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Abstract. Systems of partial differential equations with constant coefficients are studied in
spaces of functions and distributions that are imporiant for applications to tangential complexes.
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Introduction

The purpose of this paper is to develop the study of differential
complexes with constant coefficients (Hilbert differential complexes) and of
the tangential complexes they induce on hypersurfaces. These results
generalize those obtained by several authors for the Dolbeault complex and
for the tangential Cauchy-Riemann complex on hypersurfaces of C",
although some vanishing theorems on domains with a non-smooth boundary
are seemingly new even in that case.

In this general setting, only geometrically convex or geometrically
concave domains and boundaries of convex domains can be considered.
Indeed, as in complex analysis, one should develop a convexity theory special
to any given system of differential operators to obtain optimal vanishing
theorems.

For reasons of invariance and conciseness, most of the results are stated
in the language of homological algebra, i.e. homology and cohomology of
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differential complexes is expressed in terms of the Ext and Tor functors, but
the reader will find no difficulty in the translation.

Also I preferred to study the tangential complexes in their “rough” form,
i.e. on Whitney functions or on distributions concentrated on a hypersurface,
the equivalence to more agreeable differential objects being assured then by
the assumption that the hypersurface be “formally non-characteristic” for the
given Hilbert differential complex, in the sense precised in [6].

This investigation is part of an effort to clarify the conditions for the
validity of the Poincaré lemma for quite general differential complexes; so,
while the example of Cauchy-Riemann differential complexes is a constant
source of inspiration, 1 aimed here to a higer level of generality in the
methods.

The main tool developed here is a theorem on differential systems with
constant coefficients in the cathegory of C* functions with compact support
that solves a problem originally posed by Palamodov. From this several
results are obtained for convex and concave sets that permit applications to
hypersurfaces.

The paper is organized as follows: first I introduce the spaces of
functions and distributions and the standard facts of homological algebra
that will be needed in the sequel. In the second section I prove the afore
mentioned result on solvability of systems of p.d.e. with constant coefficients
by means of a lemma on the existence of certain plurisubharmonic functions.
In the following section various applications are given to the computation of
homology and cohomology for functions and distributions on convex and
concave domains. Section 4 contains applications to the computation of the
global homology and cohomology for “rough” boundary complexes, while in
Section 5 the local case (Poincaré lemma) is treated. In Section 6 it is shown
how these results apply to tangential boundary complexes.

1. Preliminaries

A. Spaces of functions and distributions. Given an open set 2 in R", we
denote by &(2) the space of complex-valued C* functions on Q, with the
Fréchet—-Schwartz topology of uniform convergence with all derivatives on
compact sets.

If K is a closed subset of @, then we denote by & (£2) the subspace of
[ € &(82) with support contained in K. This is a closed subspace of &(£2) and
therefore inherits a Fréchet—Schwartz topology. We note that, if @ is an open
neighborhood of K in Q, then the restriction map &(Q) — &{(w) induces an
isomorphism &y () = &x(w). Therefore we shall write simply &£y instead of
éx (L), as this space depends only on the locally closed set K and not on the
neighborhood Q. When K is compact, we write also &y for &.

Given any subset A of R", we define

(./A = lim 9’(
Fcumpucm
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with the Schwartz direct limit. topology. Notice that &, can be identified
with the subspace of f € £(R") having compact support contained in 4. When
A 1s open we write as customary Z(A) for %,.

If Q@ is an open set in R", we denote by %'(Q) (resp. &' (R2)) the space of
distributions (resp. distributions with compact support) in £, with the
topology of strong dual of Z(Q) (resp. &(Q)).

Given a subset 4 of Q we set 2, (£2) (resp. &) to denote distributions
(distributions with compact support) with support contained in A. When A is
locally closed (A closed in an open set Q of R"), we write simply %/, for
2,(R) as the remarks made above for functions apply also to this case.

Let now K be a closed subset of an open set Q of R" and denote by
F x(€2) (resp. K™ (£2)) the subset of &(2) (resp. £(82)) of functions vanishing
with all denvatnves on K. Then we define the space #x of (complex valued)
Whitney functions on K by the exact sequence:

(1 0->Fx(Q)— £(Q)—> #x (-0

and the space #¥™ of Whitney functions with compact support in K by the
exact sequence:

(2) 0->FK™ () - 2(Q)—> #E™ -0

endowing them with the natural quotient topologies. Notice that # ', has a
topology of Fréchet—Schwartz.

We also define the space 9% of “extendible distributions on K” by the
exact sequence:

3) 0— %k~ Z'(Q)— Ik~ 0,

where F is the closure of Q—K in £, and the space &% of “extendible
distributions with compact support in K” by the exact sequence:

(4) 0 & — &) - &—0.

We note that there is a natural inclusion 2% — 2’'(IntK): the extendible
distributions on K are the distributions that can be continued beyond the
points in dK N K.

We have an inclusion & < 2’ (int K) and the elements of &% are those
whose supports have a compact closure in K. On Z and £ we consider the
natural quotient topologies.

