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Local generalized solutions of mixed problems for quasilinear
hyperbolic systems of functional partial differential equations
in two independent variables

by Jan Turo (Gdansk)

Abstract. A theorem of existence and uniqueness of generalized (in the sense almost
everywhere) solutions of mixed problems for quasilinear hyperbolic systems of functional partial
differential equations in two independent variables is proved.

1. Introduction. Let ay, b, Q > 0 be given constants. We denote by |lul|
= max 4] the norm of u in R" Let us denote by I, the rectangle I,

1<i<n
=!x,y): 0<x<a, 0<y<bhl.
We consider quastilinear hyperbolic systems of functional partial differen-
tial equations in diagonal form

(1) Dou(x, y)+4i(x, y, u(x, y), (Vi) (x, y)) D, u(x, y)
= fx, y, u(x, ), (V) (x, ),  (x, y)ely,,
with the initial condition
(2 u(©0, y)=o(y), yelo,b],
and the boundary conditions(*)
3 w;(x, 0) = hoi (x, u(x, 0)), ieJy=1i: sgn4(0,0,0,0 =1},
u;(x, b) = hy; (x, u(x, b)), i€, =i sgni(0,b,0 0=—1!,

where
u(x, y) = col(uy (x, y), -0y 4n(x, 3)s @) = col{@y (¥), -, 9 (V)
A(x, y, u(x. y), (Vu)(x, y))
= diag [4,(x, y, u(x, ¥), (VL u)(x, 1)), .-, u(x, p, u(x, ), (Vo (x, 3))],
Flx p,ulx, y), (Vu)(x, y) = col(f; (x, y, u(x, y), (VL u)(x, ), ...
s Sulx ys u(x, y), (VL (x, ),

(') One for each bicharacteristic entering the domain at y = 0, b.
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D.,=¢/éx, D,=¢/oy, and V, i=1,...,n are operators of the Volterra
type.

System (1) contains as a particular case (¥ u)(x, y) = u(o;(x, y), Bi(x, »)
the system of differential equations with a retarded argument and hence the
unretarded case (% (x. y) = x. f;(x, y) = y) which was widely studied [1]-[4],
[6].[7]. Afew kinds of integral-differential systems can be derived from system (1)

by specializing the operators ¥V, i=1,...,n (for instance, (V,u)(x, y)
Bi(x.v)

= | Ki(s, 1, x, y)u(s, t)dsdr).
a;(x,v)

In this paper, we seek local generalized (in the sense almost everywhere)
solutions of mixed problem (1)3).

Existence and uniqueness of continuous generalized solutions of mixed
problems for hyperbolic systems of partial differential equations in two
independent variables have been investigated by Filimonov [4], Myshkis,
Filimonov [6], [7], Abolinia, Myshkis [1]. By continuous generalized solu-
tions they understand the functions satisfying the integral system obtained
from the differential system by integration along characteristic curves.

In view of the groupal property of the characteristic lines and the Chain
Rule Diflerentiation Lemma (4u) of [3] it is possible to prove that the
continuous generalized solutions satisfy the differential systems almost every-
where.

2. Assumptions and lemmas.

AssumptioN H,. Suppose that
(i,) the functions sgni, (-, 0, ", "), sgn4 (-, b, -, ): E, = [0, ao] xQ xQ
—R, i=1,..., n are constant in E, , where Q=[-Q, Q" <R",

(ii,) A4 (-, y,u.v): [0,a0,] =R, i=1,...,n are measurable [or every
(y,u,v)eE =[0, b] xQ xQ;

(iii,) there are a constant A > 0 and integrable functions /;: [0, ao] =R,
=[0, +), j=1,2,3, such that for all (y,u,v),(y,u, v)eE, almost
everywhere (a.e.) in [0, ao], we have

A (x, y,u, ) < A4,

I;‘i (X, ¥y, u. v)—;‘i(x$ .‘7’ ﬁv E)l < ,l (X) |y_j;|+[2 (X)““—L-'H'*'[a (X)”l)—ﬁ”,

i=1,...,n;
(iv,) there are constants &, €(0, b) and A, > 0 such that
Llx,y.u,v) =2 Ay for iedy, ye[0, g], (x, u, v)€E,,
and’

—Jix, y,u,v) = A, for ied,, ye[b—g, b], (x, u, v)eE,,O.
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We denote by B(a) the set of continuous functions u: /I, = R" Lipschitz-
ian with respect to both variables.

AssumpTioN H,. Suppose that

(13) Vi: B(a) > B(a), i =1, ..., n;
(i1,) there are integrable functions ¢, d: [0, a] = R, such that [or every
u€B(a) we have

V) (xo My < e llu(x e +d(x), i=1,....n, ae in [0, d],

where

“u (x'i .V)—u(.\', .V)“ .

”ll(X, )”* = =
v.yel0.b] [y—¥l

(1i1,) there is an integrable function m: [0, a] =R, such that for all
u, ve€B(a), xe€l0, a], we have

4) WViu=Violl < m(x)ju=vll.., i=1,...,n,
where

lullx = sup lue, pll, 1. =1[0.x]x[O0, b].

(el

Remark 1. From (4) we conclude that V, i=1, ..., n, satisfy the
following Volterra condition: if u, i €B(a) and u(t, y) = u(t, v), for (t. v)€l,,
then (Vi u)(x, y) = (Vu)(x, y), (x, »el,, i=1,..., n

For ueB(a), we consider in I, the following problem:
(5)  Dyg(eix,y)=4(t, g5 x, 3), uft. g(t: x, »)) (Vu(t, gt x, »)).
i=1,...,n,
(6) g(x;x,y) =y

where equality (5) is satisfied for almost every 1 €[0, a].

