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THE EXOCENTER OF A DOUBLE HEYTING ALGEBRA

BY

W. BOWEN (OXFORD)

0. The exocenter E of a distributive lattice L is defined by Epstein [4]
as the sublattice of L generated by all pairs b, ce L which satisfy

El. c is the greatest element x in L such that x A b <g,

E2. ¢ is the least element x in Lsuch that x v b >,

E3. b is the greatest element x in L such that x A ¢ <b,

E4. b is the least element x in Lsuch that x v ¢ > b.

This definition has an inherent drawback: it is non-constructive in the
sense that elements of E are not constructed from elements of L. This is a
great hindrance to the discovery of properties of E in relation to L.

In this paper we overcome this drawback by giving a constructive
definition of the exocenter E of a double Heyting algebra L (Theorem 3.8). In
Sections 4 and 5 we derive properties of the exocenter of a double Heyting
algebra L of order n and, in particular, we show that the exocenter is the
smallest sublattice with respect to which L is chain based.

1. Definitions and notation. Throughout this paper we shall be working
in the category of bounded distributive lattices. By a distributive lattice we
mean a distributive lattice that has a zero element 0 and a unit element 1. By
a sublattice we mean a sublattice containing {0, 1}. By a homomorphism
between distributive lattices we mean a lattice homomorphism that preserves
0 and 1. For all undefined lattice theoretic terms see Balbes and Dwinger
[2].

It is immediate from Epstein’s definition that, in the case of a double
Heyting algebra L, the exocenter E of Lis the sublattice generated by all
pairs b, ce L which satisfy

HELl. b>c=c,
HE2. b~c=c,
HE3. c—> b=,
HE4. ¢ <« b =b.

It is also obvious that the center B of a distributive lattice Lis contained
within the exocenter [4].
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Recall that an element a of a double Heyting algebra Lis dense in Lif
a—-0=0.

Definition 1.1. Let L be a double Heyting algebra. Suppose that L
contains a finite chain

O=ey<e; <...<e-2<e,-,=1

of n elements such that for eachi=1, ..., n—1, ¢ is the least dense element
of [e;—;, 1]. Then we say that (L, e, e,, ..., €,-,, €,_) is a double Heyting
algebra of order n.

Note: a chain

O=ey<e; <...<e,_3<e,_,=1

in which ¢; is the least dense element of [e;_,, 1] is called a Heyting chain
[4]. When we say L is a double Heyting algebra of order n, we mean that L
is a double Heyting algebra which contains a Heyting chain. This is
unambiguous as a Heyting chain, if it exists, is clearly uniquely determined.

Definition 1.2. Suppose L is a distributive lattice which contains a
finite chain of elements

O=fo <.f1 < ... <'./;|_2 <j;._1 = 1.

We say Lis chain based with respect to a sublattice Q if Lis generated by
QuU {fos fis --es Ju-2.Ju-1). That is, any element a of Lhas a representation

a=\/{finr:reQ, i=1,.., n=1.

Distributive lattices that are chain based with respect to their center
have been studied in [5] under the name Pg-lattices. However consider the
following example given in [4].

Fig. 1

L is a double Heyting algebra of order 4 with Heyting chain 0 < e, <e,
<1 and center |0, 1].
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Clearly Lis not chain based with respect to its center, but Lis (trivially)
chain based with respect to itself. Epstein noticed that Lis also chain based
with respect to proper sublattices; for instance Lis chain based with respect
to {0, b, c, e,, 1}. This latter sublattice is in fact the exocenter of L. Epstein
wished to extend the class of P,-lattices by defining an extension of the
center of a distributive lattice and considering those sublattices which were
chain based with respect to this new sublattice. By considering finite
examples, such as the above, Epstein was able to give his definition of the
exocenter. In this paper we show that any double Heyting algebra of order n
is chain based with respect to its exocenter.

2. Priestley duality theory. We assume that the reader is familiar with
Priestley duality for distributive lattices [6], [7], [8]. [9]. The notation used
here may differ from the above, but it should be self-explanatory.

