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ON SATURATING ULTRAFILTERS ON N

BY

A. KUCIA (KATOWICE)

The main result of this paper is essentially a theorem about ultra-
products of countable sets. It is known that if the Continuum Hypothesis
is assumed, then ultraproducts of countable structures are saturated
for all free ultrafilters, and Ellentuck and Rucker [4] proved that if Martin’s
Axiom is assumed, then there exist 2° such ultrafilters.

In this paper we regard only ultraproducts of countable sets. We
prove that if P(c) is assumed, then there exist 2° saturating ultrafilters
on N which are absolute and minimal points in N*.

1. Preliminaries. Let N denote the set of all positive integers, and
N* = BN\N the set of all free ultrafilters on N. Recall that an ultra-
filter # € N* is a P-point if each map f: N — N is either constant or
finite-to-one on some element of #. The ultrafilter # € N* is minimal
with respect to Rudin-Keisler ordering if each map f: N — N is either
constant or one-to-one on some element of #. Hence every minimal point
is a P-point in N*.

Agsume that A and B are subsets of N. We say that A is almost con-
tained in B, A < B, if A\B is {finite.

A point & of N* is said to be an absolute ulirafilter if it has a base
linearly ordered with respect to <.

~ We shall use the following consequence of Martin’s Axiom which will

be called P (c) (see, e.g., Booth [1]).

P(c): If F is a base of a free filter on N and cardF<c, then there exists
an infinite subset T of N such that T << A for every A from #.

Recall that P(c) implies 2% = 2% for each cardinal N such that
Ro<N < 2% (Booth [2]).

Assertion P(c) is claimed by Kunen and Tall [5] to be essentially
weaker than Martin’s Axiom.

Let X be the product of sets X, (n € N), and let # be a filter on N.

We define a relation =4 on X as follows: \

a =3bif {neN:a, =b,}eF.
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The ultraproduct of sets X, (n € N) with respect to the filter F is
the set X /#, i.e. the set of all equivalence classes of = .

Let < be a relation on X induced by the relations <, on X,
as follows:

a<b if a,<,b, for each n e N.

Let the same symbol < denote the relation induced by <, (n € N)
on X /F:

[als <[b]lyg if {neN:a,<,b}eF.

A filter # on N is said to be c-saturating if the following condition
is satisfied:

If A4 and B are subsets of X /# of cardinality less than ¢, < is a rela-
tion induced by <, (n € N), and for any finite subsets A’ < 4 and B’ < B
there exists a ¢ € X /# such that ¢ <¢ <b for ' € A" and b’ € B, then
there exists a ¢ € X/# such that a <e<b for a € A and b € B.

If we take a partition {X,: » € N} of N and a free ultrafilter # on N,
then the ultraproduct X /# is a subset of N*. Also, ultraproducts of ra-
tional numbers can be regarded as subsets of their remainder of the Cech-
Stone compactification of the non-negative part of the real line. Recently,
Mioduszewski [6] proved that the existence of saturating and absolute
ultrafilters implies that there exist remote and absolute points in R*.

Ultraproducts are also used for other purposes and in more general
setting in the theory of models (see, e.g., Chang and Keisler [3]).

2. Basic Lemma. Let X be a product of the sets X, (» € N), and let <
be a relation on X induced by the relations <, on X, . For F c N we write
a<pbif a,<,b, for all but finitely many n from F. Let # be a family
of subsets of N. We write a <z b if a <z b for some F € &#. The relation <z
on X induces the relation < in the ultraproduct X /# whenever & is a filter;
i.e.,, a <g b implies [a]s < [b]s. The relation < will be said to be dense
with respect to subsets A and B of X on a family & if the following condi-
tion is satisfied:

(%) For arbitrary finite subsets A" < A and B’ — B there exists
aceXsuchthat a<gec<zbforaecAd and beB.

If # = {F} is a one-element family, then we say that < is dense
with respect to A and B on F.

LEMMA. Assume P(c). Let X be the product of countable sets X, (n € N),
and let < be a relation on X induced by relations <, on X,. Let A and B
be subsets of cardinality less than ¢ such that the relation < is dense with respect
to A and B on N. Then there exist an infinite subset T of N and ce X
such that a <, ¢ <pb for each a € A and b € B.
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Proof. Let X' = | {{n} x X,,: n e N}, and for ae X let
R(a) = U {(n,c,): a,<,¢,} and L(a) =U {(n,c,): ¢, <, a,}.

neN neN
For M c N, let Xy = U {{n} x X,: n e M}. The family ¥ consist-
ing of all sets E(a)and L(b)fora € A and b € B and of all sets Xy ., where
C are finite subsets of N, is centered, i.e., it i3 a subbase of a free filter
on X'. In fact, let A" < A and B’ = B be finite and let C,,...,C,
be finite subsets of N. There exists an element ¢ € X such that

a<ye<yb for any ac A and beB,

i.e., there exists a finite subset C of N such that
a,<,¢,<,b, forneN\C,aecAd and beB.

