## COUNTABLE LOCALLY CONNECTED URYSOHN SPACES

 $\mathbf{BY}$ 

F. B. JONES (RIVERSIDE, CALIFORNIA) AND A. H. STONE (ROCHESTER, N. Y.)

The first example of a countable (i.e., countably infinite) connected Hausdorff space was given by Urysohn in [11], and many others have been constructed since — for instance in [1], [2] and [3]. Some have additional topological properties: the one in [7] has a dispersion point, the one in [6] is homogeneous, and those in [5] and [8] are locally connected. A somewhat simpler example of this kind is the following (essentially a modification of [1]): Let  $U_1, U_2, \ldots$  be an enumeration of the rational open intervals of the real line. Choose a countable collection P of disjoint pairs of (distinct) real numbers such that, given positive integers i and j, there is at least one pair in P having one of its elements in  $U_i$  and the other in  $U_j$ . Let  $O_{ij}$  denote the collection of all pairs p in P such that  $p \subset U_i \cap U_j$ . Then  $\{O_{ij} | i, j = 1, 2, \ldots\}$  is a basis for a topology on P, making P a locally connected, connected countable Hausdorff space.

All the spaces so far mentioned are just barely Hausdorff, in the sense that in each there are distinct points a, b such that, if U and V are neighborhoods of a and b respectively, then  $\overline{U} \cap \overline{V} \neq \emptyset$ . In other words, they do not satisfy the Urysohn separation axiom. But it is possible to give examples which are Urysohn spaces too. Hewitt [4] gave the first example of a countable connected Urysohn space; one with a dispersion point is in [9], and [10] provides a homogeneous one. It is the purpose of this paper to construct a locally connected one. In fact, as we shall see later, the Urysohn separation axiom can be replaced by any of  $\aleph_1$  progressively stronger separation axioms, though not, of course, by regularity [11].

First we construct a countable connected Urysohn space S, which is a slight modification of the space due to Roy in [9].

The points of S. Let  $C_0$ ,  $C_1$ ,  $C_{-1}$ , ... be pairwise disjoint sets of rational numbers, each of which is dense in the reals. The set S will consist of two ideal points,  $a = (0, +\infty)$  and  $b = (0, -\infty)$ , together with the set  $E_0$  of all points of the Cartesian plane of the form (x, y), where  $y \in Z$ 

(the set of all integers) and  $x \in C_y$ . The points a and b will be called the "endpoints" of S, and also of  $E_0$ .

Neighborhoods of points in S. For  $p = (x, y) \epsilon E_0$ , and  $\epsilon > 0$ , let

$$D_{\varepsilon}(p) = \{(z, w) | w = y; z \in C_{v}; |z-x| < \varepsilon\}$$

when y is even, and

$$D_{\epsilon}(p) = \{(z, w) | w = y, y+1 \text{ or } y-1; z \in C_w, |z-x| < \epsilon\}$$

when y is odd. Further, for each  $\varepsilon > 0$ , let

$$D_{\varepsilon}(a) = \{a\} \cup \{(z, w) \mid w \geqslant 2[1/\varepsilon]; w \in \mathbb{Z}; z \in C_w\}$$

and

$$D_{\varepsilon}(b) = \{b\} \cup \{(z, w) \mid w \leqslant -2\lceil 1/\varepsilon \rceil; \ w \in \mathbb{Z}; \ z \in C_w\}.$$

These neighborhoods of points of S form a basis for the topology of S. As in [9], S is connected; in fact, it is easy to see directly that S is the only open and closed subset of S which contains a. (In the same way one sees that each  $D_{\varepsilon}(a)$  is connected, and similarly so is each  $D_{\varepsilon}(b)$ .) If p and q are distinct points of  $E_0 = S - \{a, b\}$ , and  $\varepsilon > 0$  is less than half the difference between their abscissas, then  $\overline{D}_{\varepsilon}(p) \cap \overline{D}_{\varepsilon}(q) = \emptyset$ . Furthermore, S is regular at both a and b. Hence S is a Urysohn space.

We next obtain a countable, connected, locally connected Urysohn space X.

