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Existence and non-existence of maximal solutions
for ¥’ =f(z,y,9")*

by J. W. BEBERNEY ahd STEVEN K. INGRAM

1. Introduction. In this paper we shall consider the question of
existence of a maximal solution for the initial value problem

(1) ?/” = f(t, y,'y'),
(2) Y (%) = ay, y’(to) = fo,

where tyel, (ay, B,)eRX R.
For the first-order scalar initial value problem

(3) :’/, =f(,9),
(4) Y () = aqg,

where f(?, ¥) 18 continuous on I X R and ¢ eI, o, ¢ R, Peano [9], Montel [8],
and Perron [10] have given proofs of the existence of a maximal solution
Yo(?) -of IVP(3) - (4). By a maximal solution for IVP(3) - (4), we mean
a solution y,(t) of IVP(3) - (4) on its maximal interval of existence such
that if 4 (¢) is any solution, then ¥ (t) < y,(t) holds on the common interval

of existence.
Kamke [4] asked the same question for the initial value problem

for the system
(b) y =TF(,y),
(6) Y (%) = aq,

where F(f, ) is continuous on IX R", tyel, and a,¢ R*. By a maximal
solution in this case, we mean a solution ¢ (t) of IVP(5) - (6) on its maximal
interval of existence such that if y(t) is any solution, then ¢;(?) > y;(?),
©=1,...,n, holds on the common interval of existence. For the case

* Supported by NSI Grant GP—11605.
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n =2 Kamke gave a counterexample showing the non-existence of
a maximal solution for IVP(B) - (6). _

He then showed that if, as an additional assumption imposed on 77,
each F; is non-decreasing in ¥,,j # ¢, then IVP(5) - (6) has a maximal
golution in the sense defined above.

There are obviously other ways of generalizing the definition of
a maximal solution for systems from that for the scalar case, IVP(3) - (4),
Burton and Whyburn [1] and Lakshmikantham and Leela [7] have
done g0 in introducing the concept of a minimax solution of IVP(5) - (6),
and then imposing sufficient conditions on the right-hand gide of (B)
to ensure the exigtence of such solutions.

Our task for IVP(1) - (2) is different from the previous generaliza-
tions. By a mawimal solution y,(t) of IVP (1) - (2), we mean a solution
9,(t) on its right maximal interval of existence such that if y(¢) is any
solution, then ¥(t) < yo(¢) holds on the common interval of existence.
Walter [12] has shown by an example that if f(z, v, y') is continuous on
I X R? then IVP(1) - (2) need not have a maximal solution in the sense
defined. However, in his example a local maximal solution does exist.
We will say that y,(1) is a local mazimal solution of IVP (1) - (2) in case
there exists an £> 0 such that y,(f) is a solution on [Z4,%,+e] and if
y(t) is any other solution on [t,, w™), then y(f) < ,(f) on.[t;, min(w*,
to+¢)). We shall give an example of an IVP for (1)-(2) in which no
maximal and no local maximal solution exists and then give conditions
under which maximal solutions do exist.

We also shall uge the concept of an upper solution. A function y(t)
is called a CW-upper solution of (1) on I in case peC(I) n OW(intI) and

¥ (t48) —y' (t—9)
24

Dy’ (1) = limsup < f(t, w(t), v (1)),
. 00

on intI. Lower solutions are defined amnalogously.

2, Assume throughout that f(¢,y,y’) is continuous on IX R X R,
I an interval and B the reals. Let f{,eintI and (a,, f,)eR X R. Define
the funnel of solutions of IVP(1)-(2), C,, to be the set of all points
(t, a, §) sueh that ¢> ¢, and there exists a solution y(¢) of (1) - (2) such
that y(t) = a,y'(t) = f. Also define 2,(t) = supe, where (1, a, §)eC, for
some f.

From these definitions, we can observe several results which we
incorporate as the first theorem.

THEOREM 1. A. If a mawimal solution y,(t) for (1) - (2) exists, then it is
unique.

B. If the mazimal solution y,(t) exists on [ty, w;), its mazimal interval
of ewistence, then y,(t) = 2,(1) on [t,, wy).
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0. If the mazimal solution y,(t) of (1)-(2) ewists on .[t,, wy), then
the solution trajestory

ey = {(t, &, B)|te[tys wy), Yo(t) = a, Yo(t) = B}
lies on the boundary of O . ‘
D. If 2,(t) is a solution of (1) - (2), then 2,(t) is the mamimal solution.
E. Local mavimal solutions are unique.

The proofs of each of these statements are stra.lghtforward and are
omitted.