If K is regular in the following sense:

for every xe K there is a neighborhood U of x and constants C,d >0
such that for any x4, x,e UK there is a continuous rectifiable path
y: [0, 11— K with y(0) = xo, y(1) = x, with

lenght of y < C|lx; —xol%,
then & is the strong dual of #'x and %y is the strong dual of #7¢™ (cf.

(22]).
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If K equals the closure in Q of its interior, then %y is the strong dual of
% and &y is the strong dual of & (cf. [18]).

We also notice that in this case, denoting by F the closure in Q of
Q—K, then

Er =Fx(Q), Dr=2Q)nFg(Q).

If also F equals the closure in Q of its interior, we obtain from (1) and
(2) by duality exact sequences:

(1)* 0-[#%] - &(Q)— &0,
2)* 0-[wR™] - 2'(Q)— & -0
from which we deduce that also in this case

[#x) =6x and [#K™]) = Pk.

We will consider all spaces of functions and distributions introduced
above as left and right modules over the ring #=C[zy,...,2,] of
polynomials in n indeterminates by the action

fzi=z,f=i"'oflox; forj=1,...,n

B. Homological algebra. If M is a unitary left #-module, a free
resolution of M is an exact sequence

(%) 0 McFo20F AF, .

of unitary left #-modules and #-homomorphisms, where all the F; are free.
Given another unitary left #-module N, the groups Ext,(M, N) are
defined as the cohomology groups of the complex:

* %*
0— Hom(F,, N)2% Hom(F,, N)*1 Hom(F,, N)— ...

and for a unitary right #-module R the groups Tor” (M, R) are defined as
the cohomology groups of the complex

*
0 Fy®, R4 F,@, R F,@,R ...

If M is of finite type, then we can find a resolution () by free #-modules
of finite type F, = #” and p, = 0 for i > n. Then the #-homomorphisms are
represented by matrices A; = A4;(z) of size p,xp;,, and with polynomial
entrics. When N or R is one of the spaces of functions or distributions
introduced in the previous subsection, with the #-module structure precised
above, then we have:

Homyz(#%, Ny= N” and #"®,R=R"
and A‘* = ‘Ai(D), Al"" = A,(D)
for D=("10/0x,,...,i " /ox,),
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while

Ker('4;(D): N - N*1)
Image(‘4;_,(D): N"~1 5 N%)

Ext, (M, N) =

and
Ker(A4;(D): R" - RFi™1)

? = - .
Tof_, (M, R) Image(Aj+1(D): RPJ+1 N Rp‘,)

are the cohomology groups of the complexes of linear spaces and linear
partial differential operators with constant coefficients:

“AoD) \py MA1(D)

0— NP NP2

and

Py Al(D)

Ao(D)
0 « R"% R RP2 ...

We will also use the following fact from homological algebra: if
O-E—=F-G-0

is a short exact sequence of unitary left (resp. right) #2-modules, then for
every unitary left #-module M we obtain the long exact sequence for Ext
(resp. for Tor):

0 — Ext3(M, E) » Ext3(M, F) - Ext3(M, G) -
~ExtL(M, E) > ...
... Exth(M, G)—
— Ext,r ' (M, E)— Extyf ' (M, F)— ...
and respectively:
0« Torf (M, G) «Tor§ (M, F) «Tor3(M, E)
—Tor?(M, G) « ...
..+ Tor?(M, E) «
«Tor?, (M, G) «Tor?, (M, F) «Tor?,, (M, E) « ...

2. Systems of differential equations on & and ¥k

Given a compact convex set K on R" we denote by Hy its supporting
function:

Hg(y) = 81;p<y, x>, xekR.

Then we have:

ProrosiTioN 1. Let K be a convex compact set in R* with a non-empty
interior.
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Let  be a real valued function on C" with the property:
For every integer m > 0 there is a constant o, > 0 such that
(5) Y@ <on(1+)z)™™ on C

Then we can find a continuous plurisubharmonic function ¢ on C" such
that
For every integer m > 0 there is a constant c, > 0 such that

(6) e < ¢, (14]z) ™e on C"

0 e > Y (2) """ on O

Hy(lmz)

There is a constant C > 0 such that
8) lp(2)—pw)| < C, ifz,weC" and |z—w| < 1.

Proof. (A) First we consider the case n =1 and K = {xe R| |x| < 1}.
For a sequence of positive integers {h,} with

(») hy=21 and  h,,,=>4h, forn=1

the infinite product

g(z2) =z f[l (1—(z/mhy))

defines an entire function on C having only simple zeros at integral multiples
of n. Then we can consider the entire function:

f(z) =sinz/g(z).

Because f(z) and f(z—3r) have no common zeros, then

¢(2) = $In(lf @I* +If (z—3m)*) + In(20,)

is plurisubharmonic and smooth. One checks by an easy computation that,
if we choose {h,} subject to the further condition that

hy...h,=2"**qg,,, forn>1,

then ¢ satisfies all the required conditions.
(B) Let us consider now the case n > 1 and K be the coordinate cube:

K=IxeR'||x|<1forj=1,...,n}.