The points of X. As before, we write  $E_0$  for  $S-\{a,b\}$ , where S is the space just constructed. Put  $G_0=\{E_0\}$ , and choose recursively a sequence  $\{G_i|i=1,2,\ldots\}$  such that each  $G_i$  is a countable collection of pairwise disjoint copies  $E_i(p,q)$  of  $E_0$ , one for each pair of (distinct) points p,q of each E of  $G_{i-1}$ . We further require that all the sets  $G_i^*$   $(i=0,1,2,\ldots)$  be pairwise disjoint, where  $G_i^*$  denotes  $\bigcup G_i$ . We write  $S_i(p,q)=E_i(p,q)\cup\{p,q\}$ , and regard  $S_i(p,q)$  as a copy of S, in which the points p,q correspond to the endpoints a,b of S. More precisely, we choose a 1-1 map  $\theta_i^{pq}$  of S onto  $S_i(p,q)$  such that  $\theta_i^{pq}(a)=p$  and  $\theta_i^{pq}(b)=q$ . (For i=0 we use instead the identity map  $\theta_0$  of  $E_0$ .) To simplify the notation, however, we shall omit explicit reference to the copying maps  $\theta_i^{pq}$ , speaking (for instance) of " $D_s(x)$  of  $E_i(p,q)$ " as short for  $\theta_i^{pq}(D_s((\theta_i^{pq})^{-1}(x)))\cap E_i(p,q)$ .

Now let  $X = \bigcup \{G_i^* | i = 0, 1, 2, ...\}$ . Clearly, X is countable.

Neighborhoods of points of X. Let x denote a point of X. There exists a unique non-negative integer n such that x belongs to some element E (necessarily unique) of  $G_n$ ; here E is either  $E_0$  or some  $E_n(r,s)$ , where  $r, s \in E'$  for some  $E' \in G_{n-1}$ . For each  $\varepsilon > 0$ , define  $N_{\varepsilon}(x)$  to be the smallest subset of X which satisfies the following three conditions:

- (1)  $N_s(x) \supset D_s(x)$  of E.
- (2) If i > n, and p, q are distinct points of some element of  $G_{i-1}$ , and if  $p \in N_s(x)$ , then  $N_s(x) \supset D_s(p)$  of  $S_i(p, q)$ .
- (3) If i, p, q are as in (2), and if both p and  $q \in N_{\varepsilon}(x)$ , then  $N_{\varepsilon}(x) \supset S_{i}(p, q)$ .

There is an obvious inductive construction for  $N_s(x)$ , the first two steps of which are the following:

- (1') x is a non-endpoint of some copy of  $S \{a, b\}$ ; so put the points of  $D_{\varepsilon}(x)$  of S into  $N_{\varepsilon}(x)$ ;
- (2') if  $x \in G_n^*$ , and a copy C of  $S \{a, b\}$  belonging to  $G_{n+1}$  has an end-point in  $D_{\varepsilon}(x)$ , then the points (of the copy in C) of the  $\varepsilon$ -neighborhood of this endpoint are put into  $N_{\varepsilon}(x)$ , with the understanding that if both endpoints of C are in  $N_{\varepsilon}(x)$ , then all the points of C are put into  $N_{\varepsilon}(x)$ . Do this for all such copies C in  $G_{n+1}$ , and proceed to  $G_{n+2}$ .

This process is very much like Urysohn's in [11], except for the condition of putting all of C into the neighborhood when both its endpoints belong to the neighborhood. It is precisely this addition that makes X locally connected.

The sets  $N_s(x)$  form a basis for a topology on X. It is easy to see that each subspace  $S_i(p,q)$  becomes homeomorphic to S (more precisely, each map  $\theta_i^{pq}$  is a homeomorphism).

X is connected and locally connected. Each  $N_s(x)$  is connected since, after steps (1') and (2') above, we have a connected set to which the later steps will merely attach further connected sets as we pass successively to  $G_{n+2}, G_{n+3}, \ldots$  Also, while  $G_0^*$  is totally disconnected because its endpoints have been removed (cf. [9]),  $G_0^* \cup G_1^*$  is connected; and it follows easily that X is connected.

