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The purpose of the present paper is to give a short presentation of some
results on dynamical systems and their generalizations .obtained recently in
the Institute of Mathematics of the Jagellonian University in Krakéow.

In order to exclude any misfits we shall establish precisely the termino-
logy.

Let X be a nonempty set (called space in the sequel) and let (G, +) be
an abelian semi-group with the neutral element 0. Let n be a mapping G x X
— X. We say that (X, G; n) is a semi-system iff

0.1) n(0, x) =x for every xeX;
0.2 n(s, n(t, x)) =n(s+t,x) for s,teG, xeX.

If G is a group then (X, G; n) is said to be a system. If X is a topological
space, G is a topological semi-group (group) and = is continuous then
(X, G; ) is said to be a dynamical semi-system (dynamical system). If A is a
mapping from G x X into the family £(X) of all nonempty subsets of X,
then (X, G; A) is said to be a generalized semi-system iff

(0.3) 2(0, x) = |x] for every xeX;

(0.4) Als, A, M) S Alt+s,x)  for s, t€G, xeX,
where the natural notation

(0.5) As, A):= U {A(s, y): yeA}, seG, AeP(X)
is used.

Remarks. 1. In most of cases we have in (0.4) the equality instead of the
inclusion. Since however for our purpose the inclusion is enough, we shall
consider this — formally more general — condition.

[411)
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In order to give an example let us consider a system of ordinary
differential equations

(0.6) X' =g(x)

assuming that g: R" = R" is continuous and that for every x°eR" all
solutions of (0.6) starting at the time t = 0 from x°, are defined at least in
[0, o). Denoting by A(t, x° the set

l@(t): @ is a solution of (0.6) such that ¢(0) = x°!,

we get a generalized semi-system (R", R, ; /). In this system, we have the
equality instead of the inclusion (0.4).

II. If A(t, x) has for every (¢, x)eG xX exactly one element, then,
denoting it by =(t, x) (so A(t, x) = \n(¢, x)}), we obtain a semi-system
(X, G:m).

For bibliography concerning the theory of (dynamical) systems and semi-
systems, we refer to [3], [14], [16]. Multivalued, generalized in our termino-
logy, semi-systems were considered, for instance, in [15].

Sections 1-4 of the present paper deal with, roughly speaking, some
special aspects of stability theory and limit sets in dynamical systems. Section
5 presents some results on dynamical systems on the plane. Section 6 gives
certain applications of algebraic topology in dynamical systems. Extensions
of the Wazewski topological method with respect to partial differential
equations are mentioned in the last section.

Notice here that the stability theory founded by Lyapunov at the end of
the XIX-th century is still in the centre of investigations of many authors.
There were proposed several versions, generalizations and modifications of
the classical Lyapunov stability and there appeared many results on connec-
tions between stability properties and other ones. Recently natural tenden-
cies to some uniform presentation and general classification of notions and
results have been observed. One such uniform presentation was proposed in
[14]. This direction is now continued in Section 2 below. Connections
between stability and limit sets appeared as the background of investigation
mentioned in Section 3 and partially (togéther with certain natural motiva-
tion taken from the theory of oscillations) in Section 1.

Topological method of Wazewski ([20], [21]) was used, generalized and
modified by several authors (the list of papers concerning directly this subject
contains more than 150 items); this method and the main idea of applica-

tions of the retract theory give the background of the contents of Sections 6
and 7.
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1. Asymptotically periodic, pseudoperiodic and asymptotically
pseudoperiodic motions in dynamical systems on metric spaces

Let (X, R; n) be a dynamical system, with (X, ¢) being a metric space, For
every x€X, we denote by n* the motion of x, that is the mapping

(1.1) Ratbn*(t):=n(t, x) € X.

