A CHARACTERIZATION OF SPHERES AMONG COMPACT 3-BODIES SATISFYING CROFTON’S THEOREM

BY

HANS HERDA (BOSTON, MASSACHUSETTS)

The aim of this note is to show the following result.

THEOREM. Let \(K \) be a compact subset of \(\mathbb{E}^3 \) having finite surface area \(s \). Let \(q \) be the infimal surface-area-bisecting cross-section of \(K \). If \(K \) satisfies Crofton’s theorem, then \(s \geq 4q \), and \(s = 4q \) implies that \(K \) is a sphere.

In particular, this result holds if \(K \) is assumed to be the closure of a bounded open set \(B \) such that \(\partial B \) is rectifiable.

In the proof we essentially follow Steinhaus [4]. Steinhaus interpreted Crofton’s [2] probabilistic methods for measuring arc length in a modern setting, but instead we use a 3-dimensional approach.

Proof. Consider the set of all lines \(\mathcal{L} \) in a Euclidean 3-space \(\Omega \). Let \(OQ \subset \Omega \) be a fixed segment in a fixed plane \(\pi \), \(P \) the foot of the perpendicular from \(O \) to a given line \(L \in \mathcal{L} \), \(P' \) the perpendicular projection of \(P \) onto \(\pi \). Characterize each line \(L \in \mathcal{L} \) by the parameter triple \((\varphi, \theta, p)\), where \(0 \leq \varphi < \pi \) measures the angle \(P'OP \) in a plane perpendicular to \(\pi \), \(0 \leq \theta < \pi \) measures the angle \(QOP' \) in the plane \(\pi \), and \(-\infty < p < +\infty \) measures the distance \(OP \). The one-to-one correspondence

\[
L \in \mathcal{L} \leftrightarrow (\varphi, \theta, p) \in \mathcal{S}
\]

is evident, where \(\mathcal{S} = [0, \pi) \times [0, \pi) \times (-\infty, +\infty) \), an infinite rod with square cross-section.

Define the measure \(\mu(Z) \) of any set of lines \(Z \subset \mathcal{L} \) by setting \(\mu(Z) \) equal to the 3-dimensional Lebesgue measure of \(Z^* \), the image of \(Z \) in \(\mathcal{S} \). This is a modern version of Crofton’s basic result. Consider a compact body \(K \subset \Omega \), and let \(\mathcal{A}_k (k = 1, 2, \ldots) \) be the sets of lines \(L \in \mathcal{L} \) which cut the surface \(\partial K \) in exactly \(k \) points. Crofton’s theorem in this case takes the form (\(s \) being the surface area of \(K \))

\[
s = \frac{1}{\pi} \sum_{k=1}^{\infty} k\mu(A_k),
\]
if this sum is finite (for example, if $K = \bar{B}$, where B is bounded and open, and ∂B is rectifiable).

Restrict Ω to the unit sphere U and assume that $K \subset U$. Call $L(\varphi, \theta, p)$ the image $L \in \mathcal{L}$ of the point $(\varphi, \theta, p) \in S$. The number of intersections of $L(\varphi, \theta, p)$ with ∂K in Ω is a function $f(\varphi, \theta, p)$ of three real variables.

We can now write (1) in the form

\begin{equation}
 s = \frac{1}{\pi} \int_{-\infty}^{+\infty} \int_{0}^{\pi} \int_{0}^{\pi} f(\varphi, \theta, p) \, d\varphi \, d\theta \, dp,
\end{equation}

where the left-hand side is understood as Jordan content and the right-hand side as a Lebesgue integral. An analogous formula is developed, from the integral geometry viewpoint, in [1], p. 65.

Let $p(\vec{v})$ denote the measure of the 2-dimensional projection of K onto a plane normal to the direction \vec{v}, and write

\[p = \inf_{\vec{v}} p(\vec{v}). \]

Similarly, let $q(\vec{v})$ denote the measure of that planar cross-section of K, normal to \vec{v}, which bisects the surface area s of K, and write

\[q = \inf_{\vec{v}} q(\vec{v}). \]

Since the number of intersections $f(\varphi, \theta, p)$ with ∂K is not less than 2 for all lines intersecting K (except a measure zero set), we infer, by use of (2), that $s \geq 4\pi \geq 4p \geq 4q$.

If $s = 4q$, then all lines (except a measure zero set) intersecting K must intersect ∂K in exactly 2 points, that is, $f(\varphi, \theta, p) = 2$ there. Hence K is convex, and in the convex case K is already known to be a sphere [3].

REFERENCES

DEPARTMENT OF MATHEMATICS
BOSTON STATE COLLEGE

Reçu par la Rédaction le 19. 2. 1975