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The first example of a countable (i.e., countably infinite) connected
‘Hausdorff space was given by Urysohn in [11], and many others have
been constructed since — for instance in [1], [2] and [3]. Some have
additional topological properties: the one in [7] has a dispersion point,
the one in [6] is homogeneous, and those in [5] and [8] are locally connected.
A somewhat simpler example of this kind is the following (essentially
a modification of [1]): Let U,, U,, ... be an enumeration of the rational
open intervals of the real line. Choose a countable collection P of disjoint
pairs of (distinct) real numbers such that, given positive integers 7 and
j, there is at least one pair in P having one of its elements in U, and the
other in U;. Let O, denote the collection of all pairs p in P such
that p <« U; n U;. Then {0;|¢,j =1,2,...} is a basis for a topology
on P, making P a locally connected, connected countable Hausdorff space.

All the spaces so far mentioned are just barely Hausdorff, in the
sense that in each there are distinct points a, b such that, if U and
V are neighborhoods of @ and b respectively, then U NV # @. In other
words, they do not satisfy the Urysohn separation axiom. But it is possible
to give examples which are Urysohn spaces too. Hewitt [4] gave the
first example of a countable connected Urysohn space; one with a dis-
persion point is in [9], and [10] provides a homogeneous one. It is the
purpose of this paper to construct a locally connected one. In fact, as
we shall see later, the Urysohn separation axiom can be replaced by any
of N, progressively stronger separation axioms, though not, of course,
by regularity [11].

First we construct a countable connected Urysohn space S, which
is a slight modification of the space due to Roy in [9].

The points of 8. Let C,, C,, C_,,... be pairwise disjoint sets of
rational numbers, each of which is dense in the reals. The set S will consist:
of two ideal points, & = (0, +o00) and b = (0, —oo), together with the
set E, of all points of the Cartesian plane of the form (x, y), where yeZ
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(the set of all integers) and xeC,. The points a and b will be called the
“endpoints’® of 8§, and also of E,.

Neighborhoods of points in 8. For p = (v, y)eE,, and &> 0, let
D,(p) = {(z, w)|w = y;2¢0,; |t—a| < &}
when ¥ is even, and
D,(p) = {(z,w)|w =y, y+1 or y—1; 2¢0,, |z—a| < ¢}
when y is odd. Further, for each ¢ > 0, let

D,(a) = {a} v {(z, w) |w>2[1/e]; weZ; 20y}
and
D,(b) = {b} U {(z, w)|w < —2[1/e]; weZ; 2eC,}.

These neighborhoods of points of § form a basis for the topology
of S. As in [9], 8 is connected; in fact, it is easy to see directly that 8
is the only open and closed subset of 8§ which contains a. (In the same
way one sees that each D,(a) is connected, and similarly so is each D,(b).)
If p and ¢ are distinct points of B, = S— {a, b}, and ¢ > 0 is less than
half the difference between their abscissas, then D,(p) n D,(q) = O.
Furthermore, S is regular at both a and b. Hence S is a Urysohn space.

We next obtain a countable, connected, locally connected Urysohn
space X.

The points of X. As before, we write E, for 8— {a, b}, where § is
the space just constructed. Put G, = {E,}, and choose recursively a se-
quence {G;|7 =1,2,...} such that each G; is a countable collection of
pairwise disjoint copies H;(p,q) of E,, one for each pair of (distinct)
points p, ¢ of each E of G,_,. We further require that all the sets G}
(¢ =0,1,2,...) be pairwise disjoint, where G; denotes | ) G;. We write
8;(p,q9) = E;(p, 9 Y {p, 4}, and regard S;(p, q) as a copy of 8, in which
the points p, ¢ correspond to the endpoints a, b of S§. More precisely,
we choose a 1-1 map 6%?of 8 onto S;(p, q) such that 6%%(a) = p and
074(b) = q. (For ¢« = 0 we use instead the identity map 6, of E,.) To
simplify the notation, however, we shall omit explicit reference to the
copying maps 079, speaking (for instance) of “D,(x) of E;(p, q)” as short for
629(D, ((629) 7" () N Ei(p, 9).