It is clear that if a dynamical system is induced in R" by a system of
autonomous ordinary differential equations

(%) x' = f(x)

having the property of the existence and uniqueness of solutions (defined in
the whole R-axis and depending continuously on initial data), then the
motion of a point x°€R" in the general sense defined above, coincides with
the mapping associating with a time ¢, the position reached by the point x°
after this time according to the rule of moving given by the system of
equation (*).

By A™ (x)(A~ (x)) we denote the positive (negative) limit set of x, that is
the set of those y for which there is a sequence {t,,} of real numbers such
that

ty 20 (t, >—) and =w(t,, x) 2y

as m — oo.
The sets A* (x) and A~ (x) are denoted also in several books and papers
by w(x) and a(x) respectively. Some examples of limit sets are presented at
the end of the present section.
Let xeR and neR, = [0, ) be fixed. We say that the motion n* is
(n, a)-pseudoperiodic iff

(1.2 o(n(t, x), m(t+a, x)) <n for teR.

We say that n* is positively (negatively) asymptotically (n, a)-pseudoperiodic iff:
for every &€ > 0 there exists s = 0 (s < 0) such that
(1.3) . o(n(t, x), n(t+a, x)) <Sn+e  for t =5 (£ <5).

The motion 7n* is said to be positively (negatively) n-pseudostable iff: for every
e > 0 there exist 6 >0 and s > 0 (s < 0) such that

(1.4) o(x,y) <d=g(n(t, x), n(t, ) <n+e for t =5 (t <5s).

Remarks. I11. It is clear that (0, a)-pseudoperiodicity of n* is equivalent
to the usual periodicity (x is a period in that case).

IV. A motion n* which is positively (negatively) asymptotically (0, a)-
pseudoperiodic is positively (negatively) asymptotically periodic (in the sense
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of [9]), that is: for every ¢ >0 there is s > 0 (s < 0) such that
o(n(t, x), n(t+a,x))<e for t>s5 (t<s).

V. Recall that n* is said to be positively (negatively) Lyapunov stable iff:
for every ¢ > O there is 6 > 0 such that

(1.5) o(x,y) <d=9(n(t, x), n(t, y)) <e for t=0 (t<0).

So, every positively (negatively) Lyapunov stable motion is — trivially —
positively (negatively) O-pseudostable.

THeoRrReM 1.1 (see [10]). Assume that n* is positively (negatively) asympto-
tically (n, «)-pseudoperiodic. If yeA™ (x) (yeA™(x)) then = is (n, a)
pseudoperiodic.

Tueorem 1.2 ([10]). Assume that yeA™ (x) (yeA™ (x)), n* is positively
(negatively) asymptotically (n,, @)-pseudoperiodic and positively (negatively) n,-
pseudostable. Then m* is positively (negatively) asymptotically (n,+ 2n,, a)-
pseudoperiodic.

CoroLLARIES (see [9]). I. If ©n™ is positively (negatively) asymptotically
periodic and yeA* (x) (yeA™ (x)) then n’ is periodic (n’ may be trivially
periodic in the case of y being a stationary point).

II. If yeA™ (x) (veA™ (x)) and n* is periodic and positively (negatively)
Lyapunov stable, then n* is positively (negatively) asymptotically periodic.

L. If yeA™ (x) (€A™ (x)) and the set |y) is positively (negatively)
Lyapunov stable [which is equivalent to saying that y is a stationary point and
the — trivial — motion ©¥ is positively (negatively) Lyapunov stable], then n*
is positively (negatively) asymptotically periodic.

THEOREM 1.3 (see [9]). Assume that the space X is locally compact. If
x €X is such that

AT () =ny):=m"(R) (A7 () =n(y)
where 1’ is periodic [it is not excluded that y is a stationary point] then the
motion m* is positively (negatively) asymptotically periodic.
CoroLLARY ([9]). If X is locally compact, A* (x) = n(y) (A~ (x) = n(y)),
then the following two conditions are equivalent

(i) n” is periodic [possibly y is a rest point],
(i) ©* is positively (negatively) asymptotically periodic.