We shall use this duality theory in Section 3 to give a new
characterization of the generators of the exocenter of a double Heyting
algebra. In Sections 4 and S we apply this characterization to double
Heyting algebras of order n, so we need a description of the dual spaces of
these lattices. The following lemma is easily deduced from the work of
Priestley [9].

LEMMA 2.1. If Lis a double Heyting algebra and L has a least dense
element e,, then e, is represented by the set X, of minimal points of X,.

By trivial extension it follows that, if (L, eo, ey, ..., €,-1) is a double
Heyting algebra of order n, then the dual space X, of L consists of n—1
disjoint clopen sets X, X,, ..., X,_, where X; is the set of minimal points
of X;\U{X;: j<i—1}. The chain element ¢; is represented by the set
UiX;j<i).

Since the layers X, X,, ..., X,-, partition the space X,, we can define
the order o(x) of an element x of X, by

o(x) =i if and only if xe X;.

If o(x) =i, it is clear that d(x)n X, # @ Vk <i (X, is the set of minimal
points of  {X;: j = k}.

Since the set of minimal points of any ordered space is discretely
ordered, we see that if (L, eq, €, ..., e,—) is a double Heyting algebra of
order n, then each of the intervals [e;_;, ¢;] is a Boolean algebra.

Definition 2.2. Let L be a distributive lattice. We say that Lis a
distributive lattice of order n if there exists a chain

O=e<e; < ...<e_3<e,_;=1

of elements of L such that each interval [¢;_,, ¢], i=1,...,n—1, is a
Boolean algebra, and n is the smallest number for which such a chain exists.
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As we mentioned in Section 1, we shall be concerned with sublattices of
a distributive lattice. We describe two ways of visualizing sublattices in dual
space terms.

Firstly, and most obviously, there is a bitopological approach. If Q is a
subset of a distributive lattice L, then {a: aeQ} is a collection of clopen
decreasing subsets of X;. We may use these sets to generate a new topology
2 on X, by taking ja:'ae Q) u !X, \d: ae Q] as a basis for the open sets in
2. This topology is called the clopen topology generated by Q: it is compact,
but not in general Hausdorfl. If Q is a sublattice of L, then for ae L we have
aeQ if and only if a is 2<clopen and decreasing in X;.

Adams ([1], Definition 2.1) describes another technique for dealing with
sublattices, by means of separating sets. Given a sublattice Q of a distributive
lattice L, we define the set

Sog=1{x,y)eX, xX;: x*y and for any geQ, (xeq implies yeq)).

Sg is called the separating set for the sublattice Q. A subset a of X, is said to
be compatible with S, provided (x, y)e S, and xea imply yea. Clearly, for a
clopen decreasing subset a of X, acQ if and only if a is compatible with S,.
Also if Q,, Q, are sublattices of Lwith separating sets S,, S,, then Q, €Q,
if and only if §;, 5 §5,. '

The following lemma is trivial to prove.

LemMa 2.3. Let L be a distributive lattice, Q a sublattice and ¢: X, — X,
the dual of the inclusion. The separating set Sy for Q is given by

See{lx, YeX x X : x%y and ¢(x) = @(y)}.
Armed with this information we can give a theorem that characterizes

precisely those subsets of X, x X, that are separating sets for a sublattice
of L.

THEOREM 2.4. Let L be a distributive lattice and S a subset of X x X,.
S is a separating set for a sublattice of Lif and only if the following conditions
hold.

MSn==0.

(2) SuU > is a transitive set (ie. (x,)), (y,z)eSuU > implies (x, z)
eSu 2).

(3) Given (x, y)¢ S =, there is a clopen decreasing subset b of X, such
that (x, y)eb x(X \b) = (X x X )\(SuU 2).

Proof. The necessity of (1) is obvious. Condition (2) is a matter of
checking the four possible cases. For condition (3), let (x, y)¢SuU >; then
_.there is an element b of Q which contains x but not y; b clearly satisfies (3).