Because of assumptions (ii,), (iii,) of H, and (ii,) of H,, and u € B(a), we
see that the functions 7;(x, y, u(x, ), (Vu)(x, y)), i =1, ..., n, satisly the
Carathéodory conditions. Thus, for every u € B(a), there is a unique solution
g; = g;[u] of problem (5), (6).

Remark 2. Note that, since g; =g;[u] 1s the unique solution of
problem (5), (6), g; satisfies the following groupal property

(7) gt gt x, ) =gt x, 9, t,1€[0, x], (x, yel,.

We denote by 7;(x, v, u) the smallest value of the argument x for which
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the solution g; = g; [u] (¢ x, y) of problem (5), (6) is defined. Then the point
(ti(x, y, u), g; (t:(x, y, u); x, y)) belongs to the boundary of I,.
We introduce the following notations:

I(‘:)i = {(x’ )”): (.’C, y) e’a» T‘-(X, ¥, “) = 0:,
o = 105, ¥ (x, pel,, ti(x, p, u) >0, g;[u](z(x, y, w: x, y) = 0],
L= {x, 00 (x, wel,, ti(x, y,u) > 0. g, [u]((x, y, u):x, y) = b,

Let B(a, P, Q) be the set of all functions u, u€B(a), satisfying the
following conditions:

fulx, Il < Q. flulx, y)—u(X, Pl < Plx=x|+Qy—l,

for all (x, y), (x, y)€l,.

Note that B(a, P, Q) is closed (convex) subset of the Banach space
C(I,)nL,{,) with the norm |[ul|, = sup|fu(x, y)|

I(l
Put
Li=Li(a)=[;(t)+ L) Q+15(0) [c()Q+d(1)]} dt,
(1]
L, = Ly(a) = [[1,()+15() m(1)] dt.
0

Lemma 1. If Assumptions (iiy), (ii1,) of H, and H, are satisfied, then for all
(x, ¥), (X, y)€l,, u, veB(u, P, Q), the following inequality

@) gi [u] @z x, ) =g: (] (2 X, ) < (Alx— N +]y =3+ L, lu—vll,) exp(Ly),
te[0,d], i=1,..., n holds.

Proof. Let x < x. For 1€[0, x], we have

lg; (ul(t; x, y)—g: [c](t; X, 3
< |y—}7|+|_!' L+ L0+ 1()(c(s)Q+d(9))]lg: [ul (s x, y)—
—g: [1](s; X, P+ L)+ 1 () m(s)] lu—vll, | ds|+

+|F4(r, g Cud 05 %, ), ue, g [ul (s x, ), (Viu)(e: g: [ud (e x, y))di]

Sly=yi+ A=+ Lyjlu—tll, +[[ [ () + () Q +

+15(s)(c($) Q+d(s))]

gi[ul(s;x, y)—g; [v](s: x, y)|ds].
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Hence, and by Gronwall's inequality we get (8). This ends the proof.

Lemma 2. If Assumptions H, and H, are satisfied and a, 0 < u < ug. is
sufficiently small such that

9 Aa € g,.
where ¢, is given in (iv,) of H,, then for all (x,y),(x,F)ely or

(x, ¥), (x, V) eI (where the bar means closure of the set) und ueB(u, P. Q). we
have

(10) [t (x, v, u)—1;(x, ¥, u)] < Ag "exp(L,)|v—7].

and for (x, y)el4 oI5 or (x, vV el n T, and u, veB(a. P, Q). we have

(1 7 (o vy W)=t (x. v, o)l < A5 Lyexp(Ly)[Ju—tll..
i=1.....n
Proof. First we prove inequality (10). Let us suppose that
(x, ¥), (x, yyel%, and y > y. Hence, since the characteristic lines of the same

family corresponding to the function u cannot intersect, we have t;(x, v, u)
<t (x, ¥, u)

It follows from (8) and by g;(z;(x, ¥, u): x, j) = 0 that
(12) |9 (i (x, 7, w): x, ¥) =0 < exp(Ly) (y—y).
Now, by using the mean value theorem, we get

(13) g,'(T,'(X, }_}9 U); X, J’) = g,-(‘r,-(x, j)-1 ll); X, y) —gi(‘[i(x’ Y, u); X, y)
= Degi (C: x, P [ri(x, y, w—7;(x, ¥, )],
where 7;(x, ¥, u) < < 1;(x, v, u).
From the estimate |dy/dx| < A for any characteristic, it follows that
y < Aa, provided (x, y)el¥,. It is obvious that if (x, y)ely then ieJ,.
Therefore, by (9), for the points (x, y. u, v-)el,,o x Q x Q with y < Aa we have

Alx, yyu,v) =2 Ay, 0Ky < o, 1€Jy. In particular, this inequality holds true
for the points of the set If; xQ xQ. Hence by (13) we obtain

(14) 70X, ¥, u)—1(x, v, u) < Ag L gi(ri(x, ¥, u): x.p).
Combining (12) and (14), we have

(X, Vv, W) =1i(x, y, u) < Ag texp(Ly)(y—y).
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The case y <y we consider analogously. In a similar way we can prove
(10) if (x, y), (x, §) T o

