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1. Preliminaries. Let X;., be the ith order statistic from a sample of size
n (here and throughout the paper n is a fixed number), let E; be- the
CXpectation under the distribution F and let W(A) be the exponential
distribution with the distribution function 1—exp(—x/4), x>0, 1 >0. Let
(), t > 0, denote the failure rate function (the hazard function) of the
distribution F.

We use the following property of the IFRA and DFRA distributions
Which has been proved by Barlow and Proschan [1]:

If F is an IFRA (DFRA) distribution, then EpX,,/Ep; X;, is a
Nonincreasing (nondecreasing) in i =1, 2, ..., n.

ProBLem. Consider the problem of unbiased estimating the scale
Parameter A of the distribution W(4). The appropriate statistical model is

Mo =(RY, ., (W()): 4> O}).

?bserve that W(J) is the unique distribution with the constant failure rate
=1

. Let T be an unbiased estimate of A. Suppose that the model M, is
Violated in such a way that the underlying random variable has, instead of
(4), an unknown distribution F , with the scale parameter A from the set

n(W(A) = {F: r§() <) <ri(®),t>0},

Where r{ and r¥ are failure rate functions of some distributions G, and H,
With the scale parameter A, ie. G,(x) = G(x/A) and H,(x) = H(x/A), 1> 0.

© assume that W(i)en(W(4).
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If F, runs through the set n(W (1)), then
br(A)= sup (EfT-4)— inf (ET-4)

Fer(W(4) Fer(W(4)
is the oscillation of the bias of T over =(W(4)) and gives us a measure of
robustness of the statistic T with respect to its bias, under the violation 7.
The function A — by (4), A > 0, is the robustness function of T (cf. Zielinski
[4]). The problem is to find T* such that b;-(A) < br(4) for each 4 > 0 and
every T in a given class of statistics.
g+

We confine ourselves to the class .7 7 of statistics

T(x) = Z": o Xi.n
i=1

(where a = (2q, a3, ..., %,), %y, %3, ..., %, = 0) which are unbiased estimates
of A in M,. Observe that if Te ¥, then by () = Abr (1), so that the problem
reduces to that of finding T* minimizing by (1). Such T* would be the
uniformly most bias-robust statistic in the class .7 *.

The problem of robust estimation of A under other violations of My
was considered in.the series of papers of Zielinski [5], Bartoszewicz [2],
Zielinski and Zielinski [6] and Bartoszewicz [3].

2. Results.

THeoreM 1. If G is a DFRA distribution and H is an IFRA distribution,
then the uniformly most bias-robust estimate of A is T* =nX,,,.

THEOREM 2. If G is an IFRA distribution and H is a DFRA distribution,
then the uniformly most bias-robust estimate of A is

T* = X,.J(1+1/2+ ... +1/n).

t

Proof. If Fen(W(1)) then H £ F € G, where < denotes the stochastiC
ordering. It follows that for Te .7 *

sup ErT(x) = Z % Eg X;n
Fer(W(1)) i=1
and

lI'lf EFT(&) = Z 1,' EHX,':".
i=1

Fern(W(1)

The problem of finding T* reduces to that of finding nonnegative
Ay, A3, .., %, Which minimize

Z %(EG Xin—En Xi.n)

i=1
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under the condition of T* being unbiased in M,, i.e.
Z % Ewqy Xiw = 1.
i=1

This is a simple linear programming problem and the solution is
(x4, 2,5, ...,a,) with exactly one non-zero coordinate. Hence
. . e

T™* = X, ,/Ew, X, where i* minimizes

EG Xi:n_EH Xi:n

, i=12,...,n.
Ew) Xin

If G is a DFRA distribution and H is an IFRA distribution, then i* = 1,

Which ends the proof of Theorem 1. Under the hypothesis of Theorem 2 we
haVe i* = A.

