
of independent identically distributed random variables with a continuous
distribution function was posed by Gilbert and Mosteller [3], and they
Solved it by a heuristic argument. Bojdecki [1] has confirmed this result and
‘}‘le solved also an optimal stopping problem for an infinite sequence with
Costs of experiments”. He has considered ¢, = X,—cn with X, X,, X,, ...
bf_’ing a sequence of independent identically distributed random variables
With a continuous distribution function and ¢ (the cost of one experiment) as
2 fixed positive number.

This paper contains the solutions of the problems of seeking with
Maximal probability the maximal value of a finite or infinite sequence of
Independent identically distributed random variables with a continuous
distribution function which is discounted by a non-increasing sequence of
Positive numbers (for a precise formulation see Section 1).

The following situation is considered:

én=Can or én=cnmax(X1,”'an)

and x 1» X5, X5, ... are interpreted as consecutive results of some

®Xperiment. We want to obtain the possibly largest result of the sequence
n)_.,EN but we take into account also various restrictions (for example: limit

of time, costs of experiments) which discourage from a continuation of the

Observation. The sequence of discounts (c,),.y takes into consideration all
0se restrictions.
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The above problems are reduced to the classical optimal stopping
problems for some Markov chains with some reward functions ([4]). It is
proved that optimal stopping rules in each case exist and their forms are
found.

1. Formulation of problems. Assume that

(1) X, X,;, X5,... is a sequence of independent identically distributed
random variables with a continuous distribution function F, defined on
the probability space (2, #, P),

and
2 P(X, >0)>0.

Let be given a numerical sequence (c,);~,; such that
3) O0<cpe1<c,<1 for neN.

Define ¢, = ¢, X, for ne N.

Let %, be the o-field of events generated by &, &,, ..., &, (naturally #,
=0(X,, ..., X,)) and let I be the set of all stopping times with respect to
the family (#,)%,.

Consider two problems: the first one:

(Sy) Find a stopping time t*e IR such that

P(t* < N; . = max §,) =sup P(t < N; {, = max )
k<N el k<N

where N is a fixed positive integer number,

and the second problem:
(S,) Find a stopping time t*e 9N such that

P(t* < 0; &, = max &) =sup P(t < o0; &, = max &)
k teM k

under additional assumptions

4) E|X,|F < oo,

) §05<00,

k=1
for a certain peN.
The problem (S,) has sense because of the following lemma:

Lemma 1. If conditions (1){S) hold then the relations
(@ hm ¢, =0,

n—a

(b) there exists ke N such that ¢, > 0,
are fulfilled almost surely (a.s.).
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Proof. For each ¢ > 0 we have

8

© @ E|X,F &
P(U (6l >a) < X P&l >0 = 3 PUXil >/ =51 5 g0
k=n k=n k=n k=n
if n— oo. Thus, (a) is true. Moreover
PAkeN; & >0 =P(U (X, >0})=lim P({J (X, >0}
k=1 k=1

n—ao

= 1-lim P(() (X, <0})=1~lim [FO)]" =1.

n-— o k=1 n—aoc

The lemma is proved.
In order to apply the method used by Bojdecki ([1]) we define &, = &,
for n > N. We consider the problem:

(Sy)  Find a stopping time 7*e I such that

P(t* < 00, ¢ = max &)=sup P(t < 0, & = max &),
TeM

taking the infinite sequence (&,),.x defined above.
Naturally, the solutions of the problems (Sy) and (Sy) are identical. Note
also that the problem:

(8,) Find a stopping time 7*c9R which realizes

sup P(r < o, ¢, max X, = sup(c, max X,))

eM k<t n k<n

(therefore the situation when we have all the “past” results of the experiment)
18 equivalent to problem (S,) because sup(c X,) = sup(c max X,).

k<n

Analogously as above we can define a new problem equlvalent to (Sy)-
2. Reduction of problems. Denote
Z,=P(¢,=max | F,) for neN, Z,=0.
k

ThUS, we have

(6) Z,=1I, - maxy) P(¢, > max &|F) S I i) -W,,

k>n

Where | 4 denotes the indicator function of the event A.
If we denote N* = N for the problem (Sy) and N* = + oo for (S,) then

N#
Wo=P(,> sup &l F)= [l Fl/a) for n<N¥,

n<k<N* k=n+1
W,=1 for n>=N¥*,
for both problems.