Now we prove (11). Let assume that (x, y)elg, N1y and 7;(x, y, u)
<t(x, y, v). Since g;[v](r;(x, y, v): x, y) =0, by Lemma 1, we have

(15) lg: (U] (i (x, y, 0): x, ¥)—= 0 < Lyexp(Ly) lJu—vll,.
Now, in virtue of the mean value theorem, we get
g: (1] (mi (x, ¥, 0); x, ¥) = g: (W) (wi (x, y, v); x, ¥) —g; [u] (z: (x, y, u): x, y)
=D.g; [ul(&: x, V[t (x, y, v) —1;(x, y, )],

where 7;(x, y, u) < & < 7;(x, y, v).
Hence, by (15), we have
i (x, y, V=T (x, y, ) < Ag g [ul (7 (x, y, )i x, y)
< Ag ' Lyexp(Ly)[lu—vll,.
Analogously, we can prove (11) with 1;(x, y, ) > 1;(x, y,v) and

(x, y)elt; nIt;. Hence, the assertion is proved.

AssumpTiON Hj. Suppose that

(i3) fi(, y,u,v): [0,a0] >R, i =1, ..., n are measurable for every
(y,u, v)eE:

(ii3) there are a constant F > 0, and integrable functions k;: [0, a,]

-R,, j=1,2,3, such that for all (y, u, v), (y, 4, V) €E, ae. in [0, a,], we
have

|fi(x, y,u, v)| <F,

Lfi(x, ps u, 0) = £, 3, 10, 0)) < kg (X) |y =yl + ko () [Ju— ]| + k3 (x) [lo—2]|,
i=1,..., n

AssumpTiON H,. Suppose that
(14) the functions hy;: [0, ao] x@2 — R, i€J,, are independent of u; for
j€Jo, and the functions hy;: [0, ag] x@ =R, ieJ,, are independent of u;, for
jEJb:
(i,) there are constants H;>0, j=1,2 such that for all
(x, u), (x, u) [0, ap,] xQ2 we have
lhoi(x, W)= ho; (X, u)l < Hy |x—X|+H,|lu—ull, iel,,
By (x, up—hyi (X, 0)] < Hy[x—X|+ Hy(lu—ull, ieJy;
(11;) the compatibility conditions

(16) ho; (0, (P(O)) =@;(0), i€J,,
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(17 hi (0, @ (b)) = @i(b), i€J,,

are satisfied;
(1v4) there is a constant @ > 0 such that for all y, y€[0, b] we have

le—e®ll < Ply—jl,
and maxfle(y)ll = ¢, < Q.
[0.5)

We write B,(a, P, Q) to denote the following set
B,(a, P,Q) = {u: ueB(a, P, Q), u(0, y) = ¢(y), y€[0, b]},

where we assume that Q > &, which assures that B,(a, P, Q) is not empty.
Let us consider in B,(a, P, Q) the following bali

B,(a, P, Q, ) = {u: ueB,(a, P, Q), max|ju(x, y)— oWl < v},

Iq

where 0 < w < Q—&,. Obviously, for ueB,(a, P, Q, w) we have

lu(x, VI € o+ P, < Q.

Hence, for ueB,(a, P, Q, w) the points (_x, Y u(x, y), (Vu(x, y),
i=1,...,n where (x,y)el, belong to Ia0 x Q2 x8. Thus, for every

ueB,(a, P, Q, w) the corresponding family of characteristic is defined.

3. The operator S and its properties. Now we consider in B(a) the
operator S defined by
(18) (Su)i(x’ y)':(Ru),-(X, y)+(Zu)l'(x, }"), i = 13 Sy Ny

where

@i(9:(0: x, ¥)), (x, y) el
(19) (Ru)i(x, y) = %ho.- (ti(x, o w), u(ti(x, y, ), 0), (x, el

hy; (Ti(xa y, u), “(Ti(—’ﬁ y, u), b)). (x, yyely,
and

(20)  (Zu)i(x, y)

= | filt,gitt: x, p), u(t, gi (5 x, p), (Vw)(r, gi(e: x, p)))de, i=1, ..., n

T(x.y.u)

From now on we make the assumption: 24a < b which yields I% N1,
= @, and the assumption: Aa < ¢, which guarantees that the inequalities
Ai(x, y,u, v) 2 Ao and —4;(x, y, u, v) = A, are satisfied in the sets I%, and
Ih;, respectively.
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Lemma 3. If Assumptions H,--H, are satisfied, then for every
ueB,(a, P, Q, w), the function Su: I, = R" is continuous.

Proof. By the defnition of (Su); it follows that (Su); is continuous in

each of the sets I, I% and If. Hence, it is enough to show that (Su); is

continuous on the lines y = ¢g;(x; 0, 0) and y = g;(x: 0, b). Let us consider the
first line y = g;(x: 0, 0). Obviously, for the points (x, y) of this line, we have
7;(x, v, u) = 0. Hence, by (20), we have

[(Zu)i (x, ¥) ) — [(Zu); (x, y)Jign = 0.
Furthermore, by (19) and by compatibility condition (16), we get
[(Ru); (x, y)ien — [(RU); (X, 3) Jrign
= ho; (0. u(0, 0) = ;(9:(0; x, y)) = ho; (0, ¢(0))—¢;(0) = 0.
Therefore
((Su); (x5 y)Jien — [Su; (x, ¥)]ign = 0.

The case of the points belonging to the line y = g;(x; 0, b) is analogous.
This proves the lemma.

