ANNALES
POLONICI MATHEMATICI
XXXV (1877)

Boundary value problem for differeﬂtial
and difference second order systems
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Abstract. The aim of this paper is to present certain theorems concerning the
existence and uniqueness of solutions of the problem

(a) 2" =f{t, 2, 2"), 2(0)—Aaz’(0) =0, z(1)+ Bz (1) = 0,
to give analogous theorems for the discrete problem
(b) VAz; = g(&, 3, dmg), 4 = 1,...,m—1, xg— Admy = 0, @y + BVo, = 0,

and to prove a theorem concerning the convergence of solutions of appropriately
defined discrete problems of the form (b) to the solution of problem (a).

0. Introduction. The subject of the present paper is the problem of
the existence and uniqueness of solutions to the equation

(0.1) o' = f(t,w, a"),

f: X =[0,1]x R*x R*—»R? satisfying the boundary eonditions
(0.2) 2(0) =0, (1) =0

or, more generally, ,
(0.3) '%(0)— Az’ (0) =0, (1)+Ba'(l) =0. "

A and B are dxd constant matrices satisfying the condition 4 >0,
B >= 0 (see Notations). . ‘

Together with the differential problem we shall be considering the
analogous problem for the system of difference equations, i.e., the question
of the existence and uniqueness of solutions to difference equations of
the form

(0.4) VAz, = g(t, »;, d2;)), 1 =1,...,m—1,

9: ¥, ={0,1, ..., m} x B? x R¥-R" satisfying the boundary conditions.
(0.5) %y =0, z,=0

or, more generally, ’

(0.8) wy— Adwy =0, @,+ BVz, =0.

4 and B are constant d x d matrices, 4 > 0, B> 0.
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The aim of this paper is to present certain theorems concerning the
existence and uniqueness of solutions of problem (0.1), (0.3), to give
analogous theorems for the discrete problem (0.4), (0.6) and to prove
a theorem concerning the convergence of solutions of appropriately de-
fined discrete problems of the form (0.4), (0.6) to the solution of problem
(0.1), (0.3)..

Throughount the paper we shall assume that the function f is contin-
nous and there exist constants K >0, ¢ > 0, satisfying the- condition

(0.7) c< (1444
and such that the inequality
(0.8) [0+ CF(ty wy0), wy = — K (Jul+1) — o ul?

holds for every (¢ u,v) e X. Furthar, we shall assume that for every
(tu,v)e X

(0.9) |f (2, w, 0)l < o(t, w) 1+ ]vlz—s)’

where 0 < s<<2 and ¢: [0,1]x R%*-[0, c0) is a function bounded on
bounded sets. It can easily be seen that condition (0.8) is fulfilled if the
function f satisfies the condition

(0.10) v —B)* + (f(E, u, 0)—F(t, B, B), u—7) = —}clu—7al

In addition, we shall assume that the function ¢ is continuwous and there
exist constants I, >0 and ¢, > 0 satisfying the condition

(0.11) Om < (m+ 314 m™?

and such that .

(0.12) 0 + <903 ), 05 > — Ko (] 41) — b l?

holds for u, ve R% i =1,...,m—1. As in the case of the function f, the
condition

(0.13) o=+ (g%, %, ) —g (3, @, T), wu—u) = — 3o, |u—7u

implies inequality (0.12).

Problem (0.1), (0.3) and assumptions of the type (0.8), (0.9) have
been studied for the case d = 1 by Keller [9], Bebernes and Gaines [1]
and others. The case d > 1, with the assumption A = B = 0, has been
the subject of a series of papers by Scorza—Dragoni [14], Ph. Hartman
[6], [7], Heimes [8]. The most recent paper in this field was that of A. La-
sota and J. A, York (10]. The analogous problems for difference equations
have been the subject of far fewer papers (chiefly concerning (0.4), (0.5))
(8], [11], [12], [3], [13]. |
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- L. Definitions and notations. We shall denote the Buclidean norm
and the scalar product in the d-dimensional space R? by |-{, -, -, Te-
spectively. If be (BY™+!, b = (b}, b;e R% then by definition [b] =
max{|b;|: ¢ = 0,1,...,m}. As usual, % will denote the linear space of all
real d-dimensional vector functions defined and continuous in the interval
[0, 1], endowed with the norm of uniform convergence |z| = max{|»(t)|:
te[0,1]}. The set C% < 0% consists of all continuously differemtiable
functions. For a d x d matrix 4 we will say that A is positive definite
and write 4 > 0 if (w, 42> > 0 for all » in R%. We will say A > 0 if either
A > 0 or A is identically 0. |4| is the norm. of the linear operator A from
R? into R% The derivative matrices of the vector functions f and g will
be denoted accordingly by f.,fs) 0zs G4z- For the transpose matrix, we
shall write 17, g%,.