3. Examples. Three following applications are interesting.

3.1. If the exponential model is violated in such a way that the failure
Tate function r(r) lies in the region shown in Figure 1 (instead of being
identically equal to 1), where r¢ and r¥ are the failure rate functions of some
DFR and IFR distributions respectively, then the normalized first order
Statistic is the uniformly most bias-robust estimate of the scale parameter A.
The exponential power extension of the model M, which has been studied by
Zielifiski [5] is a particular case of this example.

o

Fig. 1

r(t)

32, If r(1) lies in the region presented in Figure 2, r® and r” being the
Allure rateg functions of some IFR and DFR distributions respectively, then
¢ normalized last order statistic is the uniformly most bias-robust estimate
" The gamma extension of the model M, which has been considered by
toszewicz [2] is a particular case of this example.

of
Bar
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r(t)“

G A 1 7 2 s A

w_.
>

Fig. 2

33. The family {W(4), 4 >0} of exponential distributions may. be
considered as a family of distributions with the failure rate functions r(t),

t >0, such that ?EQ If the violation of the model consists in that
dr(t
0< —%9 < ¢, the situation is as in Example 3.1.
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J. MARCINKOWSKI (Wroclaw)

STATICAL MOMENTS OF EXACT AND APPROXIMATE PROFILES
OF AIR SPRINGS

1. Introduction. Air springs have usually the shape of rotational solids. It
May be assumed that the inside pressure of gas induces such a shape of the
Spring which insures its maximal volume, given the area of its surface. This
Statement leads to a variational problem which was studied in the author’s
Carlier paper [7]. Obviously the meridian section of the spring is a plane

Omain symmetrical with respect to the axis of rotation, which may be taken
a8 the y-axis. It was proved in [7] that it is symmetrical with respect to the
X-axis as well. Its part D lying in the quarter x > 0, y > 0 (Fig. 1) is bounded

Y a line I (called by the author anti-ellipse) and by two segments: [x,, x,]

Yem
e

1 10

x e e —————
oy I
Y

X2 X
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of the x-axis and [0, y,] of the line x = x;. The line I' is described by the
equation

2.2
M) y= J"" * i,

where

w(x) = —x*+2x2 (x2 + 243 — x,
or, equivalently,

w(x) = —x*+x2(x? +x3)—x? x3,

x, and x, (x; <x,;) are the abscissas of the two endpoints of the
anti-ellipse I

(2) X, = /X1 X3
is the mean distance of I' to the y-axis;

A=3(x3—x,)

is the half-diameter of I

We put also y; = y(x;), for j =1, 2, k, where y denotes the function
defined by (1); note that y, = 0.

The line I' was obtained as an extremal of the following variational
problem: find the line AB with given statical moment (') in such a way that
the statical moment of the domain D should be a maximal one.

As the Euler equation, which was the basis of the investigations [2],
gives only the necessary condition for the extremum of the functional we
complete our earlier result by a numerical study of the problem and this is
the aim of the present paper.

It is usually assumed in technical investigations that the meridian
section of a fold of the air spring is an arc of a circle. We are going to show
in this paper that this supposition, although well justified in practical
considerations, is not exact.

Unfortunately, it is very incovenient to compare the numerical values of
the statical moments of the two domains bounded by the anti-ellipse and by
the circle, respectively. Numerical experiments performed by the author have
shown that their difference, assuming the statical moments of the
corresponding lines be equal, does not exceed the computation errof

(') By “statical moment” we understand in this paper the statical moment with respect t©
the y-axis.
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Therefore we shall construct in Section 5 an arch curve I', (Fig. 5), consisting
of arcs of two circles, with the following properties:

(i) The computation error of the statical moments of I', and of the
domain D, bounded by it depends only on the assumed computation
accuracy of the number .

(i) I', is in some sense (which will be precised below) more close to the
anti-ellipse I' than is the arc C of a circle.

In Section 5 we give an example of the lines I'y and C, having
approximately the same statical moments T, and T, and for which the
difference U,—U, of statical moments of the corresponding domains is
positive. This difference equals about 2%/, of the values U » and U, but does
exceed more than 100 times the computation error.

In the sequel we describe a graphical method convenient to calculate the
parameters x, and x, of the anti-ellipse with given axis of rotation and going
through a given point. We prove also that, considering the values of the
tensions of the shell, we may replace an arc of the anti-ellipse by a suitable
arc of a circle.