LeEmma 4. If Assumptions H,-H, are satisfied, then for every
ueB,(a, P, Q, w) the function Su satisfies in Ij,; a Lipschitz condition in y with
some constant Q5.

Proof. Let (x, ), (x, ¥)€l%;. Then by (8) we have
I(Ru); (x, y)—=(Ru); (x, )| = |91 (g:(0; x, y))—; (g: (0: x, y))|
< Plg;(0; x, y)—9:(0; x, y)l < @exp(Ly)[y—5].
Furthermore

NZu); (x, v)—(Zuw);(x. V)|
< ki (K (0)Q+ks () [c(Q+d ()]} lgi (e x, Y)—gi(r: x, y)l dt
0

< K exp(L))|y—yl,
where

K=K =k ()+k,(0)0Q+ks(t)[c(t) Q+d(t)]] dt.

O, B

Hence
[(Su); (x, y) = (Su) (x, Y| < (P+K,)exp(Ly)|y—7l,
thus we can take Q) = (®+ K,)exp(L,). This proves the lemma.
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Lemma 5. If Assumptions H,-H, are satisfied, then for (x,y)ely,,

ueB,(a, P, Q, w), the function (Su);,, i =1, ..., n, is Lipschitzian in x with
some constant P,

Proof. Since 24a < b, it follows that, in virtue of the theorem on
prolongation of a solution to the boundary for an ordinary differential
equation, for any two points (x, y), (X, y) €I%; (x < X) we can find the point
(x, j/')ef;‘,,-, such that y = g,(x: X, y).

Since the points (x, 7) and (X, y) belong to the same characteristic
¢ =g:(t; X, y), thus we have

(Su)i (x, y) = (Su)i (x, y)
\<- I(Su)l (-)?’ ,V) _(Su)l' (xa .v)l + I(SU), (X, }—') —(Su),-(X, y)'

< [Fdt+ Qo ly—3l < Flx=X+ Q5 ly—Jl.
On the other hand, we have

ly=y=ly—gi(x: x, y)l
= {4t gi(es X, p), ule, gi (s %, 9), (V) (t, g (e: %, p))dt] < Alx—x.

Hence, we see that
(Su): (x, y) = (Su); (%, p)| < (Qg A+ F)|x—X].
It means that we can take P, = AQ)+ F. This ends the proof.

Lemma 6. If Assumptions H,—H, are satisfied, then in the sets I%; and T,
the function (Su);, i =1, ..., n, satisfies a Lipschitz condition in y with some
constant Q3.

Proof. Observe that the assumption 24a < b gives I§; N I} = @. Let us
take (x, y), (x, y)€l%; and y < y (the proof for Ij; is similar). Then, Lemma 2
gives

I(Ru)i (xy ,V)—(R“)i(X, )7” S (Hl +H2 P) Iri (X, ,V, U)-T,- (x7 )_}s u)l
<(H,+H,P) A5 exp(Ly)|y—}l.

Furthermore, because of 7,(x, y, u) > 1,(x, y, u) for y <73, and by Lem-
ma 2 we find

(Zu); (x, y)=(Zu); (x, V)|

X

< § DAl gt x, p, ule, gtz x, p), (K (e, gi (e x, 1) -

t,'(x'.y,u)
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ti(x,y,u)

_./;'(t’ gi(t;x,f),u(r, g,-(t;x,f)),(V,-u)(t,g,-(t: X,]—l)))]d['l- ‘ th

(X, ¥,u)
< exp(Ll)Kl ly-_)_)l"‘FIT, (x’ .Va u)_Ti (xs j}a u)l
< exp(L K, +FAgY)|y—yl.
Therefore

[(Su); (x, y)—(Su); (x, ¥)i < exp(L,)[Ag "(H,+H, P+F)+K,]|ly—J|.

Thus, we can put Q3 =exp(L,)[4,'(H,+H, P+ F)+K,], and the proof is
complete.

Conclusion. From Lemmas 4 and 6 it follows that the function (Su);,
i=1,...,n satisfies in I, a Lipschitz condition in y with the constant

Q® =exp(L,)[max ¥, A;'(H,+H,P+F) +K,].

Obviously, 0° > Q; and Q° > Q3. If the points (x, y) and (x, y) belong
to the different sets I, Iy, Iy;, then this case reduces, in view of Lemma 3,
to the one already considered.

LemMma 7. If Assumptions H,~H, are satisfied, then the function (Su);, i
=1, ..., n, satisfies in I, a Lipschitz condition in x with some constant PS.

Proof. It is obvious that for any two points (x, y), (X, y)€l,, x < X, one
can find:

(@) if (x, y)€l’,;, then the point (x, y)€l,, such that y = g;(x: X, y);

(b) if (x, y) eIy, U I%, then the point (x, ¥) €l,, such that y = g,(x; X, ¥).

Proceeding analogously as in the proof of Lemma 5, we can put
PS=Q5A+F. This ends the proof.

Remark 3. In particular, without loss of generality we may assume that
A= 1. Then, by Lemmas 4, 6 and 7, we conclude that the function Su satis-

fies in I, a Lipschitz condition with respect to both variables with the con-
stant PS.

Lemma 8. If Assumptions H,~H, are satisfied, and a €(0, a,] is sufficient-
ly small such that

1) a<w(H,+Hy, P+®A+F) 1,
then the operator S maps B,(a, P, Q, w) into B,(a, P*, Q°, w).
Proof. This lemma will be proved by showing that

(22) HSu)(x, y)—o (Wl < w,
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and
(23) (Su) (0, y) = o(y), ye[0, b,
for ueB,(a, P, Q, w).