Let # = (%, ..., @) € (RH)™F', The symbols 4 and V denote the
difference operators from (R%™t to (R%)™*! defined by

y _‘@H—wi’ t=10,...,m—1,

We shall write dx = (4, ..., 4%p_q, 0), Ve = (0, Vay, ..., Vm,).

2. Existence and uniqueness theorems for the differential system. The
following theorem will be proved:

THEOREM 2.1. Let A and B be d x & constant mairices, A > 0, B > 0,
and let £ and ¢ be non-negative constamts satisfying imequality (0.7). If
a function f: X —>R® is continuous and satisfies conditions (0.8) and if there
are a constant ¢, 0 < & < 2, and a function g: [0, 1] x R*—>[0, o) bounded
on bounded sets suoh that (0.9) holds, then equation (0.1) has at leasi one
solution satisfying condition (0.3). |

Remark. The boundary problem

y' =, 9,9), v(0)—4y'(0) =ry, y(1)+By'L) =r,

7o, 7, € B% A >0, B> 0, can be reduced to the homogeneous problem
(0.1), (0.3) by the linear substitution x(f) = y(t)+v,+2,2 te(0,1]
According to the assumption 4 > 0, B> 0, the vectors », and v, are
determined uniquely by the conditions

(2.1) ’Do—‘A’vl = —7‘0, ’vo+’U1—|—B’Dl = """7’1-

Before proceeding to the proof of Theorem 2.1, which is based on
the Leray—Schauder alternative, we shall prove two lemmas.
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Let A €[0,1]. Denote by §(1) the set of functions #: [0, 1]—-R% of
class O, satisfying the equation

(2.2) 2" =Aft, z,x')

and the boundary conditions (0.3) (4 = 0, B > 0).
LEMMA 2.1. If there is a constant P such that for every 1 €[0, 1] and
x e 8(1) we have ||jz||+ ||#’'|| < P, then the set S(1) is non-empty.
Proof. First, the function z = 0 is the unique solution of the equation
&" = 0, satisfying the boundary condition (0.3). The solution of this.
problem is of the form x(f) = v,4+v,¢, where v, and v, satisfy conditions
(2.1) with , = r, = 0. The assumption 4 > 0, B > 0 implies v, = v, = 0.
Therefore, in accordance with the general theory of differential equations.
(see [2]), there exists Green’s function G: [0, 1] X [0, 1]—->R‘12, such that
equation (2.2) with the boundary conditions (0.3) is equivalent to the
integral equation
1
(2.3) a(t) = A [ G(t, 8)f(s, @(s), ' (s)) ds.
0
According to our assumptions concerning the function f, the mapping

1

()~ [G(-, 8)f(s, m(s), & (s))ds

0

defined in the space C% (with the norm |||+ |#’[) and taking values in
this space, is completely continuous. This fact, as well as the assumptions
of the lemma, allow us to apply the Leray-Schauder alternative to
complete the proof [4]. ,

The following lemma will be used to prove the boundedness of the
set S,

Levma 2.2. Let ¢, K, L be non-negative constants satisfying the con-
dition :

(2.4) Ly=1~(1+a)L>0.

If a function w: [0, 1]—R of class C,, is non-negative and fulfils the ine-
quality

(2.5) w'(t) > —E(V2u(t) +1)—Lu(ty, tel0,1]
and the conditions

(2.6) w'(0)=>0, w'(1)<0,

(2.7) %(0) < au'(0),
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then
2.8) )l < 2L72 (1L +a)* K>+ 2071 (1+ o) K, '
. 'l < 2L3* (L +0) K>+ 2L7 ' K.

Proof. From inequality (2.5) and conditions (2.8) we get
(2.9) (1)) < f E(V2u(s) +1)+ Lu(s)ds, [0, 1].
Assumption (2.7) implies the inequality
(2.10) uw(t) <fl|u'(s)|ds+au’(0), te[0,1].

0

Approaching the maxima in (2.9) and (2.10) from both sides, we obtain
o'l < E(V2Iull +1)+Llull, u]< '] (1+a),

whence, by (2.4), we can easily deduce the assertion of the lemma.
Proof of Theorem 2.1. Let # € §. We define a function # by

A(2.11) u(t) = jle(t)f’, *e[0,1].

The following identities:

(2.12) w' (1) = {@(1), @' (1)),

(2.13) w'(8) = @), 2" (O + 12’ (@), tel0,1],

“hold. As a consequence of definition (2.13), equation (2.2) and assumption
{0.8), we obtain

w'(8) = {@(t), Af(t, o(2), o' (1)) + o’ @)
> — MK (jo(t) 1) — Ao’ (0) —} e o (t)*+ o (1)
Since 1€[0,1], we get in view of (2.11)
(2.14) u”(t) = —E(Vou() +1)—cu(t), te[0,1].