Conversely, if S satisfies the conditions of the theorem, define a relation
¢ on X, by xgy if and only if (x, y), (y, x)e S U =. We can check that g is an
equivalence relation. Let (X,. 2. <,) be the quotient space (and ¢: X,
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— X, the associated quotient map) ordered by ¢(x) <, ¢(y) if and only if
(y, x)eSu =. (<, is reflexive, antisymmetric after the quotienting, and
transitive by condition (2).) If @(x) %, @(y), then (x, y)eSuU =, so by (3)
there is a clopen decreasing subset b of X, such that

() (x, Y)eb x(X \b) c (X, xX)\(Suw =2).

If ze o~ 1og@(b), then there exists we b such that wgz. So (w, z)eSuU > thus
as web, by () we have z¢(X,\b). That is, zeb and so ¢~ 'o¢(b) < b; the
reverse inclusion is obvious so ¢~ 'o¢(b) = b. Hence since ¢ is a quotient
map, ¢ (b) is clopen in X, ¢ (x)e ¢ (b) and ¢ (y)¢ ¢ (b). Also if ¢(z)e ¢ (b) and
¢ (w) <, @(2), then (z, w)eSuU = and zeb, so by (x) w¢ (X, \b). That is, web
and ¢(w)e ¢ (b). Thus ¢(b) is decreasing. We have shown that (X,, 2, <) is
totally order disconnected; it is also compact and since ¢ is continuous,
surjective and (clearly) increasing, X, is the dual space of a sublattice Q of L.
Since

S={(x,y)eX,xX;: x2y and ¢(x) =, 0(y)},

we see by Lemma 2.3 that S is the separating set for Q.

The proof of this theorem also reveals the procedure for constructing the
dual space for a sublattice from its separating set.

Although not every subset of X, x X, is a separating set, any subset T of
X, x X, does generate a sublattice Q, in a similar fashion:

Qr ={aelL: (x, v)e T and xea implies vea}.

It is clear that Sy is the smallest separating set containing T\ >; we say
So, is the separating set generated by T.

LeMMA 25. Let L be a distributive lattice. Suppose x, ye X, ; then the
separating set S generated by {(x, y)} is given by

T

S={w,2e X, xX.: w$z, wei(x) and zed(y)}.

Proof. This is simply a matter of checking that S is a separating set
(use Theorem 2.4), and that SuU > is the transitive closure of {(x, y)] U >.

3. The exocenter. In this section we use Priestley duality theory to give
an explicit construction for the generators of the exocenter of a double
Heyting algebra L. In fact, we show (Theorem 3.8) that given p, ge L, the
elements (p — q) = (q < p) and (g < p) «(p— q) are a pair of generators for
the exocenter and, moreover, that any pair of generators is of this form for
some p, qe L (Corollary 3.9).

Many of the results in this section are of a rather technical nature and
their proofs require some complex manipulation of formulae. To help shorten
these proofs we now list some standard identities and inequalities that hold
in all double Heyting algebras.

3 - Colloqui‘u'm Mathematicum L.2
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Throughout this section let L be a double Heyting algebra.
THeOReM 3.1. For a, b, ce L, the following hold:

Hl. b<a-—b, Dl.a=2b«a,

H2. a<b = a—-c>2b—c, D2. a<b =>ac=2b«c,
c—»as<c—b, c—a<ce+b,

H3. aAnb)—c=a—(b—c), D3 (avbec=a«(bec),

H4. an(a—b)=a b, D4. av(a<b)=avb,

HS. b<~a)—»b=a—b, DS. (a—=b)—a=b«a.

Proof. These are all standard formulae. See, e.g., [2], Theorem XI.2.3.
For p, ge L, define
u=p—>q and v=gq«p,
and then let
b=u—->v and c=v«u.
LEMMA 32 ue—v=v, vou=u.
Proof. u«—v=(p—q)«(q«p)
=((P—9q)vq)~p by D3

=(pp—>q) «p by H1
=qep by D5
= by definition.

The other equality is proved dually.

COROLLARY 33. U= v) A(vou=uArv,( uev)v@e—u=uvuo.
Proof. Lemma 3.2 and H4.

The other equality is proved dually.