552 Z. Porosinski

It suffices to consider stopping times belonging to the set

Mo ={teM; 1 =n = {, =max &, neN}.
. k<n

This is a consequence of the following
LEMMA 2 ([2], [1]). For every te M there exists 1€ My such that

P(T <, ér = maxék) < P(Tl <o, 5‘:’ = max 6!:)
k k

Let now 7, =1, 7;,, =inf{n; n>1;, {, > é,j} for je N. Naturally,
Tlemlo and Tj S Q0.
We define the sequence of random variables

Y, = %(Tj, &) for 1; <00,

d for 1;= o0,
where 0 is a label for the final state. Y = (Y,);%, is a homogeneous Markov
chain with respect to the o-fields (%, );>, with the state space (N x R)u {0}.
For m < N the assumptions (1) imply that
P(Yj4ye{m} x(— o0, y]| #)

m-—1

- Z‘l I{1j=n)P(Tj+1 =m, & < Y| F,)

m—1
= Z P(Tj=n’ §n+1 <€m LR ] 5m—1 <ém fnsémgylgl;n)
n=1

_% ml;[‘ F(%)[F (%)—F(%)], for t;<mandy> éftj,
- k=n+1 k m m

0, for ;> m and/or y < C,j.
Therefore the transition function of the Markov chain Y is given by

(7 P(n,x;m, (-0, y])=P(Yjuy =m ¢, <y|Y;=n,¢,=X)

m-—1
% I1 F(—x—>[F <L>—F(i>], forr n<m< N* and y > x,
= Y k=n+1 Ck Cm Cm .
0, for n>m and/or y < x,

m—1
where we adopt the convention that [] F(x/c) =1 if m=n+1. The
k=n+1
transition function for other states can be obtained in a similar way (0 is an
absorbing state).

Next, for any 7€ M, we define

a(w)=%j’ for wef{r =1 <0},
o0,

for we{r=o}.
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Here ¢ is a stopping time with respect to (#.)j=1 and (6) implies that

VVr , for 1<) g
A I L7 V1
where
N* .
®) Fln x) = % k=l:[+l F(x/c,) for n< N*
1 for n> N¥*,
and f(0) = 0.

Thus we reduce the initial problems (Sy) and (S,) to the problem of
Optimal stopping of the Markov chain Y with the reward function f. To
solve these problems we use the lemma proved by Cowan and Zabczyk [2].

3. Solutions of problems. Let Y =(Y,);2, be a homogeneous Markov
chain on (Q, #, P) with state space (E, #) and let p(-;-) denote the
transition function, ie. p(y; B) = P(Y,,,€B|Y, =y) for Be . Let h: E—~ R
be a bounded function. Define

9) Ph(y) = [ h(x) p(y; dx),
E
(10) I ={yeE; Pf()) <fO)}.
Lemma 3 ([21, [1]). If
(11) p(y;N =1 for yerl,
(12) or d=finf{n; Yel'} < + 0 as.,

then o, is the optimal stopping time for stopping the Markov chain Y with the

reward function f, i.e. the expected value E(f(Y,)) is maximal for the stopping
time ¢ = Or.

Now we prove the following theorem giving the solutions of our
Problems.

THEOREM. Under the assumptions (1)H3) there exists a solution of the
Problem (S,) which has the form

(13) t* = inf {n < N; &, = max &, &, > X,},

k<n

Where x\ =0 and X,, n < N, is the least root of the equation

()] e

[x/cpys + )
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Under the assumptions (1)+5) there exists a solution of the problem (S )
(therefore (S',), too) which has the form

(15) ™ =inf {neN; {, = max &, &, > x,},

k<n

where x, is the least root of the equation

o E(1C) | A

[x/cpys + )

)F(dy) =1.

Proof. In order to apply Lemma 3 we have to describe the set I
defined by (10). Taking advantage of (9) we have Pf(d) = 0 = f(J), therefore
0el'. For the problem (Sy) the equality (8) implies that Pf(n, x) =1
=f(n, x), for n> N, therefore {N, N+1,..}xRcT. For n<N* the
equality (7) implies

Pf(n,x)=) ff(m, y)p(n, x; m, dy)
" R
= Z H F( ) f(m, cp-y)F(dy)

m=n+1 k=n+1
[x/cpy, + )

53

m=n+1 k=n+1 k=m+1

)F(dy).