Since o fulfils the boundary conditions (0.3) and from the assumptions
A >0, B>0, we have
w'(0) = <x(0), 2'(0)) = (4z'(0), ' (0)> > 0,
w' (1) = <w(1), 2'(1)) = {—Bx'(1),2'(1)> < 0.
TFurther, from (0.3), the assumption 4 > 0 and by the generalized from
of Schwarz’s inequality, we obtain '
u2(0) = $<w(0), Ao’ (0)>? < 1<{4w(0), #(0)> (4a'(0), v’ (0))
< HA| 12(0)[2¢2(0), &'(0)> = }|4[u(0)w! (0);

{2.15)
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thus, writing o = §|4|, we can rewrite this inequality as
«2.16) %(0) < aw’ (0).

The definition of ¢ and assumption (0.7) imply condition (2.4) with L = ¢.
Hence, and from relations (2.14), (2.15), (2.16), it is apparent that the
funetion % fulfils the assumptions of Lemma 2.2. The assertion of this
lemma implies, on account of (2.11) and (2.12), the existence of congtans

M, and M, such that
(2.17) kel < My, IK@(0), @ (DI < M,

holds for every = e S.
We shall now show the common boundedness of the functions z’,

z e §. Forming the scalar product between (2.2) and »(t) and integrating
over the interval [0,1] we obtain the inequality

1 1
[ <@, 8”@y a|< [ 1) |f(; o), @' (0)]d.
0 0
Integrating by parts and using (2.17), we got

(2.18) [1a' (0P ds < 20, + M, j]ft (1), o' (£))| dt.
0

The properties of ¢ from assumption (0.9) and the first estimate of (2.17)
imply the existence of a constant M, such that ot m(t)) < Mg, te[0,1],
. € 8. Therefore by assumption (0.9) we can write

1 1
(2.19) J1£t,0(0), @' (9))] @t < B, [ (1410 1)) .
0 ¢
Now by (2.18)
1 1
(2.20)° S OF &< Mo+, [ 17 (0)P"a,
0 0

where M,, M are suitable constants. Applying Hélder’s inequality we
obtain '

1

1
J 1w W< i, + 00 [ ' (R, 0<e<e.
J |

0

From this inequality we can deduce the existence of a constant M such
that

1
(2.21) f]a;' Ofdt<M for weSf.
]
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We will show that a similar condition is also fulfilled in the case of the
maximum norm. Consider two cases: firstly 4> 0 or B> 0, secondly
A =0and B =0. If 4> 0, then there exists the matrix A~! and by
the boundary condition (0.3), the identity

1
@' (t) = [a"(s)ds +2'(0),
0
equation (2.2) and inequality (2.19), we have
1
2" ()1 < Mo f (1+ 10’ (1)) @+ 147 [ (0)].
0

Again making use of Holder’s inequality and definitions (2.17) and (2.21)
of the constants M, and M, respectively, we obtain the estimate

| (1) < My+ M, M*"°+|47Y) M, for te[0,1], wed.

The case B> 0 can be treated analogously. Now 'suppose that 4 =0,
B = 0. Then from the boundary conditions (0.3) and the mean value
theorem we get

1
@' () < a [ |o" ()] ds.
t 0
Proceeding as in the case A > 0, we obtain the following inequality:
o' (8)] < AMy+dM; M*~* for t e [0,1], z € 8. Thus, there exists in both
cases a constant M such that ||»'| < M for every o e §. This inequality
and the first of the relations in (2.17) allow as to apply Lemma 2.1, and
this completes the proof of the theoreni. '

The next theorem concerns the existence and uniquenes of solutions
of the boundary value problem (0.1), (0.3).

THEOREM 2.2. Let A and B be constant matrices, A =0, B> 0 and
let ¢ be a non-negative constant such that condition (0.7) holds. If the function f:
X —R? is continuous and satisfies condition (0.10) and condition (0.9) with ¢
and o as in Theorem 2.1, then the boundary value problem (0.1), (0.3‘)_has
evactly one solution.

Proof. Put K = max{|f(t, 0,0)[: £ €[0,1]}.

From assumption (0.10), putting # = & = 0, we obtain the inequality
0|2+ {f(2, u, v), u> = —}¢|u|*— K |u| for (, u, v) € X. Thus we see that f
satisfies condition (0.8) of Theorem 2.1. The remaining conditions of
Theorem 2.1 are a direct result of our present assumptions. Thus there
exists at least one solution of (0.1), (0.3).

To prove the uniqueness, let # and ¥ be two different solutions of
(0.1), (0.3). By (0.10) the function z = x—y satisfies the inequality

(2.22) [ )12+ ¢ (8), 2(0)> = —dele(®),  te[0,1].
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As i the proof of Theorem 2.1, let @(f) = }[2(8)?, ¢ € [0, 1]. Using iden-
tities analogous to (2.12), (2.13) and mequahty (2.22), we obtain the
relation

@' (1) > —oi(t), tel0,1].

