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Solomon [7] has shown that the assertion Q(c) which follows from the
assertion P(¢) (due to Booth [2]) along with the negation of the Contin-
uum Hypothesis (CH) implies the existence of P(N,)-ultrafilters on N
which are not P(R,)-ultrafilters. He has also proved [6] that Martin’s
Axiom (MA) with non-CH implies the existence of such ultrafilters which
are minimal in the Rudin-Keisler ordering.

Szymanski [8] has proved that under the assertion S (due to Martin
and Solovay [6]) there exist P(m)-ultrafilters which are not P(m™)-ultra-
filters for each regular m, 8, < m < c.

Recall that the assertions S and P(c) follow from MA, and P(c) is
weaker than MA (see Kunen and Tall [4]). It is also known to the author
(a letter from Prof. E. van Douven) that S and P(c) are equivalent.

The aim of this paper is to show, assuming P(¢) +non-CH, that
for each regular m, 8, < m < ¢, there exist 2° minimal as well as 2° non-
minimal ultrafilters which are P (m)-ultrafilters and are not P(m*)-ultra-
filters.

1. Preliminaries. Let N denote the set of all positive integers. By [A]<*
we denote the set of all finite subsets of A and, for A < N and n e N,
A —mn is the set of all elements of A which are not less than n. Let N
be the set of all ultrafilters on N and let N* = SN — N be the set of all
free ultrafilters on N. For two subsets 4 and B of N, A is called almost
contained in B, A <, B, if A—B is finite. A family o of subsets of N
is said to be centered if the intersections of finite subfamilies of of are
infinite. By filof we denote the family of all finite intersections of .
A family 9 = {T,: a < m} of subsets of N is an m-tower (see [3])if T, <. T,
and T — T, is infinite for § < a < m. We shall consider also another kind
of towers, namely ocountable towers {4,: n e N} ordered by the usual
inclusion without the requirement that 4,— 4, is infinite.

Recall that an ultrafilter p € N* is minimal in the Rudin-Keisler
ordering if each function f: N - N is.constant or one-to-one on some
element from p.
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An ultrafilter p € N* is said to be a P(m)-ulirafilter (see [2]) if for
each family & < p of fewer than m sets there exists a set 4 ep such
that A <, F for F e #. (In this terminology the P(N,)-ultrafilters are
exactly the P-points of N*.) It is sufficient to assume this condition only
for towers of cardinality less than m which are contained in p. So if there
exists a P(m)-ultrafilter which is not P(m™)-ultrafilter, then m is a regular
cardinal.

We say that p lies on the boundary of a tower 7 if < p and there
exists no A in p almost contained in each element from 7. Denote the
set of all such ultrafilters by Bd.7 ; topologically,

Bd7 = N{dyT—N: Te T} —Inty. O {clyT—N: TeT}.

We shall use the following assertion P(¢) which follows from MA
(see [2]): |

If & i8 a centered family of fewer than ¢ infinite subsets of N, then there
exists an infinite subset of N which is almost contained in every element
from #.

From P(c) it follows that 2™ = 2™ for 8, <m <c¢. Thus, if P(c)
is assumed, then ¢ is a regular number; moreover, maximal towers are
of cardinality ¢. So P(¢) implies the existence of m-towers for each m,
Xosm<e.

2. Minimal P (m)-ultrafilters.

LEMMA 1. A free ulirafilter p on N is minimal iff the following .condi-
tion 18 satisfied:

(#) If {A,: ne N} i8 a couniable tower contained in p with emply
imtersection, then there exists an element A from p such that

cardAn(4,—4,,, <1.

~

Proof. Let p be a free ultrafilter for which (*) holds. If f: N > N
is not constant on any element from p, then the family

{f—l({am Cpi1y«--}): M EN}; where {6, ¢1, ...} = f(N),

is such as in (*). Take a set A the existence of which follows from (x).
The restriction of f to A is one-to-one.

On the other hand, if p is & minimal ultrafilter and {4,: n e N}
is a countable tower contained in p with empty intersection, then we
take a function f defined by f(n) =k for ne A, — A,,,. Bach set Aep
for which f|A is one-to-one satisfies ().