[x/cpys + 0)

For n < N* we consider the inequality (see (10))

() ,,.gﬂkl:[HF() j kl,llF( )F(dy) kUHF(k)

[x/cpyy + 0)
To transform this inequality we use the following
Lemma 4. (a) For each ne N f(n, x) is positive at least for x sufficiently
large.
(b) If f(n, x) =0 then the inequality (17) is false.
Proof. For N* = N the statement (a) is obvious. For N* = + o0 it is @
consequence of the assumptions (4) and (5). In this case for x > 0 we have:

Er(e>2)=E0-#(0)) <

Thus the product [] F(x/c,) is convergent (ie. f(n, x)>0) if only
k=n+1

F(x/c,+,) > 0. Moreover f(n, x) =0 for x <0, because the condition 4)

implies F(x/c,) < F(0) <1 for each ke N.




The maximum of a discountable sequence 555

To prove statement (b) it suffices to show that if f(n, x) =0 then the
first term of the left-hand side of (17) is positive, ie. I,,, > 0, where

o N (Cmy
I,= Il F F(dy), for m<N*,
k=m+1 Cx
[x/cpys + 00)

If f(n, x) = 0 then there must be F(x/cy-) = 0 when x <0 and F(x/c,, ,) = 0
When x > 0 (here and in the sequel we adopt the conventions that Cp =0,
—1/0 = — 00, 0-(—00) = 0). Hence the distribution of X, is concentrated on
[x/cy., +a0) when x <0 and on [x/c,+, +00) when x > 0. On the other
hand, it follows from (a) that

{y>0; ﬁ F(C—"*—‘l)=0}c{y>0; F(y) =0).

=n+2 Ck
N#
This property and the assumption (2) imply that H F(cy+1°y/ci) >0o0n a
k=n+2

Certain set of positive measure F. Thus the integral I,,, is positive and the
lemma is proved.

From this lemma we have immediately that the inequality (17) may be
Written as

MoUr x\\7! N C,,,J’)
e F Fdy<1.
m=§+l (k1=_[m‘F (Ck)) J k=l;|I+1 ( C ( y) <

[x/cyy + a0)

Denote the left-hand side of this inequality by h,(x). Let a
=sup{x; F(x) = 0}. Naturally — oo < a < +00. The function h,(x) is well
efined on the interval (c,,a, +oo) when a > 0 and on the interval (cy.a,
+0) when a < 0. It is a continuous (as a sum of a uniformly convergent
Series of continuous functions) and non-increasing function. Moreover

(@ lim h,(x) = +00 when a>0,

X =€, 418+

(b) lim h,(x) = + 00 when a <0,

X = Nsa +

() lim h,(x)=0, where b=inf{x; F(x)=1}. Naturally 0 <b

X=Cp 4 1b-
S+ by (2.
v+ The statement (a) is valid because the integral I,,, is positive and

k\n F(x/c,)> 0 when x—c,,,a+. The statement (b) can be proved
Sntq :

analo8ously as (a); a component for m =N or m=n+1 is divergent when

*=Nor N*= + o0, respectively. To prove the statement (c) it suffices to

the“fl that each component is convergent to zero. This is a consequence of
act that the integral I, is convergent for each m.

Sho

= Zaslosowania Mat. 18/4
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These properties of the function h,(x) imply that a solution of the
equation h,(x) =1 (therefore (14) when N* = N and (16) when N* = + o)
exists. A solution of the inequality h,(x) < 1 is the half-line [x,, + c0) where
x, = inf {x; h,(x) =1}.

In effect we obtain for the problem (Sy)

N-1 ‘o
r={av L—jl ({n} x[x,, +0))U L_jN({n} x R),
where x, is the least root of the equation (14), and for the problem (S,)

r={auv

l({"} x [X,, + 00)),

s

where x, is the least root of the equation (16).
These sets satisfy the assumptions of Lemma 3. Indeed, the condition
(12) holds because for (Sy) we have

or <inf {n; Y,e{d} U G ({n} xR} < + 0 as.
n=N

For (S,) also
or<inf{n; Y,=0} < +© as.

To prove (11) it suffices to verify that the sequence (x)N.7! is non-

increasing. To this effect note that

Ba(Xp+ 1) = Pns 1 (Xn+1)

N* -1 . ,
=( I F(£;—1)> J ﬁ F(c"' y)F(dy)>0
k=n+1 k k=n+2 Cx

[Xp+1/cn+ 1, + )

for n < N*—1. Hence h,(X,+1) = hps1(Xp+1) =1 = h,(x,) and this implies
that x,,, < x,. Finally, by Lemma 2 and condition (6) we obtain that the
solutions of the problems (Sy) and (S,) are given by (13) and (15),
respectively. The theorem is proved.

4. Example. If the sequence (c,)"-, is constant then the condition (2) for
the problem (Sy) is superfluous and the solution is identical with the results
of Gilbert and Mosteller [3] and Bojdecki [1].
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