ExamMpLEs (see [9], Sec. 8). I. Consider a dynamical system induced on
R? by the system written in polar coordinates in the form

' r=r(l-r), 6=1.
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The unit circle (being clearly a periodic trajectory) is the positive limit set for
every point of R?\!{(0, 0)!, the set }(0, 0)! is the negative limit set for every
point belonging to the interior of the unit wheel. Thus the motion of every
point of R?\{(0, 0)! is positively asymptotically periodic and the motion of
every point belonging to the open unit wheel except the origin, is negatively
asymptotically periodic. The trajectories are presented on the picture

II. Let us consider a dynamical system on R? having trajectories presen-
ted in the figure

There are two stationary points P and Q. Notice that the point Q is not
Lyapunov stable (neither positively nor negatively). For any point
xeR*\lyu {P}] (y is equal to the unit circle without the point Q), the
positive limit set A* (x) is equal to yu |Q}. The motion of such a point is
clearly not positively asymptotically periodic. Let us consider a new dynami-
cal system on R?\y obtained from the previous one by removing y from the
plane (and keeping all other trajectories as they were before). In this new
system, we have A*(x) = {Q} for every x # P. However, for x # P the
motion ©* is still not positively asymptotically periodic. This example shows
that the assumption of local compactness of X in Theorem 1.3 is essential.

2. Stability in generalized (multivalued) semi-systems

We shall consider generalized semi-systems (X, G; 4). First of all however, in
order to explain briefly the main idea of the present section, we shall discuss
a special case; X being a metric space (with a metric ¢) and G:=R,.
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Let M be a nonempty subset of X. Put
(2.1) B(M,¢):= \yeX: d(y, M) <é&|
where d(y, M):=inf go(x, y): xeM], and
(2.2 B(x,¢):=B(ix),¢) = lyeX: o(x, y) <e&].
Recall that M is said to be Lyapunov stable in a (classical) semi-system
(X, R, ; n) where = satisfies the conditions (0.1) and (0.2) if and only if
Veem Ve>036>0[n(B(x’ d)) < B(M, 8)]
where clearly

n(B(x, 8)) = \n(t, y): teR,, yeB(x, J)).

This condition can be extended for (X, R, ; 1) in two natural ways:
1) Veen Ves03550 [A(B(x, 8)) < B(M, ¢)]

and/or

() V,.mV.s03s50 [Alt, ) "B(M, &) # @ for teR., yeB(x, §)].

It is clear that (I)= (II) but not conversely in general.

Fundamental results on stability conditions are stated with respect to
so-called Lyapunov functions which are — in the classical form which
requires usually differentiability — discussed in the theory of differential
equations. A general definition of Lyapunov function in (general) semi-
systems theory has been proposed in [14]; theorems giving sufficient ‘and
necessary conditions for a set M to be stable, by means of such Lyapunov
functions are proved as well. These concepts and theorems can be extended
for generalized (multivalued) semi-systems and stabilities of the type (I),
which is, however, sometimes too strong. It seems to be impossible to get
similar results with respect to stabilities of the type (II). This fact suggested
some other stability-like condition, being in certain sense between (I) and (II).

We shall present it below following [11]. Let (X, G; 1) be a generalized
semi-system, and let M € £(X) be given. Assume that there are: a non-empty
subfamily Q of #(X) and a mapping f: M — #(<(X)) which is supposed to
be “normal”, that is, such that

xeB for every Bef(x).

DEerFINITION A. Let A e#(X) and neN be fixed. We define P(4,n) = X
by the formula

y EP(As n) ¢>VIOEG 3zle).(t(),y) theG azzel(rl.zl) s .
oe Vt,,_ 1€G 3z,,ell(l,,_ 1:Zp~1) Vt"eG [A (tm Z,,) NA# 0]
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DEeriNITION B. For A € (X)), we put
E(4):= N {P(A, n): neN}.
It is not difficult to show that, for every 4 € #(X),
E(A)cA and E(A) =E(E(A)).