We define g(t) = sup {0, supy(z)}'/". By point (A) we can find a
lz| 21t

continuous subharmonic function h(w) on C such that conditions (6), (7), (8)
are satisfied with respect to the function ¥’'(w) =g(lwl) (we C). Then the
function ¢(z) = h(z,)+ ... + h(z,) satisfies all requirements of the prop-
osition. 4
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(C) By a linear change of coordinates we deduce from (B) that the
proposition holds also in the case K is a parallelepiped:

K={x'vi+...+x"v,+vo| —1<x'<1for j=1,...,n)

for vy,...,v,e R" and v,,...,v, linearly independent.

(D) Let us consider now the general case. Let x, be an interior point of
K and let 0 <r < R be such that

{Ix—xo| <7} =« K = {Ix—xo| < R}.
Let e,,...,e, be the vectors of the canonical basis of R* and let us set
e=n""2(e, + ... +e,)

and
r re;+Re

Y%= Tr+R

for j=1,...,n

We consider the parallelepiped
C=la"vy+...+a"v,] —1<ad < forj=1,....n
and we define

g(t)y=supy(z) for teR.

|z| 21

Then by point (C) of the proof we can find a continuous plurisub-
harmonic function ¢, on C" such that

() "1 > g(z) "™ for zeC™

and for every integer m > O there is a constant c,, such that
(ii) e"'? <, (1+|z)) "™  on C"

and

(iii) lo,(z)—, ()| <C if z,27eC" and |z—-Z/| < 1

Let F denote the subspace of dK xSO(n) of pairs (x, L), where xe oK
and L is a rotation in R" changing the vector e into the vector (x— x,)/|x —
—xo|. The set F is closed and therefore compact.

For (x, L)e F we define

v(x) = x—r (x = Xo)/}x — Xyl
and
C(x, L)y=v(x)+LC.
Then for every pair (x, L)e F we have

xeC(x, L) c K.
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Hence

Hy(y) =sup(y, x> = sup H¢,,,(y) for yeR",
K x,L)eF

(
and

Hen () = (y, v(x)>+ Hc (‘Ly).
Therefore, if we set
¢(x, L; 2) = (v(x), Imz)+ ¢, (‘'Lz)

and we remark that |‘'Lz| = |z] for LeSO(n), we obtain from (i) and (ii):

(I)I P L) > g(lz“eHC(x,L)ﬂmz) on C"
and
(“)/ 5 Li?) < Cm(l +[zl)—meHC(x.L)(lmz) on C"

(where the constants c,’s are the same as in (ii)) and
(1)’ lo(x, L; 2)~@(x, L;Z) <C if z,2eC" and |z—-Z| < 1,

with a constant C' independent of (x, L)eF.
Because F is compact,
@(z2) = sup o(x, L; z)
(x,L)eF
is continuous and hence plurisubharmonic and satisfies all the conditions in
the statement.
Then we obtain the following:

ProrposITION 2. Assume that K is a convex subset of R". Then Zy is a
flat P,-module and for every q x p matrix A(z) with entries in P, the linear
map A(D): 9k — 9% defined by the corresponding differential operator is a
topological homomorphism.

Proof. We have to prove that, if
43

Ag(z)
9 PPy =P,
is an exact sequence of free .Z,-modules of finite type and Z£,-homo-
morphisms, then the corresponding sequence

A((D) . AgD)
271 ,I"(I_O_’.(

(10) GPr— < 4

is an exact sequence of topological vector spaces and topological homo-
morphisms.

In the following we will assume that K is convex, compact and with a
non-empty interior, as this case will imply the general case.

Let fe 28 (i=0 or 1) and let us denote by

f@) = @Ry 2 [ f (9 7= dx
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its Fourier-Laplace transform. By the theorem of Paley Wiener f is entire on
C" and satisfies:

Jor every integer m > 0 there is a constant a,, > 0 such that
V() =1+ @ e " < op(l+lz) ™

Then by Proposition 1 we can find a continuous plurisubharmonic
function ¢ on C” satisfying (6), (7), (8) with respect to . Then

[1f @IFe 2@ dA(z) < + 0

and by Theorems 7.6.11 and 7.6.12 in [11] we deduce the following:
1°If i=1 and Ao(D)f =0, then A,(z)f(z) =0 and we can find

D(z)e O(C") such that
4,(2)5(2) = [ (2)
and
(%) (1@ +]21) Ve 2@ dA(z) < +

(where N is a positive integer only depending on A, and A4,).
Then, by Paley Wiener theorem, ¥ is the Fourier—Laplace transform of a
function ve 25* such that

A (D)v =1

2° If i =0, and f'is orthogonal to all exponential-polynomial solutions u
of the homogeneous equation ‘Ay(D)u =0, then by the Nullstellensatz we
have

f(z) = Ag(z)h(z) for some he O (C")
and then we can find #e 0" (C") satisfying (x) such that
f(@) = A40(2)0(2).
But then # is the Fourier-Laplace transform of some ve 95 such that

Ao(D)v = f.