COROLLARY 34. be~c=c; c>b=b.

Proof. Replace p by u, etc. in the proof of Lemma 3.2.
LEMMA 35. bAac<uAvsSpAaqg,bvczuvov=pnag.
Proof. bAac=u—-v) A(v<u)

Su-v)Au by D1
=UAD by H4
<pAg by replacing b by u,

etc. and repeating this method.
The other inequality is proved dually.
CoroLLARY 3.6. bAg<pAgq;bvg=pvyg.
Proof. bAag<ba(p-9q) by HlI
=u->v)Au by definition
=UAVD by H4
<pAgq by Lemma 3.5.

The other inequality is proved dually.
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There are many other similar - inequalities involving various
combinations of p, g, u, v, b, c; the above corollary is included for future use.

LEMMA 3.7. In the dual space X, of L, p\q =b\c.

Proof. b=u—->v>2v=q<p=d(p\9) 2p\q

c=veusu=p->q=X\i(p\g) < X.\(p\9)

THEOREM 3.8. If L is a double Heyting algebra and p, qe L, then the
elements b=(p—->q)—>(q<p) and c=(q<p)<—(p—q) are a pair of
generators for the exocenter E of L.

Proof. By definition, we are required to show c>b=b=c«b and
b—c=c=b«c By Corollary 34, we already know that b« ¢ = ¢ and
c—b=hb.

1. By Hl, b—c > c. Suppose there exists xe(b—c)\c. If xeu, then
xebvc by Lemma 3.5; but xé¢c, so xeba(b—>c¢)=b Aac. This is a
contradiction as x¢c.

If x¢u, then x¢ X, \i(p\g), so xei(p\g). Thus there exists y < x such
that ye(p\g). By Lemma 3.7, we have ye(b\c) and ye(b—c) as y < x. So
yebA (b—c)=b A c. This is a contradiction as y¢c. Thus b—c =c.

2.By D1, c<b<b. Suppose there exists xeb\(c—b). Then
xebcbvc=(c+b)vec so xeb nc as x¢(c « b).

If x¢v, then xé¢u Av, so by Lemma 3.5, x¢bAac. This is a
contradiction to the above.

If xev, then xed(p\g), so there exists y > x such that ye(p\g). By
Lemma 3.7, ye(b\c), and yé¢(c < b) as y > x. So yé¢c v (c<b). This is a
contradiction as yebcbvc=cv(c«b). Thus c<b=b.

CoroLLARY 3.9. Every pair of generators of E is of the form (p— q)
—(q < p) and (q < p) <(p— q) for some p, qe L.

Proof. If b and ¢ are a pair of generators for E, then

b=cob=(b-oc)o(c-b)and c=be—c=(c—b)«(b-0).

CoroLLARrY 3.10. (a) Every generator of the exocenter is of the form
(p—q)—(q < p) for some p, qe L

(b) Every generator of the exocenter is of the form (q « p) « (p— q) for
some p, qe L

Proof. Let b and ¢ be as in Corollary 3.9.

@ c=boc=(c->b)->(b<c)

b)b=c«b=(bc)—(c—Db).

4. Double Heyting algebras of order n. With the help of this new
constructive description of the genrators of the exocenter, we may prove the
result that motivated Epstein [4] to define this sublattice: if Lis a double
Heyting algebra of order m, then L is chain based with respect to its
exocenter.
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Throughout this section let L be a double Heyting algebra of order n
with Heyting chain 0 =¢;, <e, < ... <e,_, <e,_, = 1.
To elucidate our method of proof, consider the following diagram.

[ A

l

Fig. 2

As noted in Section 2, the dual space X, of L consists of n—1 layers,
X,, X3, ..., X,—, of Boolean spaces (heavy black horizontal lines).