DeriNimioN C. The set M is said to be {Q, B}-stable (shortly
MEeS (@, B) iff

VQeﬂ VxeM 3Bel?(x) Bc E(Q)

DerFiniTioN D. The set M satisfies the condition L{Q, B} (shortly
M eL{Q, B}) iff there is a family o/ € 2(2(X)) such that

(2.3 B(y)> & for every yeM and o > Q,
and, moreover,
(24 AcE(A) for every Ae o,

(here: 2 > % means that for every C €% there is De 2 such that D = ().
It is easy to prove the following

TheoREM 2.1. M eS{Q, B} <>MeL{Q, B}.
Suppose now that N € 2(X) is such that
(2.5 N c E(N).
Assume that (7T, <) is a partially ordered space and -put
P:=T\{infT} if inf T exists
and
P:=T if inf T does not exist.
DeriniTioN E. A function V: N — T is said to be a Lyapunov function of
the type N, T; Q, B} for M iff the family
o = {A,: neP}
where
A,:={xeN: V(x) <n} for neP
satisfies the conditions (2.3) and moreover
Veen Visvin (xeE (A,,)).

THEOREM 2.2. If there exists a Lyapunov function of the type {N, T; 2, B}
for M, then MeS {Q, B.

27 — Banach Center t. 23
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THEOREM 2.3. Assume that (T, <) satisfies the following conditions:
(i) for every S < T, S # @, there exists infSeT:
(ii) for every neP there exists p€P such that u <n;
(iii) for every S = T, S # @ and every n€P, such that infS <n, there is
o €S such that o <.
Suppose that Q =1{Q,: neP} is such that: n<u=Q,<Q,. If
M eS {Q, B}, then there exists a subset N of S satisfying (2.5) and such that

VxeMaBeﬂ(x) (B = N),

and there exists a Lyapunov function V: N =T of the type N, T; Q, B} for
the set M.

Those theorems generalize directly the author’s results presented in [14].
The proof will be given in [11].

It is obvious that the space T = R, of real non-negative numbers with
the natural relation < satisfies the conditions (i)(iii); also the space R, xR,
with the natural relation defined by the formula

(a,b)<(c,dy<=a<c and b<d,

fulfils (i)Hiii). Thus we can apply our results with respect to semi-systems
induced by differential equations (compare Remark I in Sec. 0) obtaining
corollaries concerning solutions of differential equations. '
Details and examples will be published in [11].
Notice only that if some natural assumptions on the function g in (0.6)
are satisfied, then the following, stability-like condition:

for every a >0 and every ¢ > 0, there exists 6 > 0 such that if |x° <&
then there is a solution ¢ of (0.6) satisfying the initial condition ¢ (0) = x°
and the estimation |p(t)] <€ for 0<t < g,

can be expressed as {Q, f}-stability with suitable family Q and a-natural
mapping f associating with x eR" the family of open balls centered at x.

We may use also this concept of {2, B}-stability with respect to genera-
lized semi-systems of the type (R", R, xR, ; 1), where 4 is defined by values
of solutions of some partial differential equations (of the type z,, = f(z) for
instance). Details and examples will be published later.

Remark. Let us notice that in [11] generalized semi-systems in the sense
of the definition introduced at the beginning of the present paper, are called
simply generalized systems because there are considered only such systems;
here we underline the parallelism of multivalued and classical semi-systems
(X, G; n) with G being essentially a semi-group in contrast to systems in
which G has a group structure.
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3. Limit sets in generalized semi-systems
Let (X, g) be a metric space and let (X, R, ; ) be a generalized semi-system.
Let xeX be fixed. We say that the motion
A Rt A*(t):=At, x) = X
in semi-stable (see [12]) iff for every & > O there exist 4 > 0 and t°eR, such
that
(veX,teR,, 0(x,y) <8)=A(t°+t, y) = B(A(t°+t, x), ¢).