The proof of the next lemma by use of P(¢) instead of MA is due to
E. van Douwen.
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LEMmA 2. (P(c)) If o is a family of fewer than ¢ subsets of N, and C
8 a subset of N such that CnA is infinite for A € o, then there exists a parti-
tion C into sets Cy and C, such that CynA and C,nA are infinite for A € .

Proof. Let

P = {(e,f): e, f are finite and disjoint subsets of C}
and let
# = {{(6,f) e P: min(euf)>n}: neNju
Ul{le,f) eP: end # B # fnd}: Ae o)

be a family of subsets of P. The family s is centered. In fact, let
Ay Ay ...y Ape sy NyyMgy...,meN, and n = max{ng, n,, ..., N}
If we take a partition C = M UM, u... UM, into disjoint sets M,
such that M;nA; are infinite for ¢ = 1, 2, ..., %, then the set

{(eaveyu ... Ve, fiUf,U ... US): (6, f)) € P, 6Uf; = M;—n,
eiﬂA" #g #finAi for 1 = 1,2, ceey k}

is infinite in and is contained in
k k
ﬂ{(e,f) eP: end; #0 .-,éan,.}np {(¢,f) e P: min(eVf) > n;}.
= =]

The set P is countable and card# = 8,+ card o/ < ¢. Hence there
exists an infinite set J < P which is almost contained in every set from the
family o#. There exists an infinite set I < J such that

(6Uf)A(e'Uf) = @

for all distinct (e, f), (6',f’) €I (a maximal set with this property is
infinite).

Now let E be the union of the first members of elements of I and let D
be the union of the second ones. We have EuD < O and EnD =@.
The set I is infinite and almost contained in every set from the family s,
80 for each n € N there exist elements in FnA and in DnA which are
greater than n. Hence EnA and DnA are infinite for A € of. We put
Co,=F and C, =C—E > D.

LEMmA 3. (P(c)) If o is a family of fewer than ¢ subsets of N, and &
fs a countable partition on N such that A —\ o is infinite for A € o« and
tor a finite subfamily A of B, then there exists a set C such that AnC 18
infinite for A € o and card BnC < 1 for B € &.

Proof. Let P be a set of all finite subsets ¥ of N such that for each
B € # the cardinality of XnB is at most 1. Let # = {B;: ¢ € N}. It is
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easy to see that the family

# =|{keP: knd #0}: Ae SJU{{N-B,]°NP: neN}uU
U {[N—n]""NP: n e N}

of subsets of P is centered. The set P is countable and card »# = card .« 4
+R8 < ¢, hence in virtue of P(c) there exists an infinite subset J of P
which is almost contained in every set from the family . Let I < J
be a maximal subset of J such that for all distinet %, k' € I the sets

ieN: knB, #0} and {icN: ¥'nB; #0}

are disjoint. The set I is infinite.

Let C be the union of the elements from I. Every two distinct ele-
ments of I do not intersect the same elements of %, and for each k e I < P
and B € # the intersection kB has at most one point. So card BnC < 1
for B e A. '

The intersection CnA for A € o is infinite. In fact, for every n e N
there exists k € I such that knA has an element which is not less than n.
Indeed, let {j,, jz, ..., Ji} e a finite subset of I for which

I—{jnjz’ vy i} € [N—n]="
and '

I_{jlajm '--’jl} < {k: knd #0}’

I being infinite and almost contained in every set from the family 7.
So for j e I —{j,,J3,.--,5 We have j €« N—mn and jnd +#@.

Recall the assertion S which will be used in the proof of the next
theorem. It has already been mentioned that the assertion S follows
from P(c).

S: If o and B are families of subsets of N, each of cardinality less than c,
such that A —\_) A" is finite whenever A € of and X is & finite subfamily of %,
then there exists an infinite subset C of N such that T nC is ¢nfinite for T € o
and finite for T € &.

THEOREM 1. (P(c)) Let m be a regular number less than ¢ and let T
be an m-tower. Then there exist 2° minimal P (m)-ultrafiliers lying on BdT
(hence they are mot P(m™)-ultrafilters).