Wenow givesufficient conditions on the right-hand side of (1) to ensure
that 2,(f) is a solution on some interval and hence a maximal solution.
The next theorem is known, but the proof we give appears to be new.

THEOREM 2. Suppose g is non-decreasing in vy for fized t and y'.
Then there exists an wy > t, such that 2,(t) is a solution on [t,, wS) and
hence 2z,(t) is the maximal solution of IVP(1) - (2).

Proof. Let u,(t) be a solution of

1
Y =f(t,y,y')+—, Y(te) = ag,  Y'(t) = Bo

on [4,w;). Then wu, (t)> f(t,u,(t), u,(t)) which implies that u,(t) is
a strict C@-lower solution on [t,, w}). By the Kamke convergence theorem
([2], p. 14), there exists a solution y,(x) of IVP (1) - (2) on [Z,, w,/) such
that, for every , < w;, there exmts a subsequence {u, (1)}2, of {u,(1)}z,
such that unf(t) —4,(t) and u, (t) - yi(¢) uniformly on (o5 %)-

We claim that y,(2) = 20"3 on [t,, wy). By definition of 2,(?), 2, (%)
> ¥,(t) on [4,, wy). Suppose there exists t,¢(t,, w) such that y,(t;) < 2 (2,).
Then since there exists a sequence {y,(1)} of solutions to IVP(1) - (2)
such that y,(f) < 2,(¢,) for all » and ¥, (%) — 2(f,) a8 » — oo, there
exists an N > 0 such that y,(t;) < yy(t,) < 2,(¢,). There also exists a sub-
sequence {u, ()} of {u,(¢)} such that u,(2) — y,(?) in OW-norm on [#,, t,]. For
J sufficiently large, w,(t,) < yN(tl).

Since uy(tg) = Yn(l)y Ur(te) = ynlte), and yx(k) = (toy Y (o),
yN(to) = f(to, uy(ty), wy(ty)) < uy(t,), there exists a 6> 0 such that
Y (t) < ujy (¢) for all te[t,, t,+ 6], Hence, for te(ty, t+ ],

Uy () —Yn () = ;7 (8) — yn(ty) + ['"'.'I (t0) — f‘!jv ()1t —1) +
(t—1,)?

+ [ () — Y (%)] > 0.
Let

b = in-f{tlte(to’ h)s Yn(t) = uy (t)}

Since ?/N_(to) = us(b); Ynll) = u;(3), and yy(t) <u;(¢) on (4, t,),
there exists a (1, ¢,) such that %; — ¥, attains a relative positive maximum
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at 1. This means that u; (1) > yx(8), u;(f) = yy (1), and uy (f) < yy (). Bub
uy (8) —yn (@) =1, us @), ’“'J(t))‘l‘— —f{E, yn (@), yx ()

> f(Ey ug (), ur (@) —f(, yx (@), yx (@)

=0

since f is non-decreasing in y. From this contradiction we conclude that
Yo(t) = 2,(2) on [ty, wy): By Theorem 1, 2,(¢) is the maximal solution
to IVP(1) - (2).

The next theorem is new. We shall say that solutions to boundary
value problems (BVP). associated with (1) are unique in case (f) and
w(t), solutions of (1) with v(,) = w(ty)y v(%:) = w(ty), t;, tyel, imply v(3)
= w(l) on (I, 1y). ‘

THEOREM 3. Assume solutions to tbo-point boundary wvalue. problems
are unigue when they exist. Then there exists an wi > t, such that 2,(t) is
a solution to (1) on [i,,wS) and hénce is the maximal solution.

Proof. As a consequence of the Peano existence theorem ([2], p. 10),
there exists a 6 > 0, M > 0, M’ > 0 such that all solutions y () of (1) - (2)
exist on [to,to+6] and satmfy ly@®) < M, [y <M on [ty, ¢+ 8]
Let 7 = 2,(to+ 8).

There exists a sequence {y,(t)} of solutions of (1)- (2) such that
Yn(lo+0) < Ynia(lo+0) < 2(f+96) and y,(4,+06) >n as n — oco. By
uniqueness of boundary value problems, we have y,(f) < ¥,,.(!) on
[y, t,+ 6]. Since we have a uniform bound on {y, ()} and {y,(t)} for all =,
the sequences are uniformly bounded and equicontinuous on [Z,, f,-+ 6]
By Ascoli’s theorem, there exists a subsequence {Yn, (1)} = {y;(?)} which
converges in the 0W-norm to some solution ¥, (¢) of (1) (2) on [ty, ty+ J].
We claim y,(f) =2,(tf) on [2,,%,+ ). By definition, 2z,(t) = y,(f). By
construction y,(l,) = 2,(fy) and yo(t,+ 8) = n = 2,(¢,+ 6). Suppose there
exists ?,e(ty, o+ 6) such that y,(t) < z,(¢,). But then by definition of 2,,
there exists a solution w(¢) of (1) - (2) such that

Yoll) < w(2y) < 29(ty).