It is clear that this concept generalizes the notion of the (positive) Lyapunov
stability of motions in classical dynamical systems (compare Remark V in

Section 1).
Let us put (see [1], [12])

A(x):= {yeX: there are sequences {y,} of elements of X and {t,} of real
nonnegative numbers, such that y, €i(t,, x), t, =0, yu 2y as m —+oo}.

This set is called the limit set of x. We have the following theorem ([12]).
TueoreM 3.1. For every x the limit set A(x) is closed.

Tueorem 3.2. If X is locally compact, x € X, A* is semistable, A(x) # @
then the mapping

(3.1) 2B A(2)

is upper semi-continuous at the point x, (that is: if X, =X, Y =V, Ym EA(Xp)
then y € A(x)).

THEOREM 3.3. If the mapping
3.2) tA(t, x)
is upper semi-conti'nuous at every point t° €R,, then

(3.3) A(x) = A(x) U 4(x).

THEOREM 3.4. Assume that X is locally compact and that for every
t,seER,, t <s the set

(3.4 [A(t, x), A(s, X)) := U {A(r, x): relt, s]}

is connected. Suppose that A(x) # @ and A(x) is compact.
Then A(x) is connected.

The above theorems generalize clearly known results concerning classi-
cal dynamical semi-systems.
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4. Negative stability in semi-systems

Let (X, R, : m) be a semi-system. A mapping o: I — X, where I is an interval
in R we shall call, following [2] (compare [19] for details) a solution, iff:

_(4.1) n(t,0(5) =o(t+s) for s, s+tel, t>0.

A solution ¢ is said to be a left solution (passing through x) if 0 = max]/.
Such a solution is said to be maximal left solution if for every left solution z:
J = X (passing through x) we have: J — I and t(t) = () for t eJ. We say
(following [2]) that T is a negative trajectory passing through x iff there
exists a maximal left solution o: I — X passing through x, such that ¢(I) = T.
By 7 (x) we shall denote the family of all negative trajectories passing

through x.
For xeX, we put
4.2) m. (x):= {m(, x): t =0}
and call it the positive trajectory of x.
We put also
(4.3) F,:={yeX: xén, (y)}.

A subset M of X is said to be negatively invariant (see [2]) iff:
(xeM, TeT (x))=T> M,

and it is said to be negatively semi-invariant iff for every x e M there exists a
negative trajectory T passing through x such that T < M.

Let now M e 2(X) be fixed, let Q € #(P(X)) and let a normal mapping
B: X = P(P(X)) be given. We say (see [19]) that M is negatively (2, p)-
stable iff ‘

VxeM VQsﬂaBeﬂ(x) I-_VEB’ Teg— (y) =Tc Q]
We say that (see [19]) M is negatively (2, f)-semi-stable iff
VM YoeaTdBepo VyesIre s (T< Q).

Let now W be a non-empty negatively invariant subset of X. We sa;
that a function V: W =R, is an (Q, f)-Lyapunov function for M if

0 Viem Ve>03pepm [YEB=yeW and V(y) <e];
(.U) VQ5936>0[xEW\Q=> V(x) 2 6],
(l.U) VyeW VTe.i’(y) [V(Z) S V(y) fOr z ET]°

Remark. Conditions (jj) and (jjj) could be written as follows:
inf{V(z): zeW\Q} >0 for Qe
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and
(n(t, 2)eEW,t > 0)=> V(n(t, z)) < V(2).

THeOREM 4.1 ([19]). If there exists an (2, B)-Lyapunov function for M,
then M is negatively (L2, p)-stable.

THeEOREM 4.2 ([19]). Assume that Q = {Q,: n > 0} and Q, = Q, for n < p.
If M is negatively (L2, B)-stable, then there exists a negatively invariant subset
W of X containing M and an (2, B) Lyapunov function V: W =R, for M.