Let aeL; then a is a clopen decreasing subset of X,. For each
i=1,...,n—1, ¢ is the clopen decreasing subset |) | X;: j <i}. For each i,
let a,=(a—>e_,)—(e-, <a)

By plotting a; on the diagram, Fig. 2, it appears that a; A ¢; < a A ¢; and
further that a; n X; = an X;. We prove these two results in Lemma 4.2 and
Corollary 4.5; from them we may easily deduce that a=\/{qg, A ¢;:
i=1,...,n—1}, and thus, since each g; is a generator for the exocenter, that
Lis chain based with respect to its exocenter. To understand the proofs it
may be helpful to bear Fig. 2 in mind.

LEMMA 4.1. ¢, A((@a—>e- ) a)< e Aa.
Proof. If xee;\a, then x¢i(a\e;_,) since i(a\e;_,) e =an X; Sa.
So xea—e;_,, but x¢a, and thus x¢(a— e¢;_,)— a. Hence
eA(a—e-_)—a)<e na
LEmMMA 4.2. ¢; na; < e Aa.
Proof. ¢, na=¢ A((a—e-,)— (e~ < a))
<en(a—e-y)—a) by D1, H2
<eAna by Lemma 4.1.
LEMMA 43. (a—e_,) v(e_,+<a)=e v a.
Proof. Let xee; v a and suppose x¢(a—e;_,), i.e. xei(a\e;_,). Then
there exists ye(a\e;—,) such that y < x. Clearly x¢e,_, as yée;_, and y < x.
Either xea, in which case xea\e;_, ©d(a\e;_,) =e;_, «a, or xee;,
so yee;\e;_;,and hence y = x as ¢;\ ¢; _, is discretely ordered. Thus xea\e;_,
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c d(a\e,_,) =e_, + a, as before. Hence
evas(@a—e_,) Vg, +—a).
LEMMA 44. g, v(a—e_,)=ave,.
Proof. Letu=a—e¢,_,andv=¢;, , «<a,soa =u—v. We have u - v
=2v=>u«v by HI, DI and u > v «<u by DI. So

agv@a—e_))=u-v)vuzu<v v(e<u
=uUvo by Corollary 3.3
=e Vva by Lemma 4.3.

CoROLLARY 4.5. an X, =a;n X;.

Proof. Clearly by Lemma 4.2, a;,n X; € an X;. If xe X;\a;, then by
Lemma 44, xeX;\(a—e_,). But an(a—e¢_,)<e_;, so x¢a. Hence
an X, =an X;.

THEOREM 4.6. If Lis a double Heyting algebra of order n, then Lis chain
based with respect to its exocenter E.

Proof. Let aeL. For each i=1,...,n—1 define a,=(a—e¢;_,)

— (e;—y «a); by Theorem 3.8, a; is a generator for the exocenter of L.
By Lemma 4.2, ¢; A q; < ¢; A a for each i, so

e, na:i=1,...,n=1)<\/lerna:i=1,...,n-1} =a.
By Corollary 4.5, a;,nX; =an X;, so
feenag:i=1,..,n-1'2U{X;na:i=1,...,n-1
=U{Xjna:i=1,...,n-1} =a.

Hence \/{e; ng;: i=1,...,n—1} =a and so L is chain based with
respect to its exocenter.

5. Separating sets. Having shown that any double Heyting algebra of
order n is chain based with respect to its exocenter, it seems natural to
enquire whether the exocenter is the smallest such sublattice (if such exists).
By constructing a suitable separating set, we are able to show that such a
sublattice does exist and that it is indeed the exocenter. Thus, at one stroke,
we find the separating set for the exocenter, and we give it a new
characterization as the smallest sublattice with respect to which the lattice
itself is chain based.

The following is standard in Epstein and Horn [5].

LemMmA 5.1. Let (L, ey, ..., e,—) be a double Heyting algebra of order n
and let Q be a sublattice. If L is chain based with respect to Q, then every
element a of L has a monotonic representation

a=\/{erng:i=1,...,n-1},

where each q;eQ and q, 2q, > ... 2 q,_,.
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Let Lbe a double Heyting algebra of order n and let Q be a sublattice of
L. Let 2 be the clopen topology generated on X, by Q. L is chain based
with respect to Q if and only if Lis generated by Q and the chain elements.
Translating this definition into a topological criterion on the dual space, we
have: L is chain based with respect to Q if and only if the clopen topology
<, generated on X, by Q and the chain elements, is the whole topology 7
of X,. % will always be coarser than J, so if & is totally order
disconnected, then the two are equal. Given x, ye X, with x 2 y, then either
X <y, in which case there is a chain element containing x but not y, or
x £ y. Thus a sufficient condition for Lto be chain based with respect to Q is:
given xe X, then for all ye X such that x|y (i.e. x £ y and y £ x) there is
a Z-clopen decreasing subset g such that xeq and yé¢q. In the case of a
double Heyting algebra, this condition is also necessary.