We then have y,(l,) = w(ty), ¥o () < w(ty), and yo(t-+ ) = w(t, 4 9).
This confradiets uniqueness. Hence, z,(t) is a solution to (1)-(2) on
[tO! tO + 6]'

Consider next the initial value problem (1) with initial conditions:

(7) Y(tot0) =2(ty+ ), ¥ (% +0) =2(ty+6).
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Again by the Peano existence theorem there exists #, > ¢, 6 such
that all solutions of (1) - (7) exist on [, 4 4, ¢,] and are together with their
first derivatives uniformly bounded on. [%,+ 8, t,]. Let 2, (t) = sup {y(Dy (2
a solution of (1) - (7)}. As before, 2,(t) is a solution on [£,-+ 8, #,]. We
now show that 2, () = %(t) on [t,+ 6, ty]. If not, there exists ee(ty-+ 4§, t,]-
such that 2,(e) > #,(¢). Then there exists a solution y(f) to (1)-(2) on
[%5, €] such that z,(e) > \y’(_e)‘> z,(c). By definition of 2,, 2,(?)> y(t) on
[to, e]. I y () = 2,(¢) on [y, t,+ 6], we have a contradiction to the defi-
nition of 2, (1), If y(t) < #,(t) for spme te[t,, ¢+ 8], then w(t,) = 2,(%,),
y(t) < 2(t), and y(s) > 2,(e) contradict the uniqueness of boundary
value problems. Hence, z,(t) < 2;(t) on [f,+ 6, ta].

Suppose now that z,(e) < 2,(e) for some e ¢(?,-+ J, {5]. Then the function

2 (1) ={zo(t)a teltyy o+ 0],

z1(t), te[to+ 4, t,]

is a solution to (1) - (2) such that z(e) > z,(e). This contradicts the defi-
nition of z,(¢). We conclude that z,(t) = 2,(¢) on [t,+ 4, t5].

In this way, 2,(f) can be extended as a solution to (1)-(2) to its
maximal interval of existence [t,,w;), where w; <b, b =supl. By
Theorem 1, #,(?) is the maximal solution of (1) - (2).

Beckenbach, Jackson ([3], p. 314) and others have introduced the
concept of a superfunction. A function yp(¢) is said to be a superfunction
with respect to solutions of (1) on I in case for any [t,,%,] = I and any
solution yeC®[t,, 3], y(t) < w(h), ¢ = 1,2, implies that w(t)>=y(?) on
[%;, %,]. Subfunctions are defined dually. Jackson and Schrader [4] and
Schrader [11] have investigated the interplay of uniqueness of boundary
value problems and upper solutions being superfunctions.

If in place of uniqueness, we assume that C™-npper solutions are
superfunctions, we have the following theorem:

TuroreM 4. If CP-upper solutions are superfunctions, then z,(1) is
o solution on [t,, wi) and hence the mazimal solution of (1) - (2).

The proof is the same as Theorem 3 except that one evokes the
condition that upper solutions are superfunctions rather than uniqueness
whenever the nniqueness condition is nused in the proof of Theorem 3.

It should be noted that Theorem 3 does not contain Theorem 2 or
vice versa. They are just different theorems.

Walter [12] has given an example in which a local maximal solution
to an initial value problem for (1) exists, but no maximal solution exists.
We now give an example of an initial value problem with contin-
uous right-hand side f in which no maximal and no local maximal
solution exists.
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Define
(201° + 81° — 1, t>0,y=19 > b5tr 4+,
20
407 y —-%, >0,y <6,y =6t
Sy 3 5 3
~ —208° —1, t>0,y>1 |y <B4+,
8y 20y y
(8) F(tyy,y') v O WIS W< st
: v 4 =
8y’ '
—ty— 2088+ ¢, 1> 0,y< — 1, |y| < BE+P,
20 )
_4055-812——]&#—:’—4, t> 0,y <4 < —BtH 7,
— 208 —8* +1t, >0,y -,y < —tt—17,
o, t =0

and consider
'(9) y' =F,y,y).

It is straightforward to verify that F({,y,y’) is continuous on
[0, o) X RX R. ,(t) = °sint™" and y,(f) = 0 are solutions of (9) with
initial conditions:

(10) y(0) =0, ' (0)=0.
Clearly, neither ¥, (t) nor y,(t) is a maximal or a local maximal solution

£ (9) - (10).