These theorems are analogous to the results concerning the (L2, f)-
stability presented in [14]. _

Suppose now that W # @ is negatively semi-invariant. We say that
V: W—->R, is a semi<(Q, p)-Lyapunov function for M iff it satisfies the
conditions (j) and (jj) and — instead of (jjj) — the following conditions

(kkk) Yyew3dre s V(@) < V(y) for zeT).

THEOREM 4.3 (see [19]). If there exists a semi{S, B)-Lyapunov function for
M, then M is negatively (2, B)-semi-stable.

THeOREM 4.4 ([19]). Assume that Q = {Q,: n > 0} is as in Theorem 4.2.
Assume also that for every yeM the set

{n > 0: there is T€T (y) such that T < Q}

is an interval of the form [a, o).

If M is negatively (2, p)-semi-stable and M = (\{Q,: n > O} then there
exists a semi~(S2, P)-Lyapunov function for M, defined in a negatively semi-
invariant set W containing M.

Proofs and comments will be published in [19].

5. Some results on dynamical semi-systems on the plane

Let (R?, R, ;m) be a dynamical semi-system. It is known (see [2]) that in
such a semi-system there are no start points (a point x is said to be a start
point iff F, = {x} (see (4.3))). For x €R? we define the negative escape time
N, (see [5]) by the formula

N, :=inf{s€(0, o0): (—s, 0] is the domain of the definition
of the maximal left solution passing through x}.

This definition is equivalent to that proposed in [8] but not equivalent
to the definition stated in [2] (for details and further references, see [5]).
For xeR? t>0,a,b>0, a<b, O # M = R?, we put now
F(t, x):= {yeR? =(t, y) = x},

F([a, b], M):= {y eR?: there exists s€[a, b] such that n(s, y)eM}.
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A point x is said to be periodic if it is not a rest point and there is t > 0 such
that n(t, x) = x. A point x is called regular if it is neither a rest point nor
periodic. Assume now that N, = oo for every x€eR2.

We have the following theorems (see [5]).

THEOREM 5.1. Assume that x is not a stationary point. Then the set
F(t, x) is for every t = 0 a point or it is homeomorphic to an interval.

THEOREM 5.2. If X is regular then the set F([s, t], x) is for every t, s 2 0,
s <t, homeomorphic to one of the three sets presented on the picture below.

A A

THEOREM 5.3. If x is periodic then for every s,t >0, s <t the set

F ([s, t], x) is homeomorphic to one of the seven sets presented on the picture
below.

THeOREM 54. If M is a compact and connected (nonempty) subset of R>
and 0 < s <t, then F([s, t], M) is compact and connected.

The next result is established without the assumption that N, = oo as it

was supposed above. So, let (R?, R, ; n) be a dynamical semi-system and let
x €R? be fixed.



A. PELCZAR 423

THEOREM 5.5. There is satisfied exactly one condition: either

(@) F(t, x) is a point for t <N, and F(t,x)=Q for t > N,
or

(b) there exist o, B, 0 <a < N, < B < o0 such that F(t, x) is a point for
te[0, a], F(t, x) is a compact arc for t (a, N,), F(t, x) has the form described
below in (¥) for t€[N,, B) and F(t,x) = Q for t > B (notice that the cases
[N,, B) = O and/or [B, ©) = O are not excluded),

(*) F(t, x) is a one-dimensional manifold having finitely or countably many
connected closed components. At most two of them are homeomorphic to R,
all the other are homeomorphic to R. If f is a parametrization of a component,

then in the first case:
lim|f(r)) =0 asr—o

while in the second one we have:

im|f () =lm|f(-r) =0 asr—owo.

6. Some methods and results from algebraic topology
applied to dynamical systems

6.1. We shall present here a summary of some results of paper [17].

Let (X, R; n) be a dynamical system with X being an ENR-space, that is
Euclidean neighbourhood retract.