Because the image of A, (D): 2% — 7}’ is contained in the orthogonal to the
space of exponential polynomial solutions u of ‘Ay(D)u = 0, we actually have
equality. Thus A,(D): 2x' — 25° having a closed image is a topological
homomorphism because these spaces are Fréchet when K is compact. The

general statement follows because, if F is any compact convex subset of the
convex set K, then

(40(D) 2%') N Z2° = Ao (D) 2§

and therefore A,(D) 23! is strictly bornologic.
By the duality theorem we obtain then the following:
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ProrosiTioN 3. If K is a convex subset of R® and (2x) denotes the strong
dual of %y, then () is an injective #,-module for the action of P, on (2y)
given by

(i T, uy =T, —=(1/i)dufox;y  for j=1,....n; Te(Tg), ue 7.

Proof. Indeed, because when (9) is an exact sequence, then (10) is an
exact sequence of topological vector spaces and topological homomorphisms,

then by duality (cf. [9]) it follows that the exactness of (9) implies that of the
sequence
(11) (@07 2220 g,

Remark 1. If K is a closed convex set in R", then, as we noted in
Section 1, (2¢) = 2% and when K is an open convex set, then (%)
= 9'(K): therefore Proposition 3 contains at the same time a statement
about the solvability of systems of differential equations in the class of
extensible distributions and in the class of distributions on a convex set.

Remark 2. Repeating the argument given in [5] for the case of an
open K, we obtain that, if the interior of the convex set K is non-empty (i.e.
excluding the trivial case where 24 = 0), then 2, is faithfully flat over #,.

With the notations introduced in Section 1 we obtain the following
statements that are easy consequences of [11}:

ProrosiTiON 4. If K is a convex set, then &y is a flat P,-module.
Moreover, for every q x p matrix with polynomial entries the linear map defined
by the corresponding differential operator:

A(D): 8¢ — &¢
has a closed image.

Because ¥y is of Fréchet-Schwartz, by duality (cf. [9]) we obtain:

ProposiTioN 5. If K is a locally closed convex set, then %y is an
injective 2,-module.

Remark 3. One can show that, if K has a non-empty interior, then the
exactness of the sequence

P 0 P 1 P
*ﬂ 0 —_— 1{/ 1 > 'ﬂ 2

implies the exactness of (9).

3. Vanishing theorems on domains in R"

In this section we want to deduce, from the results of the previous one
and some homological algebra, several vanishing theorems for the cohomo-
logy of differential complexes with constant coefficients on domains of R".

In the following we will denote by 2 an open convex set in R, by K
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a convex closed subset of Q and by G the closure in Q of the complement
of K.

From the exact sequence (1) in Section 1, we obtain for any given #,-
module M corresponding long exact sequences for the derived functors, that
yield the following statements:

ProPOSITION 6. For any 2,-module M we have:

(a) Ext}, (M, Zx(Q) =0 for j>2.

(b) Ext} (M, #x(2)) = Hom, (M, # )/Hom, (M, £(2)).

(©) If j > 2, then Tor;"(M, #(Q)) = 0 if Ext}, (M, 2,) = Ext}; (M, #,)
=0.

ProrosiTiION 7. For any 2,-module M we have, under the additional
assumption that K be compact and with a non-empty interior:

(a) If j = 1, then Ext}, (M, %) =0 if and only if Ext, ' (M, 2,) = 0.

(b) If j > 2, then Tor;™(M, #) =0 if and only if Ext}, (M, 2,) =0.

Indeed, when K is compact, then %;(Q) = & . The only if part in the
statements follows from Remarks 2 and 3.

Let us consider now the consequences of the exact sequence (2). We
obtain:

ProposITION 8. The P,-module W'§™ is flat.

Proof. It is sufficient to show that Torf"(M , WE™) =0 for any 2,-
module M of finite type. We have an exact sequence:

(12) 0 - Tor{ (M, W§™) > M®,, Zx —» M®4 2(9).
If

A(2)

PSP >M-0
is a finite presentation of M, then (12) can be rewritten as
0— Tor;" (M, wg™
— coker (A(D): 2§ — 2%))— coker(A(D): Z*(Q)— 2(Q)).
But the last map is injective by the argument in Part 2 of the proof of
Proposition 2, and hence the statement follows.
CoroLLARY. We have Ext), (M, ) =0 for j> 2.

Then we obtain from the exact sequence (2):

ProrosiTiON 9. If K is compact and with a non-empty interior and M is
any #,-module, then:

(a) If j = 1, then Tor;"(M, 9¢) =0 if and only if Exti:'(M, #,)=0.

(b) If j > 2, then Ext} (M, 26) =0 if and only if Ext}; (M, 2,) = 0.