Thus % satisfies condition (2.5) of Lemma 2.2 with £ = 0, L = ¢. Since &
and y satisfy (0.3), z must also satisfy this condition. Hence, proceeding
identically as in the proof of Theorem 2.1, we can verify that # satisfies
the remaining assumptions of Lemma 2.2. Since K = 0, the firgt ine-
quality in the assertion of Lemma 2.2 gives [[Z| = 0, which completes
the proof of the theorem.,

Now let us suppose, additionally, that f has continuous derivatives f,
and f,. satisfying

(2.23) [falts 4, 0) — 3fur (b, 1, 0)fZ (8, w, 0)]2, 2> = —dolef®

for ¢ e [0, 1], u, v, z € R% where ¢ is a non-negative constant.

THEOREM 2.3. Lot A, B be constant matrices, A >0, B> 0, and let ¢
be a mon-negative constani satisfying (0.7). If the fumction f: X —>-R'i 8 con-~
tinuous and has continuwous derivatives f,, f.. satisfying (2.23) and if there
exists & function ¢ and a constant & with,properties as in Theorem 2.1 and
such that imequality (0.9) holds, then the boundary problem (0.1), (0.3) has
exactly one solution.

Proof. By Taylor’s formula, we have
(2.24) Ity uy v) —f(t, %, 9) = F(t) (u—u)+H() (v—9),

where the matrices F(t) and H(l) are given by the identities

i

")ds,

i

I

L’?
cg_“_

H(t) = H(t,4,%,9,0) = [ folt, -, -)ds,

and the argument of the matrices of the derivatives fzs Jor 18 the expression
(% su+ (1L —s) %, sv+(1—s)3). It is easily checked that for any square
matrices ' and H and for any vectors @, b the following identity holds:

(2.26) (Fa+Hb,a)+b]* = |b+3H al* + ((F—1HHa, a).

Applying this identity to the matrices F and H and to the vectors u— 7,
©—7 and using assumption (2.23), we obtain the following inequality

F)(u—a)+H (@) (v—70), u—B) = — v—0|*— c|u—al%
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Hence and from equation (2.24) we see that assumption (0.10) is satisfied.
Since the remaining assumptions of Theorem 2.2 are results of the as-
sumptions of this theorem, the proof is complete.

3. Existence and uniqueness theorems for difference systems. In this
chapter we shall derive the analogues of the theorems and lemmas of
the previous section for difference systems. Although the methods applied
will be similar to those used for the continuous case, in view of the different
sitnation and of the requirements of the next section we shall give the
proofs of the theorems and lemmas in their entirely. '

The equivalent of Theorem 2.1 for the discrete case is the following
theorem.

TugoreM 3.1. Let 4, B be constant square mairices satisfying the
condition 4> 0, B> 0, and let K,,, ¢, be non-negative consiants ‘vbeying
(0.11). If the function g: Y,,—~R? is continuous and fulfils condition (0.12),
then the boundary problem (0.4), (0.6) has at least one solution.

Remark. The boundary problem

VAay, = g(z, ?/1:1 Ay, t=1,..,m—1,
?lo—ZA’!/o =¥y,
y111+BVy1n =71, _707716Rd;

can be reduced to a problem with homogeneous conditions (0.4), (0.6)
by substitution ®; = y;+v,+%v,;, ¢ =0,..., m. The vectors v, and v,
are given by the following conditions

(8.1) ”O“A”1_= — %0

Vo+mv,+ By, = —74.

The assumption A >0, B> 0 determines mutual correspondence between
vectors 7,, r, and vectors v,, v,.

Similarly to the proof of Theorem 2.1, the proof of Theorem 3.1 will
be based on the Leray-Schauder alternative. Again, this proof will be
preceded by some lemmas. |

Denote by S(1), 2 [0,1], the set of all solutions to the equation

(3.2) VA-’II'{ =lg(i,$¢,.4$¢), 7: =1,--‘o,m—'l,
satisfying the boundary conditions (0.6), and let § = \ %]JI]S (7).

Lieyva 3.1. Let A, B be matrices, A > 0, B > 0. If there exisls a constant
P such that .

(3.3) | P  for every @ = (@gy ..., ®y) €8,
then the set S(1) s mon-empty.

5 — Annales Polonicl Mathematlel XXXV.2
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Proof. The assumption 4 >0, B> 0 guarantees that the unique
golution. of the equation VFdw; =0, ¢ =1,...,m—1, satisfying the
boundary conditions (0.6) is the vector #; = 0, i = 0, ..., m. Indeed, the
golution of this problem -has the form

@, =0+, t=0,...,m,

where the vectors v,, v, € R? satisfy system (3.1). The conditions r, = 0,
r, =0 and 4>0, B> 0, determine the relations v, = 0, », = 0. Thus
there exists Green’s matrix &, 4, j =0, ..., m, for problem (3.1), (0.6).
This problem is equivalent to the equation

m—1
(3.4) 3 =1 Gygj, @y dy), i =0,...,m.

j=0
We will simplity this equation in the following way: # = AG(x), where @
is a continuous and therefore also a completely continuous transformation
of the space (RH)™*! into itself. Assumption (3.1) states that all solutions
of this equation for A e [0,1] are bounded by a common constant. We
can now apply the Leray-Schander alternative. Its assertion, in view
of the fact that equation (3.4) with 2 = 1 is equivalent to problem (0.4),
(0.6), completes the proof of the lemma. '

- Let z e (RY™, 2 = (%9, ...,2,). We define a transformation of

(R%™*! into R™*! in the following way: '

(3.5) u =l ©=0,..,m.