“For an open and relatively compact subset U of X we put

I(r, U):= lim ind(r(t, -), U).

t-0%t

Here ind(n(t, -), U) denotes the fixed-point index of the mapping
UaxPn(t, x)eX,
(for definition see [7]).
THEOREM 6.1 (see [17]). If K is a compact subset of X such that for every x
(6.1) (n(t, 9: 120} nK £ O

and there are no rest points in 0K, then I(n, intK) is equal to the Euler
characteristic x(X) of X.

THEOREM 6.2 (see [17]). Assume that X is a 2-dimensional topological
manifold satisfying the second countability axiom. Suppose that all the Betti
numbers of X are finite. Let K be a compact subset of X having no rest points
of m in its boundary. If for every xeX

(6.2) {n(t,x): teR} NnK # O
then I(m, int K) 2 x(X).
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CoRrOLLARY. Consider X = R%. If K is a compact set such that for every
x €R? the condition (6.2) is satisfied then there exists in K a rest point.

6.2. Remarks on. periodic solutions of differential equations. We shall give an
example of applications of general results on dynamical systems obtained by
using topological methods having the background in Wazewski’s papers
([20], [21]) developed and extended by introducing algebraic topology. Let
us recall first of all the definition of an isolated invariant set in a given
dynamical system (X, R; n). A compact set K is a isolated invariant set for n
if there exists an open neighbourhood U of K, such that K is a maximal
invariant set relative to n in U.

For an isolated invariant set K, it is introduced the notion of the index,
noted by ind K, by using the so-called isolated blocks and the Cech cohomo-
logy functor. The definition appeared firstly in [4]; a general and systematic
investigation of this notion is presented in [6] (for details, see also [18]).

Consider now a system of autonomous differential equations

(6.3) x'=f(x)

with f: R" = R being continuous and so regular, that for every x° eR" there
exists exactly one solution ¢(-; x° of (6.3) passing through the initial point
(0, x%), defined in R; we assume also that solutions depend continuously on
initial data.

It is well known that putting =n(t, x):= @(¢t; x) we get a dynamical
system (R", R; n) (compare Section 1).

THeorem 6.3 ([18]). If K is an isolated invariant set in the above
dynamical system and ind K # O, then for every ¢ > 0 there is 6 > 0 such that
for every C'-function h: R xR" = R" fulfilling the condition

[lh(t, x)I| <& for every (t, x)

and such that for every fixed x €R" the function h(-, x) is T-periodic, the
equation
x' = f(x)+h(t, x)

has a T-periodic solution ¢ such that dist(¢(R), K) <e.

7. Remarks on the Wazewski method applied to
partial differential equations

Fundamental idea of a topological Wazewski method (see [20], [21])
mentioned already above in Section 6 has been used recently in the theory of
partial differential equations of the second order of the type
Ou ou Pu
1 = =J\tLxu, = 53
(7.1 a f<xu6x5x2>
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where t > 0, x belongs to some (depending on t) interval in R with initial
conditions of the type
(7.2) u(0, x) = ¢(x)
and — possibly — some further boundary conditions;

=Y., fM u=@u, ..., u".

Let « and B be two real valued functions defined and continuous on
[0, o0) such that

(7.3) a(t) <p(@) fort=0.
We consider (7.1) in the set
(74 W(t, x): £ 20, a() < x<BO),

or in an open set containing (7.4).

The problem is to establish conditions sufficient for the existence of a
solution u of (7.1)+7.2) (with possibly some further boundary conditions) for
which the inequalities

(7.5) M) <ui(t,x) <p(), i=1,...,n,

are satisfied in the domain of the existence of u intersected with the set (7.4),
where A and o are given (sufficiently regular) functions. The main results are
established by using conditions concerning egress and strict egress points
introduced by T. Wazewski. These conditions are described by suitable
inequalities required with respect to f at points (t, x, w, v, z) such that
x €[a(t), B(B)], w' = Ai(t) or w' = ki (t), v =0 (or v >0 or v < 0 in the case if
x€lo(t), B(1)}) and z>0 or z<O.
These results will be given in [13].
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