2. Some auxiliary functions. We need in the sequel the following two
functions:

X

P2 2

3 _ [,

(3) z(x) Jm X
x2

and

@) j(x)=)j' w(x) dx.

~ The graph of function z(x) has some properties similar to those of the
line I described by (1). Its length I, may be expressed by elementary

functions and its radius of curvature R, is a rational function of x. We have
thus

l( )_( ) . v % :
.(X) = (X, +Xx4) arc sin
- 2 ! x%—-xf

and

X (x4 X))

R.(x) x%—x; X,
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Remind that for the line I the corresponding expressions for / and R are,
according to [7],

x2—x?
(5) I(x) = (x5 —x,) arc sin —;——2—
X2 —X1
and
2 —
R(x) = X 2(xz Xy) ’
X“+x; X,
SO
X+ X
L(x)==2""1-],
xz‘_xl

The approximative values of function z may be expressed in a similar way as
it was done in [7] for the function y given by (1) or in terms of elliptic
integrals [4], as follows:

z=xE(p, k)+x, F(o, k).

We have sketched on Figure 2 the graphs of the functions y and z with
identical parameters x; and A.

zZ(x)

yix)

o

Fig. 2

Concerning the function j, its values may be computed approximately by
numerical integration, because the integrand in (4) is bounded in the whole
interval [x;, x,]. It may be expressed also by elliptic integrals [3].
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3. Evaluation of statical moments of the anti-ellipse. The statical moment

T, of the part I',5 of the anti-ellipse is given by
B
T, = j' xdl,
A
or, equivalently, by
*B
(6) T,= [ x/1+y?dx.
XA

Calculating y’ from (1) yields

*B
2
x
T,=2 J dx;
x4

Jw(x)
thus
T,=-A(y+2)[:5.

We need also the statical moment of the plane domain D, bounded by arc
I',p and by the line segments x = x,, x = xz and y = y, (Fig. 3).

A
y
D,
YeF————g =
/-] niiai Ths
np=—-
Ll Dy Dy
|
|
= T A
E
1
0 X{ Xg Xy X4 X3 X
Fig. 3

The usual expression for the statical moment of a domain will be
F’rought to a form convenient in further numerical calculations. It was shown
In [7] that y defined by (1) is a strictly increasing function in the interval
LX1, x,], takes its maximum value y, in the point x, and decreases in the
Interval [x,, x,]. The two parts of the anti-ellipse corresponding to the
Intervals [x,, x,] and [x,, x,] can be described by the equations

or x=g1(y), y»<y<
X=¢;(), Ya<Yy<
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respectively (see Fig. 3). The domain D,g consists of three parts D,
j=1,2,3, described as follows (Fig. 3):

D,: Ya <Y < Ys,

Xg < X < X;;

D,: VBV < i

g1(y) < x < x5

D;: YVaS YW
X € X < ga2(p).

Then the statical

3

oment U, of the domain D,z equals

| xdD = 23: {[{xdD.

DAB j=l Dj
Performing the integration with respect to x in the integrals on the right we
obtain

YB
[{xdD =% | (x}—x3)dy,
D) a4
Yk
{{xdD =3 { (x—g,(»)dy,
D, Ya

Yk

[{xdD =1 [ (g2 (»)—x})dy,
D3 YA

and this yields

Vi Yk
2 ([ xdD= {g3(0)dy— [gi(»dy—xz(yg—ya)-
Dyp ya YB

Substituting (1) in the integrals on the right-hand side we get

.Vlf XB
fgidy = — [ x*y'(x)dx
B X
and
}’}f Xk
[g3dy = [ x?y'(x)dx,
VA x4
so finally
* xg

U, =% ‘ xzy'dx—%xg(ya—yA).
x4
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Calculating y’ from (1) yields now

xp
" (xE —x?) x?
U, =3 J (_k—‘_)“dx_%x?!(YB_.VA)
w(x)
x4

or equivalently, making use of formulas (1), (3) and (4),

U, =[A2z+(Gx2+ D)y +310 - 5x5 00— 4.
As it is well known
7 U, = Sx,,

Where S denotes the area of domain under consideration and x, is the
X-coordinate of its centre of gravity. Identity (7) allows to verify in a simple
Manner the numerical calculations of U,. We have namely to make a model
of the domain, using a piece of stiff cardboard and then one can find the line

= x, of the centre of gravity putting this model on the edge of a knife. The
€rror of such an experimental measurement equals about 0.1 cm.