(c) If Exty (M, #,) =0, then

Ext; (M, 2¢) = Hom, (M, % x)/Hom, (M, 2(Q)).
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We also have the following:

ProposiTiON 10. Assume that K is closed and convex in R* and has the
following property:
There exists a linear functional £: R" — R such that for a constant ce R

(13) Kn{, xy<c} is compact and non-empty.
Then:
Ext), (M, #'™) =0 for j>2,
Tor,*(M, ¥3¥™) =0 if Ext, (M, 2,) =Extj (M, #)=0.
If j = 3, then
Ext), (M, 9g)=0 if Ext, (M, 2,)=0.
Ifjiz1
Tor;"(M, 96) =0 if Ext} (M, #,) = Exty.'(M, #,) =0.
Proof. Property (13) implies that
K.=Kn{{¢, x>t}
is, for every te R, compact. Let us set
F,=Kn{{& xy=21t}, H,={¢ x)<t).
Then we consider the exact sequence:
0 E - #x—> W -0

where E, = {fe W | f =0 on F,}.
Then #™ = lim E,, and hence the statement follows, because K and

F, are closed convé; msets, from the long exact sequences:

...~ Exth (M, ¢ )— Ext} ' (M, E)—~ Extj (M, #y)—> ...
and

...>Tor?\ (M, W) Tor;"(M, E) - Tor;"(M, # ) ..

and from the long exact sequences for the derived functors that are deduced
from (2).

CoROLLARY. Let us assume that condition (13) holds and that K is not
compact. If M is a finitely generated torsion module, then

Exty (M, 96) =0 if Exty (M, 2,)=0.
Proof. We have an exact sequence:
Extgn(M, WE"P) — Ext},”(M , D6)— Ext!,n(M , 9(R).
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The last group is zero because we assumed that Ext;.n (M, 2,) = 0. Because
M is torsion, the set of {eC" such that M®, #,/m;# 0 is a proper
algebraic subset of C". Then the set of real ¢ not belonging to its asymptotic
cone is open and dense in R" and hence we can as well assume that property
(13) holds for such a vector £&. Then Holmgren’s uniqueness theorem implies
that Extg (M, #¢™) = 0.

CoroLLARY. Under the same assumptions of Proposition 10:

(a) Tor;*(M, 2}) =0 for j > 2.

(b) Tor["(M, ) =0 for j >3 and Ext) (M, #,) =0.

(c) If Ext; (M, 2,) = Ext} (M, #,) = 0, then Ext} (M, 9y) = 0.

Let K be a closed convex set in R” and let us denote by G the closure of
R"—K. Then the following statement is true:

ProposITION 11. Assume that K has property (13). Then F;(R") is a flat
P,-module.

Proof. It is sufficient to show that Tor;"(M, % (R") = 0 for j > 1 and
M any #Z,-module of finite type.

We will use the notations of the proof of Proposition 10. Let
0eM e Fol2pnllBgn,
be a Hilbert resolution of M and let feF ¥ (R") satisfy
A;_y(D)f =0 on K, for some teR.

Let se R, s <t and let us choose a real valued, C® function of a real variable
r, x(r), with the property that

x()=1 forr<s and x(r)=0 forr>t.
Then f-x({&, x))e D%, and
Aj-1 (D) 2 (L&, xD)) = ge DYAE,.

Because A,_ (D): Qf({h,s - @f{; ;Fl; has a closed image, by the second part of
the proof of Proposition 2 we can find we thps such that

g=A4;-1(D)w.
Therefore
f =11 x))—we D¢
satisfies
A (D) f =0
and
1 Ks=1.

15 — Annales Polonici Mathematici XLVI
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Then by Proposition 2 we can find ue Z¢*" such that
A;(D)u ="

Let us assume now that fe#¢ (R") satisfy A;_,(D)f =0 on R" Then,
by the construction above with t =m+1, s = m for m varying in the non-
negative integers, we obtain a sequence {u,} with

ume 707} satisfying A, (D)u, =/ on K,
We claim that we can construct a sequence {w,} with the properties:

(i) w,e ¥}

Km+1?
(“) Wm+1 = wm on Km—1/2a
(iii) A;o1(D)wn=f on K,

Indeed, set wy = 4, and assume that wy,...,w, have been defined. Then

Aj+1(D)(Wm_um+l) :0 on Km
and, being w,—u,+,eZ¢ 1 (R", by the first part of the proof we can find
hmi1€ Z¢ " such that

Wit =Upy1+Aj42(D)hy,,  be equal to w, on K,_,),.

Clearly w,,,, satisfies conditions (i) and (ii1). Setting then u = w,, on K,,_,,
we obtain an element of %4 (R") satisfying A;,(D)u =f.

From the exact sequence (1) we deduce the following

CoROLLARY. Assume that K has property (13). Then, if M is any 2,
module, we have for j > 1

Ext, (M, #)=0 if Extyi'(M, 2,)=0.

4. Rough Hilbert complexes at the boundary of convex sets (global results)

We assume in the first part of this section that K is a compact convex
set in R". Then we have an exact sequence:

(14) 0— Ep — Ex — T = 0.

!

Let M be any .#,-module. Because &% is flat and @k is injective, then
the long exact sequences for the derived functors deduced from (14) yield the
following isomorphisms:

Ext}, (M, &ix) = Ext), (M, &) if j =2,
Tor;"(M, &) = Tor,™(M, &%) if j = 2.
Thus from the results obtained in the previous section we obtain:

ProrosiTioN 12. If K is a compact convex set with a non-empty interior,
then for any P,-module M we have for j > 2.