First let (x, y)els, i=1, ..., n Then

@i
I(Su); (x, V)—@; (W < @g:(0: x, y)—y|+ [Fdt < (®A+F)a.
0

Now let (x, y)eI% (the proof for (x, y)€l}; is analogous). Then, taking
into consideration compatibility condition (16), and initial condition (2), we
see that

[(Ru)i (x, y)— @;(y)|
< |h0i (Ti (X, y, u), u(‘ti (xa y, “)9 0))_h0: (09 u(Oa 0))|+|h01 (0’ CP(O))—%(,V)l
SH,+H; P)ti(x, y, +|0; (0 —; (W) < (H;+H, P+ ®A)a,

since y < Ax < Aa for (x, y)elb,.
Furthermore, evidently [(Zu);(x, y)| < Fa, so that, combining the pre-
vious estimates, we get

I(Su); (x, Y) =W < (H,+ H, P+ ®A+F)a.

Hence, by (21), we conclude that (22) holds. It is obvious that (23) is satisfied.

Finally, let us observe that from Lemmas 4, 6 and 7 it follows that Su
satisfies in I, a Lipschitz condition with respect to both variables, and the
proof is complete.

From now on we make, additionally, assumption (21).

Note that, generaly speaking, P° > P, Q° > Q, therefore B,(a, P, Q, )
c B, (a, PS, Q5, w). The operator § is defined on all B(a). We shall also use
‘the symbol S to denote the restriction of S to the ball B,(a, P, Q, w).

4. Properties of the operator S2. Now we are interested in properties of
the operator S = S2.

Lemma 9. If Assumptions H,—-H, are satisfied, then for a€(0, a,] suffi-
ciently small and P, Q sufficiently large, the operator S* maps B,(a, P, Q, w)
into itself. '

Proof. Applying Lemma 8 to the function SueB,(a, P5, Q°, w) we
obtain

IS2 W, —eWll <o, IS M <2 (2w, ) =),

provided a< w(H, +H, P+ ®A+F)~ ..
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From Lemmas 4, 5, 6 and 7 it follows that the function S?u satisfies in
I, a Lipschitz condition with respect to both variables with the constants
PSS, @55, respectively. Since now the arguments of the operator S are not
arbitrary functions of B,(a. P°, Q% w), but the functions of the form Su,
therefore the Lipschitz constants of the function S?u can be made more
precise.

Indeed, for any two points (x, y), (x, y)€l,;, by Lemma 4, we have
l(SZ u)i (Xa }’)_(SZ u)i(xa f)l s CXP(LSl)('D'i"Kf)l.V_ﬂy

where

KS = | ks (04 ks ()05 4k (0 [ () @5+ (0)]) dir,
0

5 = [1h 0+ L0005+ K0 [e() @5 +d(0]] dr.
0

Let now (x, ), (x, y)el4, (the same proof works in the case
(x, y), (x, y) €ly). Then we have that ieJ,, therefore for j¢ J, the point
(x, 0) belongs to the set Ij;. Hence, by Lemma 5, we obtain

I(Su); (x, 0) —(Su); (%, O)f < Pg|x—xl,

where j¢J,. According to assumption (ig) of H,, the function hy,;(x, Su) does

not depend on (Su); for j€J,, thus for (x, y), (x, ¥) el by Lemmas 2 and 5,
we have

I(RSu); (x, y)—(RSu); (x, p)|
< Hl Iti (x, Y, SU)—T,' (x’ .vs Su)l +
+ H, max|(Suw);(t;(x, y, Su), 0)—(Su);(r; (x, y, Su), O)
j¢do

< H, Agtexp(L)|y=71+H, Pylti(x, y, Su)—1:(x, 7, Su)|
< Ag'exp(LY) (Hy + Hy [Aexp(L)(P+K)+F1} ly=7l.
Furthermore, by Lemma 6, we get
(ZSu); (x, y)—(ZSu):(x, Y| < exp(L)(KT+FA5 Y1y —Jl.
Combining the estimates above we find

(82 u); (x, ¥) = (S u); (x, D)
< [AE‘cXP(LS;) Hy+H,[Aexp(L,)(®+K,)+F]} +
+exp(L) (K3 +FAg )] iy—7l.
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Hence, for the function S?u as a Lipschitz constant in y we can take
st = exp(le)(maX :¢, A(; ! [Hl +H2(/lexp(L])(¢+K,)+F)+F]}+Kf)

Consequentl'y, in virtue of Lemma 7, we conclude that the function S?u
satisfies in I, a Lipschitz condition in x with the constant P55 = Q55 A +F.

Obviously, without loss of generality we may assume that A4 > 1. Hence,
in particular, we can take P as a Lipschitz constant of the function S%u
with respect to both variables.

Thus, in order to show that the operator § maps B,(a, P, Q, w) into
B,(a, P°, 0%, ), and the operator S* maps the ball B,(a, P, Q, ) into
itself, one needs the following restrictions on the constants w (0, Q—&,],
P20, 0>2d, ae(0, ag]:

(H +H,P+®A+Fla<w, Aa<ey, 2Aa <b,
29 (Hi+H,PP+®A+Fla<w PSS <P, 05 <.
Observe that, if w, P, Q are fixed, and a =07, then
PS> Amax @, Ay (H,+H,P+F) +F,
Q%5 »max |®, A;'(H,+H, P+F)},
PSS > Amax (@, Ag'[H,+H,(A®+F)+F]} +F,
Q% -max{®, Ag'[H,+H,(A®+F)+F]}.
Therefore, for arbitrary we(0, 2—@,], if
P> Amax!®, Ay [H,+H,(A®+F)+F]! +F,
Q > max |®, Ag'[H,+H,(A®+ F)+F]},

then, for sufficiently small a €(0, a,], all inequalities of (24) are satisfied.