4. Substitution of an arc of the anti-ellipse by an arc of a circle. We
Substitute in this section a given arc I" of the anti-ellipse by a suitably
Constructed arc of a circle with identical statical moments and then try to
Compare the statical moments of the corresponding domains (Fig. 4a).

a) o),

Yo

Fig. 4

Let us consider the circle with centre (xo, yo) and radius r; its equation
® (x— Xl +(—yo)? =17,

8-2
- astosowania Mat. 18/4
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and therefore

r2

14y’ =5———.
+y r2—(x—xo)?

According to (6) we obtain for the statical moment of the arc K of (8) with
end points (x,, y,) and (x,, y,):

T j e
= x
N BV EEENE
*p

or, after evaluation of the integral,

. X, — X, . X,— X
9) Tx =X (arc sin——— —arc sin -2
r

)+r(yp—y,).

Obviously, the end points of arc K satisfy (8); thus

(10) (xp_x0)2+(yp_y0)2 =r? /
and
(1) (X, —x0)* +(y, — yo)? =12.

Assuming the value of T,x to be given, we have seven parameters
X0, Yo» Xp» Yp» %> ¥, and r in equations (9)«(11), therefore any four of them
may be fixed arbitrarily and then we can calculate the remaining thre€
unknown ones. We may assume, for example, to coincide the end points of
both arcs K and I; then we have to calculate only x,, yo and r (Fig. 4a). If
the arc I is symmetrical with respect to the x-axis, then it consists of someé
part of I' and of its reflection in the x-axis; we have then (Fig. 4b) x, = X
Yp= —Yr Yo =0 and it is sufficient to assume numerical values for the
coordinates of one of the end points (note that equations (10) and (11) ar¢
identical in this case). In every situation the most convenient way to defin¢
the arc K is to compute x, and y, from equations (10) and (11), and then t0
consider (9) as an equation with one unknown r. In virtue of the
transcendental form of (9) its numerical solution is very complicated, so W°
prefer another procedure: Assuming some value of r, we calculate from O
the value of T,. If the obtained result does not agree with the assumed on
say T%, we repeat the calculation, starting from another value of r, till 2
reasonable approximation of T% is obtained.

Unfortunately, the performed numerical calculations have shown that
the difference between the values obtained for the statical moments U 2P
U of the domains corresponding to the arcs I* and K, respectively, is of the
same order as the computation error. Therefore we proceed in a different



Statical moments 621

way and construct a new line I',, called arch curve, having statical moments
whose exactness of evaluation depends only on the approximation of n. The
definition of I', and some its properties are given in the next stction.

5. The arch curve corresponding to the anti-ellipse. Let 4 and x, be the
parameters of our anti-ellipse I'. By the arch curve I', (Fig. 5) we mean the
line consisting of two arcs K and K@ of circles satisfying the following
conditions:

(i) the radius r, of K" is arbitrarily chosen from the interval
(2 =, y)3 (%)

(ii) the centre of K’ is the point 3; =(x,, 0) and the end points of the
arc are (x, r;) and (x,+ry, 0); ,

(iii) K® is part of a circle with radius r, =2A—r and centre
8, =(x,, r;—r,); the end points of the arc are (x,—r,, r{—r;) and (x,, r,).

It is easily to be seen that the middle angle, say 2«;, of each arc equals
/2 thus the length of I', is ©4 and equals to the length of I'. Note that in
the common point (x,, r;) both arcs K“ have a common tangent parallel to
the x-axis.