Now let X = | J{G{|i =0,1,2,...}. Clearly, X is countable.

Neighborhoods of points of X. Let = denote a point of X. There
exists a unique non-negative integer » such that x belongs to some element
E (necessarily unique) of G,; here F is either F, or some E,(r, s), where
r, seE’ for some E’'c@,_,. For each ¢ >0, define N,(x) to be the smallest
subset of X which satisfies the following three conditions:
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(1) N (z) > D,(x) of E.

(2) If ¢ >n, and p, q are distinct points of some element of @,_,,
and if peN,(x), then N,(x) o D,(p) of S;(p, 9. _

3) I 4,p,9 are as in (2), and if both p and ¢qeN,(z), then
-N-e(w) > Si(.p’ Q)'

There is an obvious inductive construction for N,(x), the first two
steps of which are the following:

(1') « is a non-endpoint of some copy of 8— {a, b}; so put the points
of D,(x) of S into N,(x);

(2") if ze@,, and a copy C of S—{a, b} belonglng to G,,, has an
end-point in D,(x), then the points (of the copy in O) of the e-neighborhood
of this endpoint are put into N,(x), with the understanding that if both
endpoints of C are in N,(x), then all the points of C are put into N,(x).
Do this for all such copies C in @&, ,,, and proceed to G, ,.

This process is very much like Urysohn’s in [11], except for the
condition of putting all of C into the neighborhood when both its end-
points belong to the neighborhood. It is precisely this addition that makes
X locally connected.

The sets N,(x) form a basis for a topology on X. It is easy to see
that each subspace S;(p, q) becomes homeomorphic to § (more precisely,
each map 6%? is a homeomorphism).

X is connected and locally connected. Each N,(x) is connected since,
after steps (1') and (2’) above, we have a connected set to which the later
steps will merely attach further connected sets as we pass successively
t0 G, 9y Gy, ... Also, while G; is totally disconnected because its end-
points have been removed (cf. [9]), G; U G; is connected; and it follows
eagily that X is connected.

X is a Urysohn space. Suppose that x, y are distinct points of X.
If for some % they both belong to G; (whether to the same copy of E,
in @; or not), it is clear that we can make N,(z) and N,(y) have disjoint
closures by taking & small enough if # and y belong to the same copy
E;(p, q); ¢ can be arbitrary if they do not. So we may assume zeF,; G,
and yeFE;eG;, where ¢ < j. There is a unique sequence E;, E;_,, ..., E;,,
such that, for each » between ¢+1 and j inclusive, we have (i) E,G,,
(ii) if » > 441, both endpoints of E, are in E,_;. First suppose j > i+2,
let the endpoints of E, , be p and ¢ (they lie in E; ,), and let the end-
points of E; , be r and s. There exists ¢ > 0 such that the four sets D,(r),
D,(s), D,(p), D.(q) of 8;,, have pairwise disjoint closures in §;. , (where
8,118 E;, U {r,s}). If also ¢ is small enough so that D,(z) in E; does
not contain both r and s, then N,(x) N N,(y) = @. Finally, if j = i+1,
essentially the same argument applies if we take p = ¢ = y, with r and
8 as before. So X is a Urysohn space.

6 — Colloquium Mathematicum XXII, 2



242 F. B. JCNES AND A. H. STONE

Remarks. The space X is clearly first (and hence second) countable.
We do not know whether it is homogeneous or not (P 707). (The points
of E, with even ordinates appear to be different from those with odd
ordinates.) But in any case, Shimrat’s technique [10] can be applied
to X so as to produce a homogeneous space while preserving the other
stated properties of X.

