DEGREES OF NON-DEFINABILITY OF THE SACKS MODEL

BY

WIESŁAW KUŁAGA (WROCLAW)

In this note* we show that the Sacks notion of forcing is homogeneous and, therefore, there are two degrees of non-definability in the Sacks model [2].

We start with some topological facts.

Let \(P \) be the set of all non-empty perfect subsets of the interval \(I = [0, 1] \) ordered by inclusion.

Theorem 1. If \(F_1, F_2 \in P \), then there is a homeomorphism

\[
 h: I \longrightarrow I
\]

such that \(h(F_1) \cap F_2 \in P \).

Observe that if \(F_1 \) or \(F_2 \) contains an interval, then we can clearly find a required homeomorphism. Thus it remains to consider the case where \(F_1 \) and \(F_2 \) are nowhere dense sets. We divide the proof into some steps. Let us state the following easy proposition:

Proposition. Let \(F \in P \) be a nowhere dense set such that \(0, 1 \in F \) and let \(S(F) \) be the set of centres of all components of \(I - F \). Then

(i) \(S(F) \cap F = 0 \),

(ii) \(S(F) \supseteq F \),

(iii) \(S(F) \) is ordered by \(< \) in type \(\eta \).

Lemma 1. If \(F_1, F_2 \in P \) are nowhere dense and \(0, 1 \notin (F_1 - F_2) \cup (F_2 - F_1) \), then there is an order isomorphism

\[
 T: S(F_1), < \rightarrow S(F_2), <
\]

which can be extended to an order isomorphism

\[
 \hat{T}: I - F_1 \rightarrow I - F_2.
\]

Proof. The existence of \(T \) follows easily from the Proposition. Let \(\langle I^j_n : n \in \omega \rangle \) be the enumeration of components of \(I - F_j \) \((j = 1, 2)\) and

* The author wishes to thank Dr. A. Zarach for setting the problem and to J. Cichoń for a help in writing this note.
let S_n^i be the centre of I_n^i. Now we define

$$\bar{T} \upharpoonright I_n^i : I_n^i \onto \mathcal{I}(S_n^i)$$

as a linear order-preserving mapping. Then \bar{T} has the required properties.

Lemma 2. If $F_1, F_2 \in P$ are nowhere dense sets and $0, 1 \notin (F_1 - F_2) \cup (F_2 - F_1)$, then there exists a homeomorphism

$$h : I \onto I$$

such that $h(F_1) = F_2$.

Proof. Take the isomorphism $\bar{T} : I - F_1 \to I - F_2$ from Lemma 1 and put

$$h(x) = \sup \{T(s) : s \in I - F_1 \& s < x\}.$$

Lemma 3. If $F_1, F_2 \in P$ are nowhere dense sets, then there is a homeomorphism

$$h : I \onto I$$

such that $h(F_1) \cap F_2 \in P$.

Proof. There is $\varepsilon > 0$ such that $F_1 \cap [\varepsilon, 1 - \varepsilon]$ and $F_2 \cap [\varepsilon, 1 - \varepsilon]$ are elements of P.

Thus Theorem 1 follows easily from Lemma 3.

We assume that the reader is familiar with all necessary notation concerning forcing technique as well as with the notion of degrees of non-definability.

In the sequel let \mathcal{M} denote a countable standard model of ZFC and let P be a set of all non-empty perfect subsets of the interval I constructed in the model \mathcal{M} and ordered by inclusion. P is called the Sacks notion of forcing.

Theorem 2. Let G be a P-generic over \mathcal{M}. Then in $\mathcal{M}[G]$ there are only two degrees of non-definability.

Proof. We recall the following classical theorems:

1. (Sacks [2]). If $x \in \mathcal{M}[G] \setminus \mathcal{M}$, then $\mathcal{M}[G] \vdash V = L[x]$.

2. (Lévy [1], p. 127-151). If C is a homogeneous notion of forcing in \mathcal{M}, then for every G C-generic over \mathcal{M} we have $\mathcal{M}[G] \vdash \text{HOD} = L$.

From the theorem of Lévy we infer that, in the Sacks model, $\mathcal{M}[G] \vdash \text{HOD} = L$. Now let $x \in \mathcal{M}[G] - L$. Then $L[x] = \mathcal{M}[G]$, but $L[x] \subseteq \text{HOD}(x)$. Hence

$$\mathcal{M}[G] \vdash V = \text{HOD}(x).$$
REFERENCES

Reçu par la Rédaction le 26. 3. 1976