1\
y
nF——————— rP
K(Zl KU)
r
r—=r-—-—4-—--%
I
I n
|
I
1
L _
o X—I2 P X+ 1y X
Fig. 5

Let S; =(&;, n;) be the centre of gravity of arc KY. According to the
Well-known formula [5] we have, for j =1, 2 (Fig. 6),

sin a; sin(mt/4)

o T

and therefore
&, = x,+|9; Syl cos (n/4) = x; +2ry /m,
&, = x,— |9, S5l cos(n/4) = x;, —2r,/m.

\

) According to [7], Figure 7, there is always x,—x, <y, except the two extremal cases
% =0 and x, —» 0 when the anti-ellipse becomes the arc of a circle.

(*) We denote by |PQ| the length of the segment with end points P and Q.
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iyl

Ly

¥,

% oy

aml———
/

*

Fig. 6

Denoting by /; the length of arc K9 we have for the statical moment T, of
the arch line I,

T,=1¢+1¢,,

y F,
3
az| F1
I
I !
! 1
I I
| 1
2740 -
0 & & x
Fig. 7

and this yields after elementary calculation

(12) T, = $nx,(ry +r2)+ri—r3.

To compute the statical moment U, of the domain bounded by I',, by the
line x = x, —r, and by the x-axis (Fig. 7) let us denote by S;(&;, ;) the centré
of gravity of the domain Fj, j=1, 2, 3. Then, according to [5], we have
Thus

4r,

4r,
X 3n’

Ez=xk—§, Es=xk_7r2-

El =
As

3
U,= Y &IF, ()
j=1

(*) For any plane domain D we denote its area by |D].



Statical moments 623

similar calculations as above yield

X X, T
(13) U,= (—45+ 3)+ 2<Tk—§2>+(xk—%r2)(r1—r2)r2
Note that the computation error of both statical moments T,.and U,
depends only on the error of the assumed approximation of mn. The errors
corresponding to (12) and (13) are

(14) AT, =3 x,(ry +r;) A
and
(15) AU, = 4x,(r} +r3) 4n,
respectively.
v} . ”

rn=r

0 X —ry X X

Fig. 8

F We introduce now the arc C of a circle through the following conditions
1g. 8):

(¢;) the centre of circle 3 =(xq, 0) with some x,;

(c;) the end point of C which is closer to the y-axis is (x,—r;, ry—r3),
the second one lies on the x-axis; [Note that (x,—r,, r; —r,) is one of the
nd points of I',.]

(c3) the statical moment T, of C equals T,.

To define arc C explicitly we have to calculatc its parameters Xxq, the
Mmiddle angle 2o and the radius ¢. Denoting by S = (&, n) the centre of
gravity of C we have [5]

sin o
0S| = ¢

thus‘

r, .
4 x0+2asm

The statical moment of C equals
’IE- = élca
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where I- denotes the length of C, thus
(16) Te = 209x0 + 0 sin 2a.

Moreover, we have

(17) Xo = X, —Try+0 cos(n— 2a)
and
(18) [xo— (X, —ra) 12+, —r3)* = 0°.

From equations (16)(18), where T is given according to (c3), we obtain the
transcendental equation for

(19) Q=Tc[rl—rz+(xk—rz+C)(n—0)]“

with I
{=[0*—(r,—r,)*]"* and ¢ =arcsin—2
o

Equation (19) could be solved approximately using the Taylor expansion
of arc sin. A more convenient way, applied by the author, is the following
one: Let us write (9) in an equivalent form

(20) Tc =eolri—ra+(x—ry+{)(n—0)].

Then, assuming some value of ¢, we may calculate T from (20) and
compare the obtained result with the given value of T,. If the difference
between Ic and T, is too great, we may eventually repeat the trial. In this
method we treat g, r, —r, and x, —r, as exactly given and calculate the error
of T, which equals [9]

’

AT = 2xAn+%€Aa+aa—?AC
with
® =30(x—r2+0),
or, after evaluating the derivatives,
(21) AT = o[(xy—r,+0)(An+ 4o)+(n—0) A(].