Thus, we have
(25) S2: B,(a, P, Q, w) = B,(a, P, Q, w),

which ends the proof.

In the sequel we shall assume that the constants P, Q and a are chosen
in such a way that (25) is satisfied.

Now we need to show that the operator S? is a contraction. Therefore,
first we shall investigate the operator S from this point of view.

Lemma 10. If Assumptions H,~H, are satisfied, then for all (x,y)
ei,';,,- “75};, u,veB,(a, P, Q, w), we have

(Su) (x, ¥)—(SvM(x, YNl < gy [lu—vll,,

where q, is some constant, such that q; =+0% as a »07.
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Proof. Since (x, y)el’; n1I;, by Lemma 1, we have

I(Ru); (x, y) —(Ro); (x, )| < @PLyexp(L)|lu—vll,.

Moreover,

X

(2w (x, y)=(Zo)i (x, Y)| < [[k1 (1) L2 exp(Ly)[lu—vlls+
0

+hy ()|julr, g: [ud (5 x, y))—v(t, g: (01 x, )|+
+hy ) ||(Vw) (e, g [ul (@5 x, )= Vo) (e, g: 015 x, W] dt

< [ {ky () Lyexp(Ly) lu—vlla+ k2 (0) [Q1g: [ul (t: x, y)—g; [0 (15 x, )+
0

+lu=vll,] +k3 (O [(c(t) Q+d(0))|g; (1] (t; x, ¥)—g; (] (t; x, Y+
+m(t)||lu—vll,]} de
< [Lyexp(Ly) Ky + K] |[u—vll,,

a

where K, = K, (a) = [[k,(t)+ ks (t) m(t)] dr.
0
Combining the above estimates, we get
(Su)i (x, y)=(Sv)i(x, Y < gy llu—vll,, i=1,...,n,
where g, = L,exp(L,)(®+K,)+K,. This completes the proof.

Lemma 11. If Assumptions H,-H, are satisfied, then for every
(x, ) elg; 01 or (x, y)ely; N1y, and u, veB,(a, P, Q, ), we have

(S} (x, y)—(Sv)(x, YN < g2 llu—vll,,
where q, is a constant.
Proof. Assume that (x, y)el% N I%;; then by Lemma 2 we find
I(Ru); (x, y)—(Ruv);(x, y)
< Hylti(x, y, w—1i(x, y, o) + H, |[u(t;(x, y, w), 0)—v(t:(x, y, v), 0)
< [Ag' Lyexp(Ly)(H, + H, P)+ H,]|lu—vl,.

Furthermore, let us assume that 7,(x, y, u) < 7;(x, y, v). Then by using
Lemmas 1 and 2 we see that

(Zu); (x, y)—(Zv); (x, y)I

< [ kO+k@Q+ks(0(c()Q+d(®)]lg: [ul(; x, Y)—g: [vV](t; x, Y+

Ti(x,y,v)
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+ [k () + ks () m()Iu—vll, ) dt + F [t (x, y, w)—1,(x, y, v)f
< [Lyexp(L)(Ky+FAg ")+ K ] u—vll,.

Hence, we have
[(Su); (x, y)—(Se)(x. Y| < gz llu—1ll,, i=1,...,n,

where g, = Lyexp(L,)[A5 “(H, + H, P+ F)+ K1+ H, + K.
Thus, the Lemma 11 is proved.

LemMma 12, If Assumptions H,-H, are sat.isﬁed, then for every
(x, y) el NI (or (x.y)ely Ny, or (x,y)ely, N iy, or (x, y)ely N1y,
and u,veB,(a, P, Q, w) we have

[1(Su) (x, y)—(Sv)(x, V)| < g3 [lu—1vlla

where ¢+ Is a constant.

Proof. We consider only the case where (x, y) el 0 I, (the remaining

cases may be handled in the same way). Since 7;(x, y, u) = 0 for (x, y)el

— @i
and y < Aa for (x, y)ely;, by Lemma 2, we have

lri(xa _V., U)l g A(;l LZ exp(Ll)”u_v”u'

Since ieJ, for (x, y)el’; in virtue of assumption (iv,) of H,, we have
Ai(x, y, u, v) = A,, because of ieJ,, and y <¢,. Thus the function
g; [u](t; x, y) i1s increasing in ¢, for f€[0, x], whence

g: [ul(0: x, ) < g; [ul(r:(x, y. v); x, y).

In view of Lemma 1, we get

Igi [u] (T,-(X, Vs L‘): X, y)_gl [l’] (T,-(X., ¥, L\): X, .V)| < LZ CXP(Lx)lll““”w
Hence, we obtain

g: [u](0; x. y) < Lyexp(Ly)|fu—vl,.

In view of compatibility conditions (iiis) of Hy and initial condition (2),
we find
I(Ru); (x, y)—(Rv); (x, y)
|0:(9:(0; x, )= @; ()] + |hoi (x: (x, ¥, 1), v(5:(x, ¥, 2), 0))—hoy (0, £(0, 0))|
®1g:(0: x, WI+(Hi+H, P)[ti(x, y, vl
Lyexp(L)[®+(H,+H, P) A5 '] )ju—1l,.

