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INTERSECTING PENCIL OF HYPERBOLIC CIRCLES
\ BY

R. KRASNODEBSKI (WROCLAW)

Intersecting pencil of circles in the Euclidean plane may be defined
in the following way. Each member of the pencil is a locus of points X
which together with the two given points U and V (the common points
of all circles of the pencil) form a triangle UVX with the property

0 on one side of the line UV,
X XVU+ < XUV = )
' nt— 6 on the other side, 0 < 6 < =.

In order to obtain the whole pencil we must include points U and V.
Applying the definition in the hyperbolic plane, we obtain curves which
may be called hyperbolic circles (although, of course, other curves pretend
to be hyperbolic circles, too). The aim of this note is to give some pro-
perties of them. They differ from Euclidean circles

(i) topologically, in general being, almost all of them, unclosed
curves; '

(ii) in their groups of symmetry being, in general, symmetrical by
reflexion in one line only.

1. Let U and V be two fixed points. The line UV dissects the plane
into two half-planes M, and M,. Let M, and M, denote M, U the line
UV and M, U the line UV, respectively. Our considerations in sections 1, 2
and 3 are fully equivalent for both half-planes. Except the definitions
and the theorem, we will write therefore M instead of M, and M,, and M
instead of M, and M,.

Let 1, be the ray in M from the middle Q@ of UV perpendicular to UV
and let [, |¢|] < =/2, be the ray from ¢ such that the oriented angle (I, l,)
is equal to . Points on the ray I, or the end of it (i.e., the point in the
infinity) will be denoted by X,. Let k, or k., (0 < a < =) be the rays in

-_

M from U and from V such that the non-oriented angle (k,, UV) or
—_— —
(k., VU) is equal to a. By UV we mean the ray from U through V.
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LeMMA 1. Let 8, and d, be the angles in the asymptotic triangle UV X,
at U and at V, respectively; then

9,40,

a
(1) ctg = cos:zsh?,

where a = |UV|.
Proof. Consider the case in which U separates ¢ and the foot §
of the perpendicular from X, to the line UV (Fig. 1). Then d = Q8| > a/2.

\'%

Xe

Fig. 1

Applying Lobachevsky’s formula to the triangles USX,, VSX,, and
@SX, we obtain

1 a,
(2) Ctg? (n—6,) = ¥,
0y d-+a/2
(3) ctg? =€ ’
and
1
(4) ctg ?(3 — Isl) = ¢?,

From the formula expressing ctg(d,+ d,)/2 by ectgd,/2 and ctgd,/2
we have, in virtue of (2) and (3),
6,468,  eF—e
2 et ?’

(5) ctg

Substituting now in (5) instead of e’ the left-hand side of (4),
we obtain (1).

—_—
It is equally easy to prove (1) in the case when S lies on the ray UV.
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Remark. For the sake of simplicity we set the curvature of the plane
equal to —1. In general case, when the curvature » < 0 is arbitrary, it
is enough to set, in what follows, a/(— x) instead of « in all symbols in
which a is the distance UV.

2. Definition 1. The locus of a point Xe M, (¢+ = 1, 2) such that
in any triangle UVX the sum of the angles at U and at V is equal to ¢,
0< éd<m, is said to be the curve L;(a, d).

In what follows L(a, 6) will stand for L,(a, 8) and L,(a, J).

From Definition 1 it follows that L(a, §) is symmetric by reflection
in the line containing I,. Let us denote this property of L(a, ) by Ps.

X is a continuous funection of 4, and 4., where é, and é, are the angles
at U and at V in the triangle UVX. In fact, let two pairs of rays »,

—_—

and 7,, r, from U and from V, respectively, form with the rays UV and
VU angles 6, 6, and o), 8, such that [8,— 6| and |6,— &, are small.
Then X =r7r,'r, and X =r,r,, if they exist, are close in a natural
topology of the plane(!). For 6 = const, X, if it exists, is a continuous
function of one variable, say ¢, (then 4, = d—4,), and the set {X(4,)}
is equal to L(a, J) for 0 < 6, < 4. It is clear that through every point of
M passes a curve L(a, §). Thus we have

LEMMA 2. If a finite open arc belongs to L(a, 6), so does its closure in M.

LemMmA 3. If 6, — 6, then X (6,) = U, and if 6, - 0, then X(4,) = V.

Proof. Consider the first case (the proof of the second is analogous).

—_

If X(6,) tended to a point X, # U, then X ek, = UX, and, of course,
Xoe M. In virtue of Lemma 2 there is X,eL(a, ). But then the sum of
angles at U and at V in the triangle UVX would be greater than é con-
trary to the definition of L(a, 6).

Consequently, we adjoint to every L(a,d) the points U and V;
thus we formulate

Definition 2. The union L(a,d) v U VUV (t =1,2) is said to
belthe curve L;(a, 6).

From Lemmas 3 and 2 we obtain

LeMMA 2. If a finite open arc belongs to L(a, d), so does its closure in M.

Take a point X on L(a, 8) close to U. Let X tend to U along L(a, 6).

_

Then the ray UX tends to the limit ray k, which is a one-sided tangent.
The same is true for V with the limit ray k,. Let us denote this property
of L(a, ) by Pé. To show P4, it is enough to observe that the limit ray
k., could not be neither such that a > é nor such that a < 4.

(*) K. Borsuk and W. Szmielew, Foundation of Geometry, Amsterdam 1960,
p. 64.
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3. We now define two other properties of L(a, 6).