Moreover

271-1/2
r.—r r,—r r,—r
Aa=AarcsinIQZ=A1 2[1—(l 2>J + 4y,

Y 0

where the first term on the right-hand side is connected with the
computation error of the quotient (r, —r,)/¢ and the second term follow$
from the computation error arc sin g for a given g.
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The domain corresponding to the arc C/(Fig. 8) consists of the sector of
a circle and of a triangle. Its statical moment is
(22)  Uc=30*(ry—r))+30* (X —12)(n—0)+
+30°{(n—0)+ 304 —1) (ry =) {+5(ri —12) 2.
By similar computations as above we get for the computation error
(23) AUc =30*(xy—r +0)(An+ o)+
+[30*(n—0)+3(x—r)(ry —r2)] 4.

| 1 1 >
16 20 24 28 32 36

Fig. 9

We illustrate now our investigations by a numerical example. Let
us consider the anti-ellipse with extremal abscissas x; =16, x, = 36
(Fig. 9); then A = 10 and x, = 24. The ordinates of the characteristic points
are y, = 6.1582, y, = 13.0844 and y, = 0. In the arch curve I', we put r,
= 12.5; then r, = 7.5. Assuming n = 3.14159 with An = 10"° we get from
(12)

T, = 853.98232,

where, according to (14),
AT, = 0.00024,

and thus
853.98232—%AT,, <T,< 853.98232+%A7;,.

So we may put
(24) T, = 853.982.
Assuming ¢ = 11.22, we get from (20)
T, = 854.179.
For 46 = 00002 and 47 =107* we have from (21)
AT, = 0.004,
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and so we may put
(25) Tz = 854.18.

Comparison of (24) and (25) shows that T, = T with an error less than one.
Let us calculate now the statical moments of the corresponding plane
domains. From (13) and (15) we get

U, = 5275.3227
with an error

AU, = 0.0013.

Thus we can put U, = 527532 or, rounding off,

(26) U, =5275.
Using (22) and (23) we obtain
Uc=51753
with an error
AUc =04,
SO we may put
(27) Uc = 5175.

Comparison of (26) and (27) shows that the difference .
U,—Uc=100>0

is about 2%, of the values of both moments U, and Uy, and it exceeds the
computation error many times.

It is not hard to see that the arch line I', is closer to the anti-ellipse
than the arc C (Fig. 9). To measure “the error of approximation” we can fix
a finite system of abscissas x!, ..., x? and consider the sums

1 q
D= Z (y(j)—ﬂu’) and S = Z (yu')_,,m)z’
ji=1

j=1

where y and n¥ denote the ordinates of the corresponding points of the
anti-ellipse and of the compared line, respectively. Inserting in xf” the
integers from the interval (x, x,] we get in our example for the arch line Iy

D,=817, §,=3085,
and for the arc C

Dc = 2138, S¢ = 12646.
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6. Evaluation of the parameters of the anti-ellipse going through a given
point. Suppose we are given an air spring consisting of a flexible
nonexpanding shell and fixed on the boundaries of two stiff targets.
Assuming rotational symmetry of the air spring, it follows from the author’s

]

Y r

Fig. 10

€arlier result [7] that the upper half of the meridian section of the shell lying
in the half-plane y > 0 (Fig. 10) is an arc of the anti-ellipse with given length
l, and going through a given point of fixation (x,, y,). Now we are led to the
following problem: find the parameters x, and x, of the anti-ellipse using the
above mentioned data.

We get from (1) and (5) the system of two equations

*u
2
Xy Xy —X
Vu = J—dx,
w(x)
x2
7.2
o x2—x
(28) I, = (x,—x,) arc sin_ |4
X2 — X1

With two unknowns x, and x,; this way of calculating their numerical
Values is obviously a very inconvenient one. We propose here another method

J

=1

f—y
10

@
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l
based on the similarity of the anti-ellipses [7]. Let us put s = x t E)—

Yy’
then by equations (1) and (5) every anti-ellipse defines a curve on the
(s, t)-plane (Fig. 11). Note that the curves corresponding to similar anti-

: . : x, I(x
ellipses coincide. Each curve starts from the point (—1, ( 1)> and tends to
Y N

(00, 1) when x—x,. On Figure 11 we have sketched five curves
corresponding to the anti-ellipses with given parameters.