AN\

V/A\

5 — Anniles Polomict Math. XLIX. 3
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Moreover,
l(ZU),-(x, y)_(Zv)i(xs }’)|
< [ ki (+k(0Q+ks@(c)Q+d(®)]lgi (ul i x, y) -

1;(x,y,v)
1i(x,y,0)

— g, [v)(t; x, W+ ko () +ks (@ m)]|lu—vll, de+ [ Fat
0

< [Lyexp(L)(K{+FAg ")+ K, ]llu—1vlla.
Combining the estimates above, we conclude that
(Su); (x, ) —(Sv); (x, ¥) < qallu—vll,,

where g3 = Lyexp(L,)[®+ 1, (H,+H, P+ F)+K,]+K,. Thus, the proof
is finished.

Conclusion. From the assumption 24a <b it follows that I% NIy

=0Q, I, 1% = Q. Thus, the cases considered in Lemmas 10, 11 and 12
cover all rectangle I,. These lemmas show that in I, we have

(26) liSu—Sulls < qallu—vlla,

where q, = g, + H, (since g, < ¢q,).
Note that, generally, it has not to be H, < 1. Thus, in general case the
operator § is not a contraction.

Lemma 13. If Assumptions H,-H, are satisfied, then for all
u,veB,(a, P, Q, w), we have

1(S2 u)(x, ») = (82 ) (x, VI < ¢*[lu—2lla,

where the constant ¢° ->0% as a >0%.
Proof. Let (x, y)elsy nI5;. Using Lemma 10, we get
I(S% u) (x, ) —(S*v) (x, Y)Il < g7 [|Su—Svll,,

with ¢} = Lyexp()(@+K})+ K.

Let (x y)el NI (analogously we can consider the cases
(x, y) ey I3y, (x, y)e[ NI, (x, y) eIy nI3Y). Then the assumptions of
Lemma 12 are satisfied, and we have
1652 u) (x, y) (8 0) (x, VI < 43 [ISu— St]l,,

where ¢35 = Lyexp(L)[@+ Ay ' (H, + H, PP+ F)+ K] +K,.
Let now (x, y)elgr N I3 (the case (x, y) eI3* T3¢ is similar). This implies
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that i €J,. Thus, the point (x, 0) belongs to I4; N I5; for j¢J,. Consequently,
by Lemma 10, we obtain

[(Su);(x, 0) =(Sv);(x, O) < ¢ [[u—vfl,.
In virtue of assumption (i;) of H,, the function hy;(x, Su), i€J,, does
not depend on (Su); for jeJ,. Therefore
[(RSu); (x, y)—(RSv) (x, y)| < Hy | (x, y, Su)—7:(x, y, Sv)[+
+H, m:’lx [(Sw);(z: (x, y, Su), 0)—(Sv);(z; (x, y, Su), 0)|+
ito

+|(Sv); (z: (x, v, Su), 0)—(Sv);(x: (x, y, Sv), 0)[]

< H  Aq' Lyexp(LY)|Su—Svll,+ H, gy |lu—oll,+
+H, [Aexp(L)(P+K,)+ Fllt(x, y, Su)~1:(x, y, Sv)|

< Ag'Lyexp(LY) (H,+H,[Aexp(L)(P+K,)+ F]} ||Su—Sv||, +
+H,q, llu—vll,.

We may assume that 7;(x, y, Su) < 1;(x, y, Sv); then we have

x

(ZSu)(x, Y —(ZS)i(x, M < [ki(@O+k 00+

ti(x,y,5v)

+k3 () (c(t) Q% +d(0)]1g: (Sul(t; x, y)—g: [SV](t; x, y)|+

7;(x,y,S¢v)

+(ka () + ks (Ym (@) |Su—Sv|l,}dt+ | Fdt

4 (x.y.5u)
< [KS§ Lyexp(I3)+K,+ FAg!' Lyexp(I5)]1|Su—Sv|,.
Hence, in I3 N I35 (also in I3 N 13Y), we get
1(S? u)(x, y) = (S v)(x, Y)Il < g3 N1Su—Sovll,+ H g, llu—vll,,
where
g5 = Lyexp(L3) {45 ' [H, +H,(Aexp(L)(®+K,)+F)+F]+K}! +K,.
Thus, combining the estimates above, we find (we remind that I~ I3t
= "I = @, because of 24a < b) in I,
(52 w) (x, y)—(SZv)(x, Y
< (g3 + Lo exp(I3) (@ + A5 ' H; PH]ISu—Suvll,+ Hy g, [lu—1tll,.
Finally, by (26), we obtain

I(S?u)(x, y)—(S?v)(x, )
< lg3+Lyexp(D)(P+Ag " Hy P qa+H,yqy) llu—1ull,.
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It should be remarked that ¢5 -0, L, »0%, L} -0% g, »0%,
g, —H,, P’ —const as a »0".
Taking

¢° = [q5+ Lexp(L)(P+ A5 ' Hy P9)]qa+ Haq,,

where certainly ¢ =07 as ¢ 0%, we get the assertion of Lemma 13.