Stronger separation axioms. It is well known [11] that a connected
countable space cannot be regular. We have attempted to see how strong
a separation axiom it can be made to satisfy, by formulating a transfinite
hierarchy of separation axioms as follows. Let o« be an ordinal number,
and congider the following property of a space:

(P,) If z and y are distinet points, there exist open sets U, (8 < a)
such that (1) ®zeU,, (2) if 6 <y<a, then U, U,, and (3) y¢U,.

If a > B, clearly P, implies P;. For positive integers =, P, is equi-
valent to Viglino’s T, [12]; in particular, P, is equivalent to the Urysohn
separation axiom, and P, to the Hausdorff axiom (T,); while P, is equi-
valent to T,. P, seems to be too strong to be of much interest (and
clearly cannot be satisfied by any countable connected space). However,
all completely regular spaces satisfy P, for all countable ordinals a, and
all regular spaces satisfy P, for all finite a. So does our space 8§, as is not
hard to see; and this carries over to our space X. That is, X has property
P, for each » =1,2, ...

We conclude by sketching a proof of the fact that, for each countable
ordinal a, there exists a countable, connected, locally connected, second
countable space X which satisfies P, but not P, ,. We suppose that a is
a limit ordinal; the other case is treated quite similarly.

The first step is the construction of an analog S, of the space 8.
Let Y be the set of all symbols 4 f, where ( is an ordinal less than a;
we give Y the obvious linear ordering, and distinguish its elements into
“even’” and “odd” in the natural way (thatis, 4 f is even if g is of the
form A+ n, where A is either 0 or a limit ordinal, and » = 0,2, 4,...).
Choose a countable family {C,|yeY} of pairwise disjoint countable dense
sets of real numbers, none of them containing 0. The set S, will consist
of two “endpoints” & = (0, a) and b = (0, — a), together with the set
of all ordered pairs (x, y), where y ¢ Y and z¢C,. Neighborhoods are defined
much as for 8, except that the endpoints are given smaller neighborhoods.
In detail, suppose p = (¢, y)eS8 and ¢ > 0. Then, if y is odd,

D,(p) = {(z,w)|w =y,y—1 or y+1; 2¢0,; le—a| < ¢};

if y is even but not 4+ a limit ordinal,

D (p) = {(z, w)|w = y; 2e0,; le—a| < e};
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if ¥ is a limit ordinal (this includes the case p = a), then for each even
ordinal f <y

Dpy(p) = {(z,w) | <w< y; 2eCy; |o— | < &}

(when p = a we adjoin the point @ to this); finally, when —y is a limit
ordinal, D(p) is defined symmetrically (replace § < w <y by — 8 > w>y).
These sets form a basis for the topology on 8,. To see that P, is satisfied,
we note that a and b can be “separated” in the desired manner by taking
U, = S,— {b} and, for each ordinal 8 < a,

Uy = {(#,9)¢8,|y > —(A+2n)}, where § = A-+n;

and b and & can be separated in the symmetric manner. For any other
pair of points, we separate their abscissas in the real line, and apply the
inverse of the projection map (x,y)— 2.

- The space S, is not connected. However, one can show that S, does
not satisfy P, , with respect to the points @ and b; and in particular,
S, is not the union of two disjoint open and closed sets, one containing
a and the other containing b. This is enough to ensure that the space
X ,, constructed from 8, exactly as X was constructed from 8, is connected
and locally connected, though the argument is less simple than before.
Finally, it is easy to see that X, inherits the property P, from §,, and
clearly X, cannot have the property P,., since its subspace S, does not
have it.

We have been unable to construct a countable connected, locally
connected space which has all the properties P, for all countable ordinals
a simultaneously. It is not necessary to insist on local connectedness
here, since the above method will derive a locally connected example
from one which is merely connected.

QUESTION. Does there exist a countable connected space X such
that, if # and y are distinet points of X and « is a countable ordinal,
there exist open sets U; (8 < a) so that (1) e U,, (2) if 6 <y < a, then
U,< U, and (3) y¢U,? (P 708).
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