We obtain the identities

(3.6) Au; = 3{Awyy By + 3>, ©=0,..., m—1,
(3.7) . Vdu; =V Az, @) + | Aoy — 3 (| da) — |V |*)

4 =1, ..., m—1L. Definitions (3.5), (3.6) also allow us to use the following
identities: :

(3.8) Au; = §|do*+{Awyy 2>, i@ = 0,...,m—1,
(3.9) Vw, = =41V 2+{Vomy, i=1,...,m.

LeyMA 3.2. Let a, 8, v, K, L be non-negative constants satisfying the
condition '
(3.10) Ly =1—(m+a)mL > 0.

If the vector u = (ug, ..., Uy) € R™ given by equation (3.5) satisfies the
inequalily

(3.11) Vi > — K (V2u,+1) — L, — 3 (| do*— | V),
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9 =1,...,m—1, and the relations

(3.12) Vit + 31V, <y, duy= —vyp,

(3.13) Uy < adtg+ B, .

then

(3.14) |l < 2[Lg (m+a)mEK 12+ 2L [(m + @) mK + (m -+ a)y +y + B].

Proof. Summing (3.11) on both sides over j = 441, . ,m—,l- we

obtain the inequality

m—1
Mty — Ay > jZI(KI/Sau,—l-K—I-Luj)——%]Amm_ﬂz_}.%[;lmda

=i+

for i =0, ..., m—2. Thus, in virtue of assumption (3.12), estimating wu;
by |l«| and omitting the expression %]4dx,|?, we obtain the relation

(3.18)  Au, < m(EV2u|+E+Ljul)+y, i=0,...,m—2.
The formula

i—1

’u,-=24|uj—l-’wo, ’i;=1,...,')n—1
j=o

gives, on account of assumption (3.13) and relation (3.15), the inequa,lity'
(316)  w < (m+a)m(EV2[ul+K+Lul)+(m+a)y+ B
for ¢ =1,..., m—1. From assumptions (3.12) we obtain
Uy S U Ty, Uy S Uy 17y
which together with (3.16) justifies the estimate

lull < (m+a)m (EV2 |lul| + K + Llul) + (m+a)y + B +.
Further, by assumption (3.10), we can reduce this inequality to the form
lull < L (m+ a)mEV2 ]+ L [(m+ a)mE + (m+ a)y + + ]

which, after Eumple calculation, glves the assertion of the lemma.
Proof of Theorem 3.1. Now let » = (x,...,%,,) € 8. Define a
vector u = (g, ..., U,) € B™! by (3.8), (3.6), (3.7). We shall show that
it satisfies all the assumptions of Lemma 3.2. Iden_tity (3.7) and equa-
tion (3.2) give the relation
VAu, = g (%, @y ;) 2) + | Ay — 3 (| A — Vo |?)

for ¢+ =1,..., m—1 from which, by assumption (0.12) a.ncl the definition
of vector u, follows the 1nequa11ty

(3.17) Vauw, > — K, (;/210{-;-1) Ui — 3 (14|12 — P,)?)
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for 4 =1,...,m—1. Since z €8, the vector o satisties the boundary
condition (0.6), and since also by definition 4 > 0, B > 0, then
(Bg; Awe) = (A dwy, A2e) = 0,
(Bpy V> = {— BV, V> < 0.
From this and from identities (3.8) and (3.9) we obtain the relations
(3.18)  dug > (A, 85> > 0, Vit + 3| V0y[* = (V2,,2,> < 0.
Also the assumption 4 > 0 and Schwarz’s inequality yield the relations
. uy = 39, @)% = 3@y, AAwy)?

< 14wy, %) (A dmy, Aoy < 34| |2]*<{, Aa’o>

= 314[<&o, 4m5) %,
which, together with identity (3.8), give the estimate
(819) -+ uy < 31|y, 405> < $1A) duy = atig+ B,

where o = }|4|, # = 0. Note, however, that assumption (0.11) and the
definition of o imply condition (3.10) with the comstant L = ¢,. This
fact, as well as the relations deduced (3.17), (3.18) and (3.19), allow us
to apply Lemma 3.2, which asserts the boundedness of the set S. Applying
now Lemma 3.1, we obtain the assertion of the theorem.

The question of the existence and uniqueness of solutions to the
boundary problem (0.4), (0.6) is the subject of the following theorem:

THEOREM 3.2. Let A and B be constant d x d matrices, 4 > 0, B > 0,
‘and let ¢, be a non-negative constamt fulfilling condition (0.11). If the function -
g: Y,,—~R® i continuous amd satisfies condition (0.13), then the boundary
problem (0.4), (0.6) has exactly one solution.