Ext), (M, &) = Tor;"(M, &x) =0 if and only if  Ext, (M, 2,) =0.
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We have also the exact sequence:
(15) 0->Zx(R") > ER")Y > Wy — 0.

Because &£(R") is an injective 2,-module and % ,¢(R") = 7y @F «(R"), by
point (a) in Proposition 6 we obtain for j > 1 isomorphisms:

EXI:i?,,(Ma Wﬁk) = Ex‘l’f-:l (Ma (-/K)

for any #,-module M. Therefore:

ProposiTiON 13. If K is a compact convex set with a non-empty interior
in R" and M is any 2,-module, then we have

Ext, (M, W) =0 if and only if Exty'(M, 2,)=0.

Let us drop now the assumption that K be compact. We assume only
that K be a closed convex set in R". Then we have an exact sequence:

(16) 0— Doy = Dy — Gx— 0.

Because we showed that & is an injective 2,-module, we obtain for
j= 2 and any #,-module M isomorphisms:

Ext), (M, “a) = Ext}, (M, 7%).
Thus, by the second corollary to Proposition 10 we obtain:

ProrosiTiON 14. Assume that K is a closed convex set in R" satisfying
condition (13). Then, if M is a PP,module satisfying Ext{;n(M , P
= Ext); (M, 2#,) =0 and j > 2, we have Ext), (M, ) =0.

From the exact sequence:
(17) 07 (R)—> ER)> # x>0

becgmse &(R") is an injective Z,-module and by Proposition 6 we have
Exti;:l (M, #x(R") = 0 for every #,-module M, we deduce that for every #,-
module M we have isomorphisms:

Ext}, (M, # ) = Extl; ' (M, % (R").

Therefore, by Proposition 11, we obtain
ProrosiTioN 15. If K is a closed convex set in R" having property (13), if

jz21 and M is a P,module such that Exth'(M, ?,) =0, then
Ext{;n(M, ﬂ'ﬁf;’() = 0

5. Rough Hilbert complexes at the boundary of convex sets (local results)

We recall that a closed set K in R" is said to be convex (resp. strictly
convex) at a point xe 0K if we can find a neighborhood U of x in R" such
that U n K is convex (resp. strictly convex).

The closed set G = R"— K is said to be concave (resp. strictly concave) at
xe 0G if the closed set K is convex (resp. strictly convex) at x.
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Given any closed subset C in R", we denote by #_the space of germs
at x of complex valued C® functions in R" vanishing with all derivatives on
C and by #_ the space of germs of Whitney functions on C at x.

Denoting by &, the space of germs of C® functions in R" at x, we have
an exact sequence

(18) 0-Fc —6:— We, 0,

that can be also thought as an exact sequence of #,-modules (for the action
of polynomials as partial differential operators with constant coefficients).

Repeating the first part of the proof of Proposition 11 we obtain:

ProOPOSITION 16. If G is a closed set in R", strictly concave at xq€ 0G,
then 'g:Gxo is a flat P,-module.

From the long exact sequence for the Ext functor deduced from (18), we
obtain

Ext}, (M, W'GXO) = Ext} ' (M ,ﬁ'cxo).

Therefore we have

ProrosiTioN 17. If G is a closed subset of R", strictly concave at xq€ 0G,
then, if j>1 and the #,-module M satisfies Ext); '(M, #,)=0, we have
Exti,"(M, "/cho) =0.

Let K be a closed subset of R” and let G be the closure in R” of R"— K.
Then the two closed sets K and G are regularly situated (cf. [23]) and
therefore for every xoe K nG = 0K we obtain an exact sequence:

(19) O b (g)xO i WKIO®Wero - Waxxo - 0.

Considering this sequence as an exact sequence of #,-modules, because &,
and “Il/‘xxo are injective, we obtain for every j = 1 and every #,-module M an
isomorphism:
Extl, (M, # V""xo) = Extj (M, WGxo)'
Thus we have:

ProrosiTion 18. Assume that K is strictly convex at xoe€ 0K. Then, if
j=1 and M is a P,module satisfying Exty '(M, 2,) =0, we have
Ext:lgn(M, Waxxo) = 0-

Remark. Nothing can be said in general about the local cohomology
groups Ext}, (M, W'e,(xo), when Exty''(M, 2,) # 0, as the two examples of

the De Rham (where all groups are zero for j > 1) and of the Dolbeault
complex in C" (where the group corresponding to j=n—1 is infinite
dimensional by the Hans Lewy example) show.

If M is a #,-module of finite type, then the groups Ext{;,.n(M , #,) have a
natural structure of #,-modules of finite type.

The following proposition, together with the results of the next sections,
gives a generalization of the Hans Lewy example (cf. [2]):



Boundary Hilbert differential complexes 229

ProposiTION 19. We assume that K is strictly convex at xqe 0K and that

Vo is a vector in R such that we can find an open neighbourhood Q2 of x, in R”
such that

(20) {Yo» X—Xo) <OVxe K NnQ—{xo}.