Proof. We may assume that the intersection of the tower 7 = {T,:
a < m} is empty. The family of all n-towers, for ordinals n, n < m, is of
cardinality ¢ (assuming P(c), ¢* = ¢ if n < ¢). So let {of,: a < ¢} be a well
ordering of n-towers for n < m. Let

| F ={pl¢: ¢c—{0,1}}
be the family of functions from ¢ to {0, 1}.
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For ¢ € F and ordinals a < ¢, we define infinite subsets U of N
such that

(1) % = {U%: p<a}uT has the finite intersection property;

(2) if p and y first differ at ¢, then U = Ujfor 8 < aand USnT! = O;

(3) for each F efil¥? there exists y < m such that B —T, is infinite;

(4) there exists an A € o, such that U}, < N — A or,forevery A e «,,
Uz <o 4;

(6) if o, = {4,: n € N} is a countable tower with the empty inter-
gection, then there exists n € N such that U¥ < N — A, or, for each n € N,

Ufc,A, and cardUln(4,—A4,,,)<1.

Notice that if the sets U with properties (1)-(5) are constructed, we
will have the desired conclusion. In fact, from (1) it follows that for each
@ € F the family {U?: e < ¢}UZ is a subbase of a filter p, on N. It is
free since (|7 = @. Condition (4) assures that it is an ultrafilter; among
the n-towers there are all one-element families. We have J” < p,, and from
(3) it follows that p, lies on the boundary of 7, so the point p ,is not a P(m?)-
ultrafilter. If o is an n-tower contained in p,, n < m, then in view of (4)
there exists an a such that & = &, and U{ <. A for A e o,. So p,
is a P(m)-ultrafilter. By (5) and Lemma 1, p, is minimal. Finally, (2)
implies p, # p, for ¢ # v.

We define the sets U? by induction on a for all ¢ € F.

In the first step, let F§ = fils.

Assume that we have defined the sets U} for all p e F and < a
80 that conditions (1)-(5) are fulfilled. Let

F? =1il({U§: p< a}uT).

The cardinality of &9 is less than ¢, ¢ being regular. Consider the
tower «f,. There are two cases:

1. There exist 4, € o, and K, € #; such that A,nE,—T, is finite
for each y < m.

2. For each A € o/, and E € #? there exists a y(4, F) < m such that
AnE—T,, g is infinite.

Case 1. For each F € ¢ there exists a y (%) such that (N —4,)nE —
— T, 5 is infinite. In fact, for each E € #7 there exists f# < a such that
EnE,efilg; and, by condition (3), there exists a y(E) such that
EnE,—T,g is infinite. Since

EnEy—T 5 = (BEnEynAy—Tyz)V (BnE,n(N — Ay) — Tyim)

and the first set in the union is finite, the second one must be infinite.
Now we take the family
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and the set C = N — 4,. The cardinality of « is less than ¢, so, by Lemma 2,
we may decompose the set C into two disjoint sets C, and C; such that
C;nE —T,g are infinite for ¢ = 0, 1. Put U% = C; if ¢(a) = 4. It is easy
to verify that all conditions (1)-(5) are fulfilled for U§ with f < a.

Case 2. First we prove that the following stronger condition
holds: for each E € #? there exist a y(E) < m and an infinite subset A (E)
which is almost contained in every 4 € o/, and such that A(E)nE—T,4
is infinite. In fact, let ' € #% and let y (4, E) for A € o/, be such as defined.
Since card«, < m and m is regular, there exists a y(&) < m such that
y(&)> y(4, E) for A € o,. We have

AnE—T?(A'E) Tx AﬁE—'T,y(E),

J being a tower. Hence AnE —T 4 is infinite for 4 € &,. The family

{AnE—T,5: A e o,} is centered. So, by P(c), there exists a set A(E)

almost contained in every set from this family, hence also in every 4 € «/,.
We apply the assertion S to families

o ={A(B)nE—T,z: BEc#?} and & ={N—A: Ade o}

A set C the existence of which follows from S satisfies the following
conditions: C is almost contained in every A e &, and CnE—T, 5 is
infinite for £ € #?. Now, if the tower «, is not countable, then the construc-
tion of U? is the same as in case 1. ‘

If o, is a countable tower, then we take a family

{CoE—T,5: BEcFY}

and a partition {4, —A4,,,: n € N} of N. By Lemma 3, there exists a set O’
such that ¢'nCnE —T,g, is infinite for F € #§ and cardC'n(4,—4,,,)
< 1. Now, we decompose the set C'nC, according to Lemma 2, into sets
C, and C; and define U? as before.