Observe that no solution y(f) of (9)- (10) exists with y(¢) > on
any interval [0, ¢], ¢ > 0. For if such a solution y(¢) did exist on some
interval [0, ¢], then, by definition of 7,

y' (1) = 2088482 —¢ or y(t) = -8—3— — 208 — 1,

In either case, y'' (1) < 20t°4-8#* —1t on [0, ¢] which implies y(2) < -
+3t'—31' on [0,¢]. But #+3t*—itP < for 1¢(0,1/4) since 3#*—3if
=1#[3—1]1< 0 for 0 < ?< 1/4. Hence, there can exist no solution y(t)
of (9) - (10) such that y(¢) = ¢° on any interval [0, e], ¢ > 0.

If there exists a local maximal solution %,4(¢) on [0, ¢], then we must
have 4,(t) = ¥.(f), ¥o(t) = y,(2), and w,(s,) < & for a sequence with
&y > Bny1 > 0 and ¢, >0 ag n - oo, Note tllat if 0<y,(t) <1t®, then
o(t) > 0. Since if 0 < y4(t) < #* and y;(f) < 0, then

1 8 17 20 :
Yo (1) =Y TV Y or y, (1) = —40t3—-'8t2——tg- __:‘/_.
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In either case, ¥, () < 0. Thig in turn implies that y, would cross
%2, which contradicts the maximality of y,. Hence, whenever y,(t) < #,

Yo (1) = 0.
2 2 T
We must then have that y, > for n > N,

(4n+1)= (dn+1)m
__2r- s 2 2
‘where @Vt 1)m <f, and y,(f) <? for some te @n 6= @il

for infinitely many » > ¥,
Choose the sequence {¢,} so that the function z,(f) = #*—y,(?) has
2 2
for infinitel
dntB)r’ (4n+1)7:)’ of THHmiely malfy
n> N. Then y,(s,) < &), €,>¢6,4,>0, and g, -0 a3 % — co. Also
Yolen) = Be, and 0 < yo(e,) < &, imply

a positive maximum at sne(

g 8 20 , 1
Yo (En) =“”‘yo(sn)—‘_z‘?/o(en)—‘";‘?/o(%)*
&n En En
Hence,
(11) & (en) = —20e+ y"( in) [206},4-1] > —20¢; -+ e,y (5,).-
Since 2 <eg, <— and —————2 5 fr
anthe = s ¢ Ylen) > [(4n+5) ]’ om
(11) we have
y 2 > [(dn+1)n]t 2°
12 > —20 :
0D He> - [
B 160 3[(4-!—1/%)‘]. 1
T R4 1] (4+B/m)| dnt5"

From (12), for n sufficiently large, 2, (e,) > 0. But the sequence
{¢,} was chosen so that z, has a positive maximum at each £, and hence
2, (£,) < 0. This i a contradiction. We conclude that there cannot exist
2 local maximal or a maximal solution to (9) - (10).

3. Differential inequalities are closely related to maximal solutions.
In fact, the usual proof of the existence of the maximal solution for (3) - (4)
depends on the basic properties of a differential inequality associated
with (3) - (4). In this section we shall find sufficient conditions to answer
the following question affirmatively.

Question. If v is a function of class ¢ on [a,b] = I such that
Dy (1) < f(t, 9(2), v’ (8)), does there exist a solution y(t) of the initial
value problem
(13) Yy =ft 9,9, yt) =vlh), Y (k) = ' (2o)
with tye[a, b) such that () > »(t) on [t,, t,+¢] for some &> 0%
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In addition to giving sufficient conditions under which the affirma-
tive answer to the above question holds, we shall give an example showing
that f continuous does not ensure the existence of a solution to (13) which
dominates ¢ to the right.

We first establish a lemma which will be needed later:

Levma 5. Let ¢(t) be a function of class OV on [a, b] = intI. Then
for any ¢ > 0, there evist 6 > 0, 0y > 0, Cy > 0 (depending only on v and &)
such that, for any iy e[a, b] and any p, o with |p () —u| < & |y (L) —o| < &,
every solutton of

(14) ¥y =f09,9) y) =4, YY) =0
exists on [ty—o, ty+a] and |y (1) < o, |y(1)| <Oy on [t,— 8, 1o+ 8],

Proof. Let K, = max|y(t)|+¢ K, =max|y(t)|+e on [a,d], and
let M = max|f({,y,y’) for iela,bd], |y|<K;+1, and |y |<K,+1.
As a congequence of the Peano theorem ([2], p. 11), there exists a 6 > 0
such that any solution y(?) of (1) with ¥ (%) = u, ¥'(f;) = o exists and
satisfies |y(t)| < K,+1, |9 (1) < Ky+1 on [t;— 8, 6]

Moreover, we have that

[y (8) =y (L)l = 1y ()t —1o) < M3
which implies
) < Moty (o)l < M5 -+maxly ()] +¢ = Oo.
[a,

Similarly,
ly ()] < 006+r[n£t]X|w(t)l +& =0,.