Hence, the infinite set

m
U {n,e¢,): ne N\ (U C;uC)}
iz1
is contained in the intersection
N{R(a): a € AN {L(b): be B}nN {Xy\o;: t =1,...,m}.

The set X' is countable and card¥ < max(card4, cardB,N,) < c.
Hence, it follows from P(c¢) that there exists an infinite subset H of X’
such that H < G for each G € 4.

Since H < Xy.¢ for any finite subset C of N, the set

T ={neN: HnX, + O}
is infinite. _
Choose a ¢ € X such that ¢, e HnX,, if n e T.
The set T and the element ¢ in X are as required. In fact, if a € 4,
then H < R(a), and so there exists a finite subset C of N such that H\ X,

< R(a), i.e., a, <, ¢, for n € T\C, with finite C. This means that a <, ¢
for a € A. Similarly, ¢ <, b for b € B.

Note. The Lemma can be easily relativized to the case of arbitrary
infinite ¥, F < N. Namely, if < is dense with respect to A and B on F,
then the set 7' from the conclgsion of the Lemma is a subset of F.

3. THEOREM. Assume P(c). Let X be a product of countable sets X,
(n € N), and let R be the family of all relations on X which are induced by
relations on coordinate sets. Then there exist 2° absolute and minimal ulira-
filters F on N such that if A and B are subsets of X of cardinality less than c,
and a relation < from X is dense with respect to A and B on F, then there
exist de X and F € & such that a <z d <pb for each a ¢ A and b € B.
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Proof. First we construct only one such ultrafilter &#.

Denote by {U,: a< ¢} the family of infinite subsets of N. Let
{f.: a<<c} be the family of maps from N into itself. We have card#® < c,
since there exist at most ¢ relations on X,, .Y, being countable. Take
a set </ of all triples (4, B, <), where card4 < ¢, cardB<<¢, 4, B are
subsets of X, and < is a relation from #. The family of all subsets of X
of cardinality less than ¢ is of cardinality ¢. This follows from the fact
that 2% = ¢ for 8, <N < ¢, P(c) being assumed. Thus there are ¢ triples
(A, B, <). Let {(4,B,<),: a<c} be a well ordering of the set . in
which each triple appears ¢ times.

We construct, by transfinite induction, a family {F,: a < ¢} of infi--
nite subsets of N satisfying the following conditions:

(1) Fy< F, whenever a < f.
(2) If the a-th triple (A, B, <), is such that < is dense with respect
to A and B on F,, then there exists a d € X such that

a< d<p, b for each ac A and beB.

Fai

(3) folF,,, is constant or one-to-one.

(4) If the intersection F', ,NU, i8 infinite, then ¥, , < U,.

Let F, = N. Assume that F,’s with properties (1)-(4) are already
defined for f< a, a<c.

If a is a limit ordinal, then it follows from P (c¢) and (1) that there exist
infinite subsets of N which are almost contained in F, for 8 < a. Let F,
be one of them.

If a = B+1, consider two cases:

(a) (4, B, <); does not satisfy the hypothesis of condition (2) for
a = f. Take any infinite subset T' < F,; such that f;|T is constant or
one-to-one. Let 'y, = T'NnU,if this intersection is infinite and let F, , =T
in the other case. Conditions (1)-(4) are obviously satisfied, condition (2)
vacuously.

(b) (4, B, <), satisfies the hypothesis of condition (2) for a = B.
Applying the Lemma to N = F,; and to 4, B, and < (see the Note), we
obtain a point d € X and an infinite subset T' of F; such that

a<pd<pb for each ac A and b€ B.

Now we construct the set F;, , by means of that T as in case (a)
Thus the family {F,: a < ¢} is constructed.
Now let # be a filter generated by the family {F,: a < ¢}. In view

of conditions (1) and (4), # is a free ultrafilter. It follows from (1) that #
is absolute, and from (3) that # is minimal.
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Now let A and B be subsets of X of cardinality less than ¢ and let <
be a relation from # which is dense with respect to A and B on &. Since &
is absolute and card A < ¢, card B < ¢, there exists an a, a <¢, such
that < is dense with respect to A and B on a set F', € #. And since (4, B, <)
appears ¢ times in the enumeration of «, there exists a f > a such that
the f-th element of this enumeration is (4, B, <). A set F; is almost
contained in F,. Hence < is dense on F;, and it follows from (2) that
there exists a d € X such that

a<< d< b for each ac A and b e B.

Fgi Fgi1

To obtain 2° suc ultrafilters we proceed in the standard way. The
family of all functions f: ¢ — {0, 1} has cardinality 2°. In the above proof,
in every step, we may decompose the sets F, into two disjoint infinite
sets FoUF. and put £, = {F1?: a<}.

Passing to ultraproducts we get the following

COROLLARY. Assume P (¢). If X is a product of countable sets X, (n € N),
then there exist 2° absolute and minimal wltrafilters on N which are c-satu-
rating.
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