It is easy to verify that conditions (1)-(5) are fulfilled.

3. Non-minimal P (m)-ultrafilters. Let f: N — N be a function such
that limsupecardf~!(n) = 8,. A subset 4 of N is said to be f-small (or,
simply, small if f is fixed) if limsupcard (4 nf~'(n)) is finite; otherwise, A
is called f-large (cf. an analogous notion in [1]).

First we give two lemmas on large sets. The first one gives condition
parallel to assertion S, the second one is analogous to Lemma 2.

Let a function f: N — N such that limsupcardf—!(n) = 8, be given.

LEMMA 4. (P(c)) Let of and # be non-empty families of subsets of N,
each of cardinality less than c, such that if A € of and A i8 a finile sub-
family of B, then A —\JX is large. Then there exisits a set C such that
CnT i8 large if T € of and finite if T € AB.
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Proof. Let P be the set of all finite subsets of N. Let

Dy = {a € P: there exists I > m with card f~'(l)nand > m},
and let
# ={[N—B]*": Be 8}U{Dy,:Aec oA, meN}

be a family of subsets of P. The family s is centered. In fact, let
A,, Ay, ..., A, €e4,B,,B,,...,B, € B, my, My, ..., meN, and let m =
= max {my, My, ..., M}. A set

{a;Va,U ... Vay: a;€ Dy 0 [N—(ByU ... UB,)]}
is infinite and is contained in .

Dyymy0 oo 0Dy, 0[N —B11%° ... n[N—B,]=".

The set P is countable and card # = card # + R,-card & < ¢, hence
in virtue of P(c¢) there exists an infinite subset J of P which is almost
contained in every set from the family . Let ¢ = | {a: a € J}. The
set C is the desired one. In fact, for B € # there exist a,, ay,...,a, €dJ
such that

J—{a,, a5y ..., 4} < [N—B]<".
Hence
C—(a,Va,v... va) < N—B,
i.e., CnB is finite..
Now let A € & and m € N. There exist a,, a,, ..., a, such that

. J —{a,, ag:---’“k} < Dy,
hence for some ! > m we have cardf~'(1)nC nA > m. But it is equiva-
lent to

limsupcardCnA nf~1(n) = Ry,

i.e., CnA is a large set.

CorROLLARY. (P(c)) If o is a filterbase of fewer than ¢ large subsets
of N, then there exists a large set which is almost contained in every set from .

For the proof we apply Lemma 4 to the case where # = {N —A4:
A e o},

LEmMmA 5. (P(c)) If o is a family of fewer than ¢ subsets of N and
C is a subset of N such that CnA is large for A € o/, then there exists a parti-
tion of C into sets C, and O, such that Con A and C,nA are large for A € .

Proof. Let

P = {(6, 9): ¢ g are finite and disjoint subsets of C}

4 — Colloquium Mathematicum XXXIX.2
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and let

D, = {(6,9) € P: there exists I >m
such that card Anf~'(l)ne > m and card Anf~'(I)ng > m}.

It is easy to check that the family
H ={Dypn: Aec t,meNUl{e,g) eP: ¢,g € [C—n]"}: neN}

of subsets of P is centered.

The set P is countable and cards# = 8,-cards/ + 8, < ¢, 50 there
exists an infinite set J < P which is almost contained in every set from
the family ». Let I be a maximal subset of J with respect to the following
property: if (e, g), (6'y g') € I, then (6L g)n (6’Ug’) = O. Since J =, [C —n]<*
for » € N, the set I is infinite.

Now let E be the union of the first members of elements of I and let D
be the union of the second ones. The set I is infinite and almost contained
in every D, ,,, 8o for every A € o and m € N there exists an (¢, g) € I,
i.e.,, 6 = E and g < D, such that for some I > m we have

cardf~'(l)néendA >m and cardf~'(l)ngnd > m.