THEOREM 5.2. Let L be a double Heyting algebra of order n with Heyting
chain

O=e<e; < ... <e,_; =1.

Let Q be a sublattice of Land let 2 be the clopen topology generated on X, by
Q. Then L is chain based with respect to Q if and only if, given xe X, for
all ye X such that x||y there is a 2-clopen decreasing subset q such that xeq

and yéq.

Proof. Suppose that Lis chain based with respect to Q. Given x, ye X
such that x|y, we have two cases to consider.

1. If o(x) > o(y), suppose o(y)=k. As x 2y, there is a J-clopen
decreasing set a with xea and y¢a. Now a has a monotonic representation
as

a=\/{eng:i=1,...,n—1}.

If ye gy, then as yee,, yea, which is a contradiction. So y¢gq,. If x¢gq,, then
x¢q; Vj =k as the representation is monotonic. Also x¢e; Vi < k as o(x)
2 k. Thus x¢a, which is a contradiction. Thus g, is a 2-clopen decreasing
set containing x but not y. _

2. If o(y) > o(x), suppose o(x) = k. Let ¢ = d(y) n X,. c is non-empty (as
we are considering a Heyting chain) and closed. Also x¢c and x||z Vzec, so
there is a 7 <lopen decreasing set a containing x such that anc = (0. Now
a has a monotonic representation

a=\/lenrnqg:i=1,...,n—1]
and, just as in 1, we can show that xegq, but yé¢g,.

Sufficiency is clear by the discussion preceding the theorem.

Now suppose that Lis a double Heyting algebra of order n which is
chain based with respect to a sublattice Q. Recall from the definition that the
separating set for Q is just the set of pairs (x, y) of elements of X, with x * y



DOUBLE HEYTING AIGEBRA 183

for which there is no 2-clopen decreasing set containing x but not y. We
wish to find a candidate separating set S, for the smallest sublattice A with
respect to which L is chain based. That is, we wish to characterize the largest
separating set that does not contain a pair of incomparable points.

1. Suppose x £ y. x 2y by hypothesis so x||y.

2. Suppose x < y but [x, y] is not a chain (i.e. 3w, ze[x, y] with w||z).
If (x, y)eS, (w, x), (¥, 2)€ =, so (w,z)eSuU =. But (w, 2)¢ >, so (w, z)€S.

3. Suppose [x, y] is a chain but d(y) # d(x)u [x, y] (ie. 3z <y with
z|lx). If (x, y)eSs, (y,z)e =, so (x,z)eSu =. But (x, 2)¢ =, so (x, z)€eS.

4. Suppose [x, y] is a chain but i(x) # i(y)u[x, y] (i.e. Iw = x with
wll ). If (x, y)€S, (W, x)€ =, so (w, y)eSuU =>. But (w, y)¢ =, so (w, y)€S.

We take as our candidate separating set, pairs of the remaining type;
namely

S,=l(x, e X, xX.: [x, y] is a chain,
i(x)=i(y)ulx, y] and d(y) =d(x)u [x, y]}.

First we show that we are on the right track.

LEMMA 5.3. Let L be a double Heyting algebra. If (x, y)eS, and if b is a
generator for E,, then xeb implies yeb.