S. The main result.

[HEOREM. If Assumptions H,-H, are satisfied, then for any w€(0, Q—®,],
and any sufficiently large constants P, Q, there are a number a, a€(0, a,], and
a function u: I, > R", ueB,(a, P, Q, w), which satisfies (1) a.e. in I, and (2),
(3) everywhere in {0, b], [0, al, respectively. Furthermore, u is unique in
B,(a, P, Q, w).

Proof. Let us choose P, Q and « in such a way that inequalities (24) are
satisfied. Then, by Lemma 9, we see that

S: B,(a, P, Q, w) = B,(a, P, Q°, w),
S*: B,(a, P, Q, w) = B,(a, P, Q, w).

Next. let us take a€(0, a,]). so that ¢°> < 1. Then, by Lemma 13, we
conclude that the operator S? is a contraction. Hence, in view of complete-
ness of B,(a, P,Q,w), it follows that there exists a function
u€B,(a, P, Q, w) such that S?u = u. 1t is known [5] that the fixed point of
any power of an operator is the fixed point of this operator. Thus Su = u.
For this fixed element, we derive from (18) the integral equations

(27) w(x, ¥) = (Ru);(x, W+ (Zu)i(x, p),  i=1,...,n,

where R and Z are defined by (19), (20), respectively.

It remains to prove that the fixed point u of the operator S satisfies
system (1) a.e. in I, and conditions (2), (3) everywhere in [0, b] and [0, a],
respectively.

First we consider the case where (x, y)el’;. By taking y = g;(x: 0, ») in
(27), we have

U; (X, {[,'(Xl Oa V]))
(28) = ¢ (n)+:\’ﬁ(r, gi(t: 0, m), u(t, g;(t; 0, m), (V;u)(t, g; (t; 0, m))dt,
0

1(0, n) = @;(n),

since (7) yields g;(r; x, g:(x; 0, n)) =g:(¢; 0, 7).
Note that, for every 5 €[0, b], the first member of (28) is absolutely
continuous in x as the superposition of two Lipschitzian functions. In view of
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the Chain Rule Dilferentiation Lemma (4i1) [3]. we derive that the relations

d
d—ui(x, ¢i(x:0,n))=D,u;+D.g;Dyu;, i=1,..., n,
X

hold ae. in I,. By differentiation of {28), and using relation (5), we get
D, u;(x, g; (x: 0, )+ A4 (x, g:(x: 0, n), u(x, g;(x: 0, n)),
(V) (x, g (x: 0. m)) Dy (x, gi(x: 0, m))
= £i(x, g:(x2 0,m), u(x, i (x: 0, ). (Viw)(x, g;(x: 0, ),

i=1,..., n.
In other words, these relations hold a.e. in the rectangle I, of (x, ) space. By
taking y =g¢;(x: 0, n), and using the property that this transformation pre-
serves sets of measure zero (being Lipschitzian), we obtain

Dxui(x$ ,v)+;"i(x7 ¥, u(x’ ,V), (%u)(xa y))Dyui(xs .V)
= filx, y,ulx, ), (Viu(x,y), i=1,...,n,

and these relations hold a.. in [ of the (x, y) space.
Now we consider the case where (x, y)el§;. By taking y = ¢g;(x: #, 0) in
(27) and using the equality 7;(x, g;(x: 5, 0)) =5, we have

i (X, gi(x2 17, 0) = ho; (n, un, O)+ [ fit, g: (12 0, 0),
n

(29)
u(t, gi(ean, O)), (Vu)(r, gi(t: n, 0)))dt,

ui(”a 0),=h0i(’71 “('7’ O))~ I = l,...,)‘l,

since (7) yields g;(t; x, g;(x: 5, 0)) = g;(t: n, 0).

Note that for every n€[0, a] the first member of (29) is absolutely
continuous in x. By differentiating (29) with respect to x, in view of the
Chain Rule Differentiation Lemma (4ii), and making use of (5), we derive

D u;(x, gi (x: 1, 0)+ A (x, g (x: 1, 0), u(x, gi(x: n, 0),
(Vu)(x, gi(x: 1, 0) Dyu; (x, g; (x: 1, 0)
= fi(x, gi(x:m, 00, u(x, gi(x: 9, 0), (Vu)(x, g;(x; n, 0)).

and this relations hold a.e. in [0, a] x[0, a] of (x, ») space. Finally, by taking
y =g;(x:n,0), that is, returning to the variables xy, we obtain

(30) D, u(x, )+ A4 (x, y, u(x, y), (V;u)(x, »))Dyu(x, »)
= fi(x, v, ulx, ¥, (Vu)(x, y),

i=1,...,n, (x,yely (ae).
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Since the transformation y = g;(x; n, 0) preserves sets of measure zero, we
conclude that (30) holds a.e. in [}, as stated. Analogously we can consider the
case where (x, y)el};. The theorem is thereby proved.

Remark 4. It is easy to see that we can seek a solution of problem (1)-
(3) in a slightly larger class than B(a). Namely, we can require that u is
Lipschitzian with respect to y for every x, and Lipschitzian with respect to x
only for y =0 and y = b. In this case the function Su is Lipschitzian with
respect to both variables for every x and y, but the above assumption does
not extend the class of generalized solutions of problem (1)+3).

Remark 5. Note that the case where the initial condition (2) is replaced
by the following u(x, y) = ¢@(x, y), (x, y)e[ -4, 0] x[0, b], 6 >0, can also
be studied analogously.

Remark 6. All above results can be extend to the general diagonal case
(r+1 independent variables). However, it leads to certain technical complica-
tions and does not require the application of new methods, and does not
provide us with important results.
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