X l
To solve our problem we calculate the values s, =%, t, = — and
yu yu
[
y !
32

28

24

Fig. 12

seek a curve on Figure 11 which goes as near as possible of the point (s,, fu)-
We state in this way that the anti-ellipse we are going to find is similar to
the one, say I, with given %, and %,. It remains only to find the scale
constant 7. For this purpose we have sketched on Figure 12 the graphs of
the functions y and [, given by (1) and (5), respectively with identical
parameters x, and x, as used on Figure 11, but expressed in terms of the
new independent variable Y = x—x,. To obtain t we choose on Figure 12
the graphs of two functions y and | with known parameters X, and X, and
seek such a value /, on the -axis that the identities

7% B 7 (7% N
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hold. Now we have %, = %, +,, and
(29) T =x,/%,

is well defined.

ExampLE. Given [, =27, x, =y, =21, we have s, = 1, t, = 1.28 and we
can see from Figure 11 that the point (s,, t,) is close to the curve with
parameters X; =5, X, = 25. From Figure 12 we find ¢, =10, and 1 = 14
according to (29). So the meridian cross-section of the considered air spring
is an arc of the anti-ellipse with parameters x, =7, and x, = 35.

Instead of the above described method we may find approximately the
Parameters x; and x, in the following way: Let us suppose that the meridian
Cross-section of our air spring is the arc of a circle K (Fig. 13) joining the

Y
Y~
[ {y
a L
0 X0 \¢ & Xy x
4
~Yu
Fig. 13

Points (x,, y,) and (x,, —y,), of length 2I, and with middle angle 2&. The two
Unknowns, « and radius g, of K may be found from the equations y,
=g¢sina and I, = go. Denoting by x, the abscissa of the centre of K (it
f)bViously lies on the x-axis) we have now xy=x,—¢ cosa Thus K
Intersects the x-axis in x, = xo+¢ and the value of the parameter x, can be
found from (28). The computation error of x; and x, found in this manner
does not exceed 5%, if x, > x,; moreover it does not exceed 1%, if x,/A
= 3.5. In the above considered example we obtain g = 22.7, x, = 12.38 and
X2 = 35.08, instead of x, = 35 computed by the first method.

7. Comparison of the tensions of ring-shaped shells with anti-elliptic or
Circular sections. Let us consider a solid consisting of a flexible non-
®Xpanding shell, being a ring-shaped fold bounded by two stiff plane targets.
Suppose that on this solid acts an external force P and that there iIs an
Overpressure p inside (Fig. 14). If this solid is an air spring, we have to make
the following assumption: The increase of p, while the force P remains
Constant, yields a growth of the height of the air spring. This assumption is
Correct for all air springs, but not for an arbitrary vessel bounded by a shell.

€t us consider for instance a cylinder of height [ having two stiff bottoms
With radius R and suppose its side-shell is made from texture with a non-
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7

q
P
q
7 7 777 7
[ —
i< r -
Fig. 14

expanding wart parallel to the axis of the cylinder and with an expanding
weft. Let us suppose also that this shell may bear small loads, conserving its
cylindrical shape if there is no overpressure nside. If we let the inside
pressure grow, the vessel becomes a barrel and its height h gets less than /
(Fig. 15). The quotient h/l, corresponding to the maximal volume, depends on
the quotient R/L

The air spring connected with an air system is always charged, at least
by the empty car body. The overpressure p in it is balanced by the tension g
of the shell and by the external charge P; thus

(30) P+2nrq = nr? p+2nr,q,,
R o -—
| : |

| |

i |

i |

i | {
{ h h

|

|

i |

LL.

Fig. 15

where g, is the vertical component of the tension induced by fixing the_ shell
on the boundary of a stiff target with radius r,. For the sake of simplicity let
us consider the special case when the meridian of the fold is a half circle
with radius ¢ (Fig. 16). Denoting by r, the distance of the centre of K from
the axis of rotation we have

4, =0
and

(31) ry,="ro=r—g.
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I's

o

i

T

r o
-

Fig. 16

‘As the overpressure p is balanced by the external charge, so

(32 P=nrip.
It follows from (30) and (32) that

p(r*—rg)
3 _puri-ry
(33) q >

The obtained result (33) is the same as in the case when the shell is a whole
ring surface. Using (31) we may write it in a different form, namely

0
(34) q =pa<1——2;>-

Note that (34) is also true for unbounded shells, if r and ¢ denote the radius
of curvature of the parallel and meridian cross-sections, respectively [10].