X is a Urysohn space. Suppose that x, y are distinct points of X. If for some i they both belong to  $G_i^*$  (whether to the same copy of  $E_0$  in  $G_i$  or not), it is clear that we can make  $N_{\epsilon}(x)$  and  $N_{\epsilon}(y)$  have disjoint closures by taking  $\epsilon$  small enough if x and y belong to the same copy  $E_i(p,q)$ ;  $\epsilon$  can be arbitrary if they do not. So we may assume  $x \in E_i \in G_i$  and  $y \in E_j \in G_j$ , where i < j. There is a unique sequence  $E_j, E_{j-1}, \ldots, E_{i+1}$  such that, for each n between i+1 and j inclusive, we have (i)  $E_n \in G_n$ , (ii) if n > i+1, both endpoints of  $E_n$  are in  $E_{n-1}$ . First suppose  $j \geqslant i+2$ , let the endpoints of  $E_{i+2}$  be p and q (they lie in  $E_{i+1}$ ), and let the endpoints of  $E_{j+1}$  be r and s. There exists  $\epsilon > 0$  such that the four sets  $D_{\epsilon}(r)$ ,  $D_{\epsilon}(s)$ ,  $D_{\epsilon}(p)$ ,  $D_{\epsilon}(q)$  of  $S_{i+1}$  have pairwise disjoint closures in  $S_{i+1}$  (where  $S_{i+1}$  is  $E_{i+1} \cup \{r, s\}$ ). If also  $\epsilon$  is small enough so that  $\overline{D}_{\epsilon}(x)$  in  $E_i$  does not contain both r and s, then  $\overline{N}_{\epsilon}(x) \cap \overline{N}_{\epsilon}(y) = \emptyset$ . Finally, if j = i+1, essentially the same argument applies if we take p = q = y, with r and s as before. So X is a Urysohn space.

**Remarks.** The space X is clearly first (and hence second) countable. We do not know whether it is homogeneous or not (**P 707**). (The points of  $E_0$  with even ordinates appear to be different from those with odd ordinates.) But in any case, Shimrat's technique [10] can be applied to X so as to produce a homogeneous space while preserving the other stated properties of X.

Stronger separation axioms. It is well known [11] that a connected countable space cannot be regular. We have attempted to see how strong a separation axiom it can be made to satisfy, by formulating a transfinite hierarchy of separation axioms as follows. Let  $\alpha$  be an ordinal number, and consider the following property of a space:

 $(P_a)$  If x and y are distinct points, there exist open sets  $U_{\beta}$  ( $\beta \leq a$ ) such that (1)  $x \in U_0$ , (2) if  $\delta < \gamma \leq a$ , then  $\overline{U}_{\delta} \subset U_{\gamma}$ , and (3)  $y \notin U_a$ .

If  $a > \beta$ , clearly  $P_a$  implies  $P_{\beta}$ . For positive integers  $n, P_n$  is equivalent to Viglino's  $\overline{T}_n$  [12]; in particular,  $P_2$  is equivalent to the Urysohn separation axiom, and  $P_1$  to the Hausdorff axiom  $(T_2)$ ; while  $P_0$  is equivalent to  $T_1$ .  $P_{\Omega}$  seems to be too strong to be of much interest (and clearly cannot be satisfied by any countable connected space). However, all completely regular spaces satisfy  $P_a$  for all countable ordinals a, and all regular spaces satisfy  $P_a$  for all finite a. So does our space S, as is not hard to see; and this carries over to our space S. That is, S has property S for each S and S are S and S and S are S are S and S are S and S are S and S are S are S and S are S are S and S are S and S are S are S and S are S and S are S and S are S are S are S are S are S and S are S are S are S and S are S are S and S are S and S are S are S and S are S and S are S and S are S are S and S are S are S and S are S

We conclude by sketching a proof of the fact that, for each countable ordinal a, there exists a countable, connected, locally connected, second countable space X which satisfies  $P_a$  but not  $P_{a+1}$ . We suppose that a is a limit ordinal; the other case is treated quite similarly.

The first step is the construction of an analog  $S_a$  of the space S. Let Y be the set of all symbols  $\pm \beta$ , where  $\beta$  is an ordinal less than  $\alpha$ ; we give Y the obvious linear ordering, and distinguish its elements into "even" and "odd" in the natural way (that is,  $\pm \beta$  is even if  $\beta$  is of the form  $\lambda + n$ , where  $\lambda$  is either 0 or a limit ordinal, and  $n = 0, 2, 4, \ldots$ ). Choose a countable family  $\{C_y | y \in Y\}$  of pairwise disjoint countable dense sets of real numbers, none of them containing 0. The set  $S_a$  will consist of two "endpoints"  $a = (0, \alpha)$  and  $b = (0, -\alpha)$ , together with the set of all ordered pairs (x, y), where  $y \in Y$  and  $x \in C_y$ . Neighborhoods are defined much as for S, except that the endpoints are given smaller neighborhoods. In detail, suppose  $p = (x, y) \in S$  and  $\varepsilon > 0$ . Then, if y is odd,

$$D_{\varepsilon}(p) = \{(z, w) | w = y, y-1 \text{ or } y+1; z \in C_w; |z-x| < \varepsilon\};$$

if y is even but not  $\pm$  a limit ordinal,

$$D_{\varepsilon}(p) = \{(z, w) | w = y; z \in C_w; |z-x| < \varepsilon\};$$

if y is a limit ordinal (this includes the case p = a), then for each even ordinal  $\beta < y$ 

$$D_{\epsilon eta}(p) = \{(z,w) \, | \, eta \leqslant w \leqslant y \, ; \, \, z \, \epsilon \, C_w; \, \, |z-x| < \epsilon \}$$