Proof. Let K, be a constant such that |g(¢, 0, 0)| < K, for ¢ =1, ...
-..;m—1. By assumption (0.13), putiting z =7 = 0, it follows that

(012 4-<g (7, %, v), ) = — ), [u|* — K, |u],  =1,...,m—1,

%, » € RB% This inequality and assumaptién (0.11) allow us to apply Theorem
3.1, which: completes the proof of the existence of a solution to problem
(0.4), (0.6). |

To. prove the unigueness, let © = (%y, ..., %n), ¥ = (Yo -++) Ym) bO
two different solutions of the boundary problem (0.4), (0.6). The vector
2y = o;—Y; © =0,...,m, fulfils the boundary condition (0.6) and the
equations

VAz, = g(i, oy A,) —g(i) ¥y, 4Yg), i =1,...,m—1.
Hence and from (0.13)
(3.20) Vdzy 2 2 —dopl82—147)% i =1;...,m—L1.
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Define a vector v = (v, ..., v,) € ™! by
v, =%z} ¢=0,...,m
A relation analogous to (3.7) and inequality (3.20) produce the following :
VZI'vi 2 —Cn¥—(|dz2— VY, <=1,...,m—1.

Thus tho vector » satisfies condition (3.11) of Lemma 3.2 with the con-
stants K =0, L = ¢,. By definition, ¢, obeys (0.11). From the fact
that the vector 2 fulfils the boundary condition (0.6) we can deduce (iden-
tically as in the proof of Theorem 3.1, as regards vector u) that v satisfies
the remaining assumptions of Lemma 3.2 with « = }|4|, § =0, y = 0.
Since K,, = 0, applying Lemma 3.2, we obtain ||| = 0 which, together
with the definitions of vectors v and 2, completes the proof of uniqueness,
and thus also the proof of Theorem 3.2.

In addition, let us assume, for use in the next theorem, that the
function g has continuous derivatives g,, ¢,, with respect to the second
and third variables, satisfying the condition

(3.21) L9205y 4y 0) ~ 194, (%, u, 'U)gd:c(?'y Uy 0)]2, 2> = — 0, |2(%

{ =1,...,m—1, where ¢, is a non-negative constant, «, v, z € R%.
The following theorem is an analogue of Theorem 2.3 for the discrete
case.

THEOREM 3.3. Let A, B be constant d X d matrices, 4 >0, B>
If the function g: Y,—~R* is continuous and has continuous dmwatwes g,,
9z for ¢ =1,..., m—1, satisfying (3. 21), in which the constant o, obeys
(0.11), then the bou'ndary problem (0. 4), (0.6) has evactly one solution.

Proof. We shall verify that the assumptions of Theorem 3.2 are
fulfilled. From Taylor’s formula

(3.22) 9%, u,v)—g(3, %, ) = Fy(u—u)+H,(v—9),

where the matrices F; and H, are given by

1
F; = Fi(u, %,v, %) = [g,(i, -, ) ds,
0

1 .
H; = H(u, %,0,7) = [gu0i, -, )8, i=1,...,m—1,
g 74

and the argument of integmnds is (i, su+(1L—5)%, sv+(1—8)3). From
identity (2.25) and assumption (3.21) it follows that

(Fi(w—T)+Hi(v—7), u— &) > — [0 — | — Fo, |0 —ul*

| &
Hence and from (3.22) we obtain (0.13). Since, by definition, the constant ¢,,
obeys condition (0.11), then by Theorem 3.2 the proof is complete.
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4. An approximation theorem. In parallel with the differential
boundary problem (0.1), (0.3), let us consider a sequence of difference
boundary problems of the form

(4.1) V Az, =h,’,lf(t;”, z,,—h—‘), i =1,....,m—1,
m

Az R
(4.2) — A" =0, z,+B2 =0,

hm hm
where m Tuns over natural numbers and h,, and ™ are given by

r .. .
h’”':W’ W =1tih,, +=0,...,m.

We shall now prove the following theorem:

TeEEOREM 4.1. Let A, B be constant d X d matrices, A >0, B> 0,
and let ¢ be a non-negative constant satisfying (0.7). If the function f: X—>R*
8 continuous and fulfils condition (0.10) with the constant ¢, and if there
ewist a constant &, 0 < e < 2, and a function o: [0, 1] X R*—[0, o) bounded
on bounded set, such that (0 9) holds, then

M

1° for each natural m there ewists exactly one solution 2™ = (23", ..., 2.
e (RY™ of problem (4.1), (4.2),

20 lim |2* — u(t%)| = 0 uniformly with respect to ¢, where » is the unique

m—»00 :

solution to the bowndary differential problem (0.1), (0.3).

Proof. From our assumptions it follows by Theorem 2.2 that. there
exists exactly one solution z to problem (0. 1), (0.3).