Then, if M is a P,-module of finite type such that the asymptotic cone V°
of the algebraic variety

V = {zeC"| Ext}} (M, 2)®,, P,/m, # 0}

(where m, is the maximal ideal of the point z) contains a point z, with Imz,
= Yo, and j 2 1, then

EXté,,(Ms Waxxo) # 0.
Proof. We have
Ext_’,;,”(M R W“ﬂxxo) >~ Ext{;"(M s 'WG:O) &~ Ext{?:‘ (M ,,?GXO)

and, because 9’610 is a flat 2, -module,
Ext, (M, # G*o) = Ext} ' (M, 9’,,)®9"9'GIO.
Let
(21) P22 Exti (M, 2,) - 0
be a presentation of the #2,-module of finite type Ext{;,:‘(M s P
Then we obtain:

Extyi! (M, ) =F4_[ADIFE,

and therefore we are reduced to prove that the map
. GG P %
A(D): F sy —»/31‘0
is not onto.

We prove this fact by contradiction.

If A4 (D).?{’;leo =% &‘0’ then by a standard argument of functional analysis
(cf. [12] or [3], § 5) we obtain:

If A(D).gf'gxo =4, &xo, then, given any open neighborhood U of x, in R"
we can find an open neighborhood w of x4 in U, a constant C > 0, an integer
m 2= 0, such that:

() | | ofdx<Csup['A(D)olsup sup [D*f|Vpe 7 (@), [eFo(U).

Kno alsm

We assume to simplify the notations that x, = 0. Let us choose an open
neighborhood U, of x, = 0 such that U, n K is strictly convex. Let x, be
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an interior point of Uy K and let 0 <r < R be real numbers with
B(x,, R) = {|x—x,;] < R} =« UpynK.
Then we can choose a real valued, C* function g on R" with the
properties:
0<g<1l on R,
gx)=1 for xe | tB(xy,r),

t21

g(x)=0 for x¢ () tB(x;, R),

21

gitx)=g(x) if |x=2}x,] and t=>1.

Let U=Uyn{xeR"| {x, x> <|x,|*/2}. Then [or every v >0 the
function g(v?x) belongs to % (U): indeed its support is contained in the
cone

U tB(x,, R)

t>0

that intersects the boundary of U in a set whose points are interior to
UonK.

Let w be an open neighborhood of 0 in U such that (22) holds for
some C and m relative to U and w. Let ¢ > 0 be such that

{Ixl < ¢} co,

and let us assume as we can that U has compact closure in Q.
Then we can find a constant & > 0 such that

(Yo, x> < —¢ if xeUnNK and |x| = g.
Let {z,) be a sequence of points in V such that
|zy/v—2zo| < Ljv
for a constant L > 0 (cf. [4], p. 63).
By the definition of V, for every v we can choose X,e C? with
IX,,=1 and ‘A(D)(X,e <7)=0.
Then, with a function ye & (w) with
0<y<1l on R, yx(x=1 |if |x<p,
we set:

—i(Rez,,Xx) .Y
ve

o, (x) =vr(x)e T X, f,(x)=g(v*x)e
Then ¢, 27(w), f,e#&(U), so that we must have

(*) ” (Pvadxl < Csup|'A(D)¢,|-sup sup|D*f,| for every v.
Kno

U Jalsm
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But we have

Imz

[ @ fvdx = [ 2(x/)g(vx)e v = dx

and therefore the integral is real for every v and

. o
liminf { @, f,dx> | e?"% dx > 0.
vo+ o U tB(xy,r)

>0

On the other hand we have

sup sup |D* f,| < const - y*™

U |lajsm
and
(Imz,,x -
supf{*A(D)¢,| < const-v'supe " > < const-ve™®,
Krnw Knw
Ix|=e

that implies that the right-hand side of () tends to zero, while the left-hand
side is bounded from below by a positive constant as v — + oo. This gives a
contradiction and therefore our statement 1s proved.

Let K be a closed set in R”, which is the closure of its interior. For
xoe 0K we define:

P, = space of germs of distributions at xo;

@}(xo = space of germs at x, of distributions in R" having support
contained in K;

Qkxo = space of germs at x, of extensible distributions defined in the
interior of K;

and we consider them as Z,-modules by the action of polynomials as partial
differential operators with constant coefficients.
By Proposition 3 we have:

ProrosiTionN 20. If K is convex at xq, then Q;xo is an injective 2,
module.

By an argument similar to that in the proof of Proposition 10 we
obtain:

ProrposiTiON 21. If K is strictly convex at xq, then Cf;(xo is a flat
A,-module.

Let G denote the closure in R" of the complement of K. Then for any
fixed xoe 0K we have exact sequences:
(a) 0 T, = Py, = Fiyy = O,
(b) 0> D, = D= Tiyy 0,

(© 0- Dk!o = Do g&xo - 0.
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If K is convex at xg, then 9’,&0 and 2} are injective and we have for
every 2,-module M isomorphisms:
Ext} (M, 9'3,(:0) = Ext}, (M, 9;‘10) for j =
Ext, (M, 9&10) = Ext} ' (M, ) for j >
Thus we deduce the following statement:
ProPOSITION 22.
(i) If K is convex at xo, then Ext}, (M, P5,) =0 for j>2
(i) If K is strictly convex at x,, then
Exty, (M, Dok, ) =0 if Exth (M,#)=0 andj>2
(i) If K is strictly convex at x,, then
Ext{,n(M, .@&xo) =0 if Extg;:‘(M, P)=0 andj=1
(iv) With the same assumptions of Proposition 19, we have:
Exts ' (M, Q’axxo) #0.