(when p=a we adjoin the point a to this); finally, when -y is a limit ordinal,  $D_{\epsilon\beta}(p)$  is defined symmetrically (replace  $\beta\leqslant w\leqslant y$  by  $-\beta\geqslant w\geqslant y$ ). These sets form a basis for the topology on  $S_a$ . To see that  $P_a$  is satisfied, we note that a and b can be "separated" in the desired manner by taking  $U_a=S_a-\{b\}$  and, for each ordinal  $\beta<\alpha$ ,

$$U_{\beta} = \{(x, y) \in S_{\alpha} | y \geqslant -(\lambda + 2n)\}, \text{ where } \beta = \lambda + n;$$

and b and a can be separated in the symmetric manner. For any other pair of points, we separate their abscissas in the real line, and apply the inverse of the projection map  $(x, y) \rightarrow x$ .

The space  $S_a$  is not connected. However, one can show that  $S_a$  does not satisfy  $P_{a+1}$  with respect to the points a and b; and in particular,  $S_a$  is not the union of two disjoint open and closed sets, one containing a and the other containing b. This is enough to ensure that the space  $X_a$ , constructed from  $S_a$  exactly as X was constructed from S, is connected and locally connected, though the argument is less simple than before. Finally, it is easy to see that  $X_a$  inherits the property  $P_a$  from  $S_a$ , and clearly  $X_a$  cannot have the property  $P_{a+1}$  since its subspace  $S_a$  does not have it.

We have been unable to construct a countable connected, locally connected space which has all the properties  $P_a$  for all countable ordinals  $\alpha$  simultaneously. It is not necessary to insist on local connectedness here, since the above method will derive a locally connected example from one which is merely connected.

QUESTION. Does there exist a countable connected space  $\tilde{X}$  such that, if x and y are distinct points of  $\tilde{X}$  and  $\alpha$  is a countable ordinal, there exist open sets  $U_{\beta}$  ( $\beta \leqslant \alpha$ ) so that (1)  $x \in U_0$ , (2) if  $\delta < \gamma \leqslant \alpha$ , then  $\overline{U}_{\delta} \subset U_{\nu}$ , and (3)  $y \notin U_{\alpha}$ ? (**P 708**).

## REFERENCES

- [1] R. H. Bing, A connected countable Hausdorff space, Proceedings of the American Mathematical Society 4 (1955), p. 474.
- [2] M. Brown, A countable connected Hausdorff space, Bulletin of the American Mathematical Society 59 (1953), p. 367.
- [3] S. Golomb, A connected topology for the integers, American Mathematical Monthly 66 (1959), p. 663-665.
- [4] E. Hewitt, On two problems of Urysohn, Annals of Mathematics 47 (1945), p. 503-509.
- [5] A. M. Kirch, A countable, connected, locally connected Hausdorff space, American Mathematical Monthly 76 (1969), p. 169-171.

- [6] J. M. Martin, Homogeneous countable connected Hausdorff spaces, Proceedings of the American Mathematical Society 12 (1961), p. 308-314.
- [7] A countable Hausdorff space with a dispersion point, Duke Mathematical Journal 33 (1966), p. 165-167.
- [8] G. Miller, A countable locally connected quasimetric space, Notices of the American Mathematical Society 14 (1967), p. 720 (submitted to Portugaliae Mathematica).
- [9] Prabir Roy, A countable connected Urysohn space with a dispersion point, Duke Mathematical Journal 33 (1966), p. 331-333.
- [10] M. Shimrat, Embedding in homogeneous spaces, Quarterly Journal of Mathematics (2) 5 (1954), p. 304-311.
- [11] P. Urysohn, Über die Mächtigkeit der zusammenhängenden Mengen, Mathematische Annalen 94 (1925), p. 262-295.
- [12] G. A. Viglino,  $\overline{T}_n$  spaces, Notices of the American Mathematical Society 16 (1969), p. 846.

UNIVERSITY OF CALIFORNIA, RIVERSIDE UNIVERSITY OF ROCHESTER

Reçu par la Rédaction le 15. 9. 1969