To prove the first assertion of the theorem, we shall use Theorem 3.2.
We define a function ¢™ by the formula

v .
g™ iy %, ) nf(t,'n;'”/; _-)7' 4 =0,...,m,
h?n
4, v € R% and we put in the boundary conditions (0.6)
_ A — B
i=2, B=.-.
P P,

A direct result of agsumption (0.10) is that the function ¢™ fulfils condition
(0.13) of Theorem 3.2 with the constant ¢, = k2 ¢. Since the constant ¢
satisfies condition (0.7), then

(4.3) Cn = hpe < (L+314)7'm™® = (m+ 314 'm™
Thus the assumptions of Theorem 3.2 are satisfied and therefore for
every m there exists exactly one. solution 2™ = (2I%, ..., 2%) e (RH™,

of the boundary problem (4.1), (4.2).
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To prove the second assertion we first show that all solutions 2™
are commonly bounded, that is, there exists a constant N such that

(4.4) ™| < N for any natural m.
Define a sequence of vectors »™ = (v3", ..., o™) e R™*! by the relation
v = 3% i =0,..., m.

Equation (4.1) and assumption (0.10) give the inequality

i

. Azi - 0
(@, Py = <z¢ hzbf(t:", ,—)> >l K1 — B 11— | 487,

where K = max {|f(t, 0, 0)|: ¢ € [0, 1]}. Hence and from a formula anal-
ogous to (3.7), the vector »™ satisfies the inequality
(4.5) VAP > — 12KV 207 — B, c ol — (14602 — |V2P2),

4 =1,...,m—1. The boundary conditions (4. 2) and identities similar to
(3.8), (3 9) imply the rela,mom

A5 2 (A7 4D = h_ (Adzp, Azg") > 0,
(4.6) "
V'Dm + % l Vz?nlz = < Vzm’ m> = -5 <B Vzm’ Vz’ﬂnl:>

m

From the first condition of (4.2) and Schwarz’s inequality we have

1
(79)* = (AA25, 200" < - KA A, A7) (A% 200

4h,2,,

< g 141 Gl 4R,

mn

and hence, and from an identity similar to-(3.8), we obta@n the following
inequalities :

1
"2 m 113 A A .
(47) = BB < 5 A1 G A < %m 4]

‘Relations (4.5), (4.6), and (4.7) and inequality (4.3) show that the
vector o™ satisfies the assumptions of Lemma 3.2 with constants K = %}, K,
L =hic a=2h'|Al, =y =0 Applymg this lemma, we obtain the
estimation

o™ < 2 [Ly (1+%|AI)K]2+2L0 H1+3ADKE
where L, = 1—(1+%[4[)¢, which eompletes the proof of p1operty (4.4).

For brevity, we shall write zj' = (1), where » i8 the solution of
the differential problem (0.1), (0.3).
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From Taylor’s integral formula we have

tﬂ! tm
41 i+1

da? = [ a'@)ar, VAP = [ 2" () (hy,— 1)t
e e,

i=1,...,m—1. The vector 2™ = (7, ..., #,) satisfios the equation
m

| . Az )
(4.8 Fdar =3 fle, ar, S5 ) 4o, i=1,...,m—1,
m. h .

/[
where
tm
i+1 A mm
= [ @Ot ——ga hmf(t:", ", ) :
m h'rm.
i1

Using the fact that # is the solution tio equation (0.1), we shall write the
above formula in the following form:

m
l1.+1

P = f [(t 2(t), o' (1) — f (1, i,’;b—”"?)](i — b — ) at

t')n m
—

The continuity of the functions f, », «’ implies the existence, for any
7 > 0, of an index m, such that for m > m, the following inequality holds:

7, t=1,...,m—1,

16200, 0) ¢, a7, 20 <

te [,_1, tis1]- Hence

m
‘1+1

el < n f (hm_' |t_tm|)dt = nhnn m = Mmyg.

m
t't—l

The last relation implies

(4.9) Iimm2™ =0,
M=r00
‘where
(4.10) ™ = max{f™: i =1,...,m—1}.

By definition, let ™ =2"—a™, or y =2&'—a", ¢ =0,...,m. From
property (4.4) and the definition of vector z™, there exists a constant N,
such that

(4.11) lv™|< N, for any m.
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In view of equations (4.1), (4.8), the vector 4™ must satisfy the equation

m “' Azm A m
(4.12) VAYyY = h,, [f(t ’ ‘) f(ti", —h——)]—fi”,

h’m m

=

¢ =1,...,m—1. As in the previous proofs, we shau define the vectors
(uo, .y UR) & RmH! by the formula

=3yl 1=0,...,m.