Formulas (33) and (34) describe the tension g rending the shell in its
Parallel plane. The tension g, rending the shell in the meridian plane may be
Obtained from the known formula

(] r
(see [8] and [10]) which yields

Let us suppose now that the meridian of the considered fold is not an arc of
a circle but an arc T of the anti-ellipse consisting of an agc of I', described by
(1) with xe(x,, x,), and of its reflexion in the x-axis. In this case we may
adapt formulas (34) and (35) with g replaced by R, = R(x;) (see [7]) and r
= X3, and we get for the corresponding tensions

(36) 7 =pR, (1——1{—2-)

and

(37) 4, = pR2/2
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After division it follows from (34){37) that

q X0 2r—g
and
(39) 4 _ &.
49, 0

To compare numerically the tensions in both considered cases let us suppose
that the centre of the half-circle K is (x,, 0) and that both arcs K and I have
the same length. Then we have, according to formulas (2) and (5),

T . X3
— @0 = (x,—x,) arc sin ,
2 X;+ X,

and, as one can see from Figure 16,

r = xk+Q.
Numerical calculations show that
1<g/q<11l and 1<¢,/q,<115.

The values of both considered ratios (38) and (39) depend on the excentricity
m of the anti-ellipse defined as

x1+x2
m=——=—_/x;x,.
2

Its geometrical meaning was described in [7].

In technical realizations the admissible tension of the shell may be
always assumed much greater than this one which results from the pressure
in the air spring [6]. Therefore it is of no significance if we assume in
practical computations the meridian cross-section to be the arc of a circle
instead of treating it as a part of the anti-ellipse.

8. Some additional properties of the anti-ellipse. The geometrical
parameters x,, x, and x, of the anti-ellipse can be easily expressed in terms
of the excentricity m and of the half-diameter 4. We have
_(A—m)? (A+m)? A2—m?

s Xy = s Xy =

X1 ’

2m 2m 2m

and
Xo—Xy =A+m, X,—X;,=A-—m.

If the arc of the anti-ellipse corresponding to xe [x;, x,] is substituted by the
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Quarter of a circle having the same length I, then the radius ¢ of this circle
€quals obviously

2
e==k
T

e = ( ) arc sin |—2
= (X, —X;) arc sin
K Xy +X,

according to (6), and satisfies the inequality

with

Xy =X <0 < Y.

As it was shown in [7] in the two extreme cases x = 0 and x — oo the anti-
ellipse(5) with given diameter 24 is the half of a circle or a whole circle,
Tespectively. In the remaining situations when xe(0, o) it may be considered
a8 a deformed circle and, 4 being fixed, m gives the measure of this
deformation. The graphs of x,—x,, y;, y» and R, = R(x,) considered as
functions of m, with fixed A = 10, are sketched on Figure 17.

Fig. 17

9. Final remarks. It has been shown in this paper that the difference
betWeen the anti-ellipse and the circular profile of the deformed fold is
Insignificant. The substitution of the anti-elliptic profile by a circular one has
Ao no serious influence on the calculated value of the tension of the shell.

Let us note that we have supposed in our- considerations the shell to be
perfectly flexible, which is not exact and besides the temporary profile of the
Shel] depends on its initial shape ([1] and [11]). The initial profile of the fold
'S always a circular one.

\

¢) By the anti-ellipse we mean now the line consisting of I' and of its reflexion in

the X-axis.
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The anti-elliptic profile may be observed for instance when a child
presses on a big soft ball, but this situation is obviously not important in
technical applications. Thus in practical investigations one may assume with
good accuracy the meridian cross-section of the free part of the shell of an
air spring to be the part of a circle.
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