Proof. Suppose b is a generator for E; and xeh. Assume that y¢h. Let
¢ be any generator for E; such that b=c—b=c«b, that is, b
= X \i(c\b). Then as y¢b, yei(c\b), so there exists ze(c\b) such that
z<y. Now (x, y)eS,, so d(y) =d(x)u[x, y]. zed(y) but z¢d(x) as z¢bh.
Hence ze[x, y]. xeb =d(b\c), so there exists we(b\¢) such that w > x. As
(x, y)eS,, i(x) =i(y)v[x, y]. Now w¢i(y) as web and y¢b, so we[x, y].
But [x, y] is a chain, so there are two cases: either w > z, in which case ze b
as web. This is a contradiction. Or z > w, in which case wec as zec. This is
also a contradiction. Thus our assumption that y¢b is wrong; that is yeb.

We can now show that S, is indeed a separating set for a sublattice
of L. .

THEOREM 54. Let L be a double Heyting algebra. The set S, is a
separating set for a sublattice of L.

Proof. We use the characterization given in Theorem 24. Trivially
S,n=> =@, and it is easy to check that S, U > is a transitive set. It
remains to prove condition 3. Given (x, y)¢ S, U =, there are four cases to
consider. '

1. Suppose x £ y. Since x 2 y, we may pick clopen decreasing subsets p,
q of X, such that xep, y¢p and x¢q, yeq. Let b =(p— q)— (g < p); then,
by Corollary 3.6, b A g < p A g, which implies y¢b, and b v q > p v g, which
implies xeb. Thus (x, y)ebx(X_\b). By Lemma 5.3, bx (X, \b)nS, = Q,
and since b is decreasing, bx (X, \b)n = = @. Thus the clopen decreasing
set b satisfies condition (3) of Theorem 24.
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2. Suppose x < y, but [x, y] is not a chain. That is, Iw, ze[x, y] with
w||z. Pick clopen decreasing subsets p, ¢ of X, such that wep, z¢ p and
wé¢gq, zeq. Let b =(p— q)— (q « p); then we can check (as in 1) that web
and z¢b; hence xeb and y¢b. The set b satisfies the condition exactly as in 1.

3. Suppose [x, y] is a chain, but d(y) # d(x)u[x, y]. That is, 3z<y
with || x. Pick clopen decreasing subsets p. ¢ of X, such that xep, -¢p and
x¢q, zeq. Let b=(p—q)—(q < p); then xeb and z¢b, so y¢b. Again, the
set b satisfies the condition exactly as in 1.

4. Suppose [x, y] is a chain, but i(x) #i(y)u[x, y]. That is, Iw > x
with w||y. Pick clopen decreasing subsets p, g of X, such that wep, yép and
wégq, yeq. Let b=(p— q)— (¢ < p); then web and y¢b, so xeb. Again, the
set b satisfies the condition exactly as in 1.

Thus S, is a separating set for a sublattice of L.

Let A be the sublattice of L defined by S,.

We are now in a position to prove the main theorem of this section.

THEOREM 5.5. Let L be a double Heyting algebra; then the sublattice A
defined by S, is the exocenter of L.

Proof. Suppose that Q is any sublattice of Lthat is properly contained
in A; then the separating set Sy, for Q properly contains S,. Thus there exists
(x, ¥)€So\S4; (x, y)¢S4 U >, and exactly as in the proof of Theorem 5.4, we
can always construct a generator b for the exocenter such that xe b and y¢b.
That is, there is a generator b for E, that is not compatible with S,. Hence
b¢ Q and Q does not contain the exocenter of L. But by Lemma 5.3, every
generator for E; is compatible with S, and so A contains E;. Thus A = E,.

Our original motivation for defining the set S, was to find the
separating set for the exocenter of a double Heyting algebra of order n; we
have been rewarded with the answer for any double Heyting algebra.
However, a part of our motivation was directed towards the following theorem.

THEOREM 5.6. Let (L, ey, ..., e,_,) be a double Heyting algebra of order
n; then A is the smallest sublattice with respect to which L is chain based.

Proof. From the above it is clear that if Q is any proper sublattice of
A, then Lis not chain based with respect to Q. However, by Theorem 5.5,
A = E, and by Theorem 4.6, L is chain based with respect to E,. Hence 4 is
the smallest sublattice with respect to which L is chain based.
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