To complete the proof of the theorem, we shall check that the vectors u™
behave according to the assumptions of Lemma 3.2.
Agsumption (0.9) and definition (4.10) imply

4 Ay
2 i
(sl ) =i ot ) - )
m m
> __h;-’-n%clz}n__ m[ﬂ_ld 0 Aw"nlz ,rmlz?n_w;nl’

i =1,...,m—1, and hence, from (4.12) and a formula analogous to (3.7)
the vector u™ obeys the inequality

(4.13) VAP > — 0™V o0l — b, oul — 3(| Ay — V),
t=1,...,m—1,
Put
m m
(4.14) gy, — gt —A gy g Vn
-  hy,

From the definitions of ™ and 2™ we have the following relations:

171
a, =2'—A

Az |
~ 100~ Ao O]+ 4| FE 0],

m m

Lt , ) 7
b = S8+ B [o(1)+ B (14 B [0/ (0) — 2|

and since the function z and vector 2™ fulfil, respectively, the boundary
conditions (0.3) and (4.2), then-*

m ' hm —x(0). ’
(4.15) a, = A Ah ml(o)] = A [w(_)___.m() —& (0)],

m b

w(l) - .’1)(1 — hm)]

.

(416) b, =B [aa'(l) — l::”::] - B [m’(l) -

m

Now, let s > 0 be any real number. If A > 0, then there exists w > 0
such that (4w, v) > w?|v|? for v e R%.
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From oquation (4.15) we obtain for sufficiently large m the inequality

(4.17) 0] < 20V7.
From (4.14) we have .

1
Yoy 495" = 5~ CAAYY, 4Y5) + <ty 4435,

m

and hence, on account of (4.17), we obtain the estimate

2 .
iy A7 > — | A1 — 20V | 4471 > — Pt

by
The identity
(4.18) = } Ay 2+ <yt Y5
gives the inequality
(4.19) Aug = —h,,m

for sufficiently large m. _

If A =0, then from the bou:uda.r’y conditions (0.3) and (4.2), we
have 27" = 0 and 7' = 0, and thus y7* = 0. Thus also in this case, identity
(4.18) implies mequahty (4.19). For matrix B we proceed similarly, If
B > 0, (Bv, ) > @ p|® for any v € R% then from (4.16), for sufficiently
large m

(4.20) b, < 2@V7.
From (4.14) and (4.20), we obtain

_'c—uz _
Cym, Tyms < —h—lV:t/?{:l”+2?ol/anm<hmn

or sufficiently large m. Applvingﬂidentity

(4.21) Pun+ 3Py = (um, Vi s
we derive the inequality
(4.22) P+ 3 PYnI? < Ry

which is true for sufficiently large m.

If B =0, then from the boundary conditions (0.3) and (4.2), we
have g, = 0, which together with identity (4.21) gives (4.22).

We now verify that the vector 4™ fulfils condition (3.13) of Lemma 3.2.
Oonsgider two cases: A> 0 and 4 = 0. When 4 > 0, from definition (4.14)
of the vector a,, we have the equation

(4.23) Yo" — Oy Yo O = —(AA% » Yo >*
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Estimating the right-hand side of (4.23) on the basis of (4.14) and Schwarz’s
'inequa.lity, 'we obtain

T (AAyS, g < 2 <AA?/M Ay (Ayg, vy

m
1 Ayg* m 1 .
<A : Ayo>lAl Y3 1® = —— |A] 193" 1*<U0" — Omy 4Yg'> -
h B B
Hence, by (4.11) and (4.15), we have

1 1
(4.24) R CAAYT, ¥ < 3 |4 1512 {yyy dyo'> + 292
m

m

for sufficiently large m. The same relations (4.11) and (4.15) allow us
to estimate the left-hand side of equation (4.23):

(4-25) <y:)n_ Gy Yo 2 = |4—2 [y5 |2 s Yo» + <, y?)
|?/o‘|4 292 *

for sufficiently large m. Collecting together the deduced relations (4.23),
(4.24), (4.25), we obtain the inequa.lity

vz I*< lAl<yo,Av > [yE + e

m

for sufficiently large m. Hence after calculation we obtain
1 .
W't < 5 14I<y0's 495 + 2.
m
The definition of the vector »™ and identity (4.18) yield the inequality

426) = P < 5 AL, 24T+ < adu 4,

2

1
h —_ —
wWAoere a 7 l [

In the case when 4 = 0, we have v =0 and |4| =0, and (4 26)
becomes trivial.

Relations (4.13), (4.19), (4 22), (4.26) and inequality (4.3) indicate
that, for a sufficiently large m, the vector u”‘ fulfils the assumptions of
Lemma 3.2 with K =", L =hfn(3, a =27 4], B =mn y = [

m
From Lemuma 3.2 we obtain the estimation

[l < (L5 (L4 § 1A m2r™ ]2+ 215 (14§ 1A]) (m?r™ + ) + 2L5 (1 + b 1),
where L, = 1—(1+3}]4])c. Now, in view of (4.9), n being arbitrary,
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we have

lim [ = 0.
m~»00

The definition of the vectors 4™ and y™ completes the proof of the
second assertion of the theorem.
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