L(a, 0) is said to have the property Pc if every I, cuts the curve in
a point, and the property Pe, if: (i) two lines (or one line in the limit case,
¢ = 0) containing I, , ey where 0 < ¢, < ©/2, are the asymptotes (or
is an asymptote) of the curve; (ii) the rays (or a ray) I, for |¢| < ¢, do not
cut the curve; (iii) any I, for ¢ < |¢| < =/2 cuts the curve in a point.

LeMMA 4. If

6 tg > = sh
) ctg - > sh,

then L(a, 8) has the property Pec.
Proof. Denote by 6(X;’) the sum of the angles at U and at V in the

asymptotic triangle UV XY, |¢] < g From (1) we have

(X
(7) ctg (2’) = comsh%.
(6) may be written as follows:
0 a
(8) ctg?=sh?+c, c>0.

In the degenerate triangle UVQ we have

o
9) otg 2 — oo,

where 6(Q) = X QUV+ < QVU = 0. If X, runs from @ to the end of
l., then the sum 46(X,) of angles at U and at V in the triangle UV X,
increases monotonically from 6(Q) = 0 to 6(X). Therefore it follows
from (7), (8) and (9) that there exists a finite point X, (different from Q)
such that in the triangle UV X, (6) is satisfied. Hence L(a, 6) has the pro-
perty Pc provided a and 4 satisfy (6).

If the quotient shia/ctgid (< 1) is close to 1, then the point X,
of the intersection of L(a, é) and I, is far; if sh}a/ctg}d diminishes to
zero, X, tends to Q.

LeMMA 5. If

) a
(10) ctg > = sh ?,

then L(a, 0) has the property PO (i.e. Pe, for e, = 0).

Proof. The same reasoning as in the proof of Lemma 4 shows that
if @ and ¢ satisfy (10), then on every ,, there is a point X,(+ 0)e L(a, 6)
for |¢| > 0; in (8) we set in this case ¢ = 0.
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X = X (4,) (section 2) is now a continuous function in two open
intervals I, = (0, 36) and I, = (3d, 8). Suppose that if 4, tends to }o
in I, or I,, then X tends to a finite point X, on I, (symmetrically from
both sides of l,). Then, in virtue of Lemma 2', <X UVX,+ < VUX, = 4.
But it follows from (10) and Lemma 1 that for ¢ = 0 the sum of angles
at U and at V in the asymptotic triangle, with [, as its asymptote, is
equal to 6. The contradiction shows that I, must be the asymptote of
L(a, 6). In other words, L(a, §) has the property P0, when (10) is
satisfied.

LemMmA 6. If

0 a
11 0 te — h —
(11) <cg2<s 2"

then L(a, 6) has the property Pe,, where ¢, is the positive solution of (1)
for 6,+ 6, = 6.

Proof. It is sufficient to modify slightly the proof of Lemma 5 to
show that (i) on any I, for ¢, << |¢] < =/2 there exists one and only one
point X such that 6 and @ in UV X satisfy (11); (ii) X describes a curve
with asymptotes I_, and ley:

(11) may be written as follows:

o _ a a
ctg? = cos%shg —c¢, 0<ec< cosgsh e

In the asymptotic triangle UVX for |¢] < ¢, we have (7) and in
the degenerate triangle UVQ (9) holds. Thus, for every X, with |¢] < ¢,

o(X
(12) coush% < ctg —(—2—‘1 < o0,

where 6(X,) is the sum of angles at U and at V in UV X,. Since
a a
€08 gy sh 5 —c< OOSeShE, le] < &,

we infer from (12) that there is no point X on [, |¢| < ¢,, such that ¢
and a in UVX would satisfy (11). And this is the end of the proof.

If the quotient shia/ctg4d ( > 1) is close to 1, the angle 2¢, between
the asymptotes I_. and [, of L(a, 6) is small; when sh}a/ctg}é increases
to the infinity, 2¢, tends to =.

Our previous considerations for one half-plane M, or M, can be
summarized in the following

THEOREM. For every d¢(0, w) there exists a continuous locus L,(a, 6)
in M; (¢ =1,2) and if (i) ctg3d > shia or (ii) ctgid = shia or (iii)
ctg}d < shia, then L;(a, 8) has the properties (i) Ps, Pd, Pc or (ii) Ps,
Pé, PO or (iii) Ps,Po, Pey, where cosey, = shia/ctgld, respectively.
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4. Definition 2, when applied to both half-planes of the Euclidean
plane, provides a member C*(a, ) of the intersecting pencil of circles.
The hyperbolic circle L*(a, 6), which is the counterpart of C*(a, d), is
then, in the hyperbolic plane, equal to the union of the two curves L, (a, 9)
and L,(a, n— 9d):

L*(a, 8) = L,(a, 6) U Ly(a, 7—6).

The lines tangent to L*(a, 6) at U and at V are k,, UK, , and
kis Uk, ._, respectively, where ki, ki,eI;.

L*(a, §) may have none, one, two, three or four asymptotes. All
possibilities are tabled on p. 270 and 271. The table is a collection of
theorems; we consider in it three cases: sha/2 < 1,sha/2 =1 and
sha/2 > 1; in each of them some subcases are to be distinguished.

In two cases only such as ctgd/2 = 1,sha/2 =1 and sha/2 > 1,
0 = =/2, the hyperbolic circles have two reflexion lines.

Re¢u par la Rédaction le 19. 9. 1968