6. Tangential complexes

Let ©Q be an open set in R” and let ¢ be a real valued C* function on 2
such that

do(x)#0 on S={xeQ| o(x)=
Then S is an oriented smooth hypersurface in Q and we set
={xef} o(x) 20}, Q ={xeQ ¢(x)<0}.
Given a complex of linear partial diﬂ'erential operators
(23) £7°0(2) 2252, g7t @252, £22(0)
we define S AJ.(S, 2) as the subspace of functions ue 6”" /() such that
| Aj(x, D)u-vdx = | u-'A;(x, DyvdxVve 9"*1(Q).

Then one verifies that

Aj(x, D) S 4,(S, Q) = F 4, (S, Q)

so that we can consider the subcomplex of (23):

24) Fas S D s, (5, g, (5, ) ..
and the quotient complex
(25) 20(5)2%, g0 (522, g205) - .

where 29(S) = £7(Q)/.54,(S, Q).
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We say that (25) is the tangential complex on S canonically associated
to (23).

Let us consider now a #,-module M of finite type.

We denote by V° the asymptotic cone at oo of the algebraic variety

V=1{26C"| M®j5 #,/m, # 0}.
We say that S is non-characteristic at xqe S for M if
do(xo) ¢ V°.

In [6] it was proved that, if S is non-characteristic for M at x,, then we
can choose a Hilbert resolution

(26) 0- ?:dm.”/zd_l—»...—v %lmg’ﬂo—' M-0

of M and an open neighbourhood w of x, in Q in such a way that the
canonical tangential complex (25) associated to the complex of differential

operators (with constant coefficients)
Ag(D) A1(D)

(27) &% ()& (W) — " (w) > ... » &% (w) > 0

is a complex of linear differential operators on trivial vector bundles over
SNnw.

Let us denote by H/(Q*, A| S nw*) the cohomology groups of this
complex and let

HI(Q*, A| $* xo) = lim H/(Q* Al S w¥).

wopena xq
As in [6] it was proved (Formal Cauchy Kowalewska Theorem) that
H/(Q*, A] §*, xo) = Ext}, (M, #s,o)

we obtain from Propositions 18 and 19:

PROPOSITION 23. Assume that Q% is strictly convex at xqo€ S and assume
that S is non-characteristic at xo. Then for j > 1

H(Q* A| S*, x)=0 if Ext{;:' (M, 2,)=0.
If Ext ' (M, 2,) # 0 and the asymptotic cone of the algebraic variety
W = {ze C"| Ext; ' (M, 2,)®, P./m, # O}
contains a point zo with Imzy, = dg(x,), then
HI(Q*, Al §*, x0) # 0.

Remark. The condition of the last part of the statement is always
fulfilled in the case of the tangential Cauchy Riemann complex induced by
the Dolbeault complex in C" on the boundary of a strictly convex domain.
In this way we recover the original example of Hans Lewy of equations not
locally solvable (cf. [2]). However, we obtain here a non-trivial extension of
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those results, as we do not need to make any assumption about the order of
contact of the analytic tangent space to § at x,.

Assume now that we can choose integers mq, m,,..., m;_, in such a way
that all entries of the matrices 4;(z) in (26) have degree < m; and, denoting
by A (z) the matrix obtained taking only homogeneous parts of degree m; of
the entries of A;(z), the sequence

143(2)

149
(26)0 Oq%dﬂ’gzd—l_’.“_’%l_ﬁgzo

stays exact.

This situation corresponds to considering complexes with “classical
gradings” for the terminology of [6].

Then, if M is elliptic, ie. ¥°~R" < {0}, the canonical tangential
complex is a well defined complex of linear partial differential operators on
vector bundles over S for any given hypersurface §.

In this case Proposition 11 yields the following result:

ProrosiTION 24. Let M be elliptic and assume that (22) and (22)° are
exact. Then, if K is any convex compact set with a smooth boundary, we have
for j=1:

Hi(Q* Al 6K*) =0 if and only if Extj (M, 2,)=0.

ExampLE. Let K be a convex domain in R* x C™ and let us consider the
ideal M in 2, =2 m=Cluy,..., U, Vyy...,Up>, Wi,...,w,] gencrated by
v, +iwy,...,0p+iw,. If 0K is a smooth hypersurface at a point xg, it is
formally non-characteristic for the Hilbert resolution of the ideal M if the
tangent hyperplane to K at x, intersects C™ in a hypersurface. If this is the
case and if, moreover, K is strictly convex at x,, then the boundary complex,
that in this case is equivalent to a tangential Cauchy-Riemann complex
induced on a submanifold of real codimension k+1 of a complex manifold of
dimension n, admits by Proposition 23 the Poincaré Lemma at the places
1,2,...,m—1.
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