Hence limsupcardf~!(n)nAnE and limsupcardf-'(n)nAnD are
equal to 8,. We put , = ¥ and C;, = C—E > D.

In this section we construct P(m)-ultrafilters which are non-minimal
and which lie on the boundary of a given m-tower 7 = {T,: a < m}.
The construction of such ultrafilters is as follows. If f is a fixed function
and the elements of an ultrafilter p are f-large, then f is not one-to-one
on elements of p. So p is not minimal. To ensure that p lies on BdZ and
its elements are f-large, it is sufficient to choose the sets 4 of p such that
A—T, are f-large for some y. But we must choose the function f such
that for each a there exists a y such that T',—T, is f-large. The following
lemma ensures the existence of such a function.

LEMMA 6. (P(c)) For each m-tower I = {T,: a< m}, m < ¢, there
exists a function f: N — N such that the sets T, — T; are f-large for a < f < m.

- Proof. We proceed by induction using Lemma 2. The sets T,— T
are infinite for a < < m. We decompose N into two disjoint sets N,
and N, such that N,n(T,—T,) and N,n(T,—T,) are infinite for a < g
< m. Next, given a partition {¥,, Ng,..., N;_,, N} of N into disjoint
infinite sets whose intersections with 7', — T, are infinite, we decompose N,
into sets N, and Ny, such that Nyn(T,—T;) and Ny, n(T,—T;) are
infinite. Then N = |J{N,: ke N} and N,n(T.—T;) are infinite for
a< f<m, keN. Letting f(n) =k for n e N, we obtain the desired
function.
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THEOREM 2. (P(c)) Let m be a regular number less than ¢ and let T
be an m-tower. Then there ewist 2° mon-minimal P (m)-ultrafilters lying
on BdJ (hence they are mot P(m™)-ultrafilters).

Proof. We use the same notation as in the proof of Theorem 1.
Let f be a function such as in Lemma 6. For a < ¢ and ¢ € F we construct
the sets U? having the following properties:

(1) 92 = {U}: < a}uT has the finite intersection property;

(2) if p and y first differ at a, then U§ = Ujfor f < aand U%n UY = O;

(3) for each E efil¥{ there exists y < m such that ¥ —T, is f-large;

(4) there exists an 4 € &, such that U] < N — A or, for each 4 € &/,
U? c, A.

Assume that U? have already been constructed. The family {U?:
a < ¢}uJ forms a subbase for the ultrafilter p, on N. From (3) it follows
that every set from p, is f-large, being superset of a large set. So p, is
not minimal; for no A € p the restriction f to A4 is one-to-one. From (3)
it follows that p, is not a P(m*)-ultrafilter, large sets being infinite. Con-
dition (4) assures that it is a P (m)-ultrafilter.

The construction of the sets U? is essentially the same as in the proof
of Theorem 1. The only difference is that we have to replace infinite sets
by large sets. There are two cases which we have to consider.

1. There exist 4, € o/, and E, € #¢ such that A,nE,—T, is small
for each y < m.

2. For each A € o/, and E € #¢ there exists y(4, F) < m such that
AnE—T, g is large.

In the first case, we infer that En(N — 4,) — Tz, is large for & € #3
and some y(¥) < m. By Lemma 5, we decompose N — 4, into two disjoint
sets C, and O, such that O;nE—T,g (¢ = 0,1) are large. Define U7 to
be C; if ¢(a) = 1.

In the second case, we define y(E) so that ANE—T,y is large
for A € o,. The family {AnE—T,gz: A e o,} is a filterbase of large
sets. We find, by the Corollary to Lemma 4, a large set A (Z) which is
almost contained in every set of this family. 8o A(E)nE —T gz is large
and A(F) <, A for A € o,. We apply Lemma 4 to the families

{A(B)nE—Tyg: Ec#?} and {N—A: Ae ).

There exists a set ¢ which is almost contained in every set of «,
and such that CnE—T,y are large for F e #,. By Lemma 5, we
decompose the set C and define U? as before.

It is easy to verify that conditions (1)-(4) are satisfied for Uj with
B<a. '
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