Using the idea of a modified form of (1) as introduced by Jackson
and Schrader [5], we can obtain information about the behavior of
a maximal solution relative to an upper solution.

DEFINITION -6. Let a(t), f(t)eCM[a, b] with a(t) << B(f) on [a,b]
and let ¢> 0 be such that |o’'(f)] <e¢, |f'(?)) <c on [a,b] and O, < e¢.
Then define

f(tyy,0), Yy =
F(t,y,9) ={ft,y,9), |yI<e,
f(t,y, —e), Yy <
and

1
F(t, 80), v)+y~ BB, y=p(1),
Ft,y,y) = F*(ty?/’y'): a(t) <y < B(1),

(1).

2

1
F*(t,a(t),'y')—[a(t)—y]i, Y <
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F(t,y,y’) is called the modification of f(t,y)y’) relative to the
triple a(f), A(t), and o.

LeMMA 7. For any ¢ > 0, lot F* be as in Definition 6. Let v(1) be as
in Lemma 5. Then given & > O there ewists &'* > 0 such that every solution of

(15) y' =F*(1, ?/’{‘l'), Y(o) =py, Y@ =9
with |y (ty) < u| < ) |¢3(to)'—°'| < &y tye[a, b], ewists on [t,— ’5”5 to+5"]r
and satisfies |y (1) < Oy on [2y— 38", 1,4 8"], where O, i as in Lemma 5.
Proof. Ag in Lemma B, there exist 6' > 0, K’ > 0, ¢' > 0 such that
every solution of (15) exists on [f,— &', #,-+ 6'] and satisties |y(2)| < K,
fy' @) < C on [t,—4&, t,+46'].
If y(t) is a solution of (15), then

ly' (0) — ' (2o)| = |y (&)][E—1|
= IF*(‘Er y(f); y'(f))llt_tol
< M|t —1q,
where M' = max|F*(¢, y, y’)| for tela, b], |y| <K', |y’| < O'. Hence,
ly (] <y o)l -+ (2 — 1|
< max |y’ ()| + &+ M |t —1,|
[e, ]

for all te[t,—d', t,4+0']. Since C, = max|y’(t)| +e+ Mo, there exists
[a,a]
0 < 6" < & such that M 8" < M8 and such that

ly (1) < G-

TEEOREM 8. Let v be a OP-upper solution on [a,b]c I and assume
there exists a local maximal solution yy(t) to (13). Then either:

(i) there ewists an & > 0 such that y,(t) > w(t) on [t,y,t,+ ], or

(ii) ,(t) —p(t) oscillates positive and megative infinitely often as ¢ — 1.

Proof. The only behaviour which must be ruled out is %,(2) < p(¢¥)
on (ty,t,+n) for some % > 0. Suppose this were the case. Let ¢ > 0 be
given, then by Lemma 5 there exists 6 > 0 and ;> 0 such that any
solution y(f) of

y' =fy, 9 ) =v), Y €)=y (%)
exists and satisfies |y’ (2)] < Cp on [tg, to+ &1
Let IF'(t, y, y’) be the modification of f({, ¥, y’) relative to the lower

solution w,(t), the upper solution y(t), and Cy. Then by Lemma 7, there
exists 6’ > 0 such that all solutions z(t) ef

(16) v =F"0,y,y), ) =w(l)y ¥ (t) = ¥ (1)
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exist and satisfy [/ ()] < O, on [, t,+ 6']. By Theorem 2.6 (cf. [3]),
there exists a solution w(f) to the boundary value problem

' =F,y,y), Yl) =), Y+ )=1yp(+38"),

where 0 < &' < min[é, 6, 7] with y,(t) <w() < w(t) on [ty to+6"]
Hence, y,(t,) = w’(t,) = v’ (,) and w(?) is then a solution of (16). There-
fore, |w’(f)] < Oy on [fy, %+ 6] which implies by the definition of the
modification of f that w(t) is in fact a solution of the initial value problem
¥ =F ), Y(t) = w(to)y ¥’ (o) = v’ (o) on [4y, 4o+ 6" ]. But w(te+6")
= y(to+8") > y,(,+ 6) contradicts the fact that y, is the local maximal
solution. We conclude that either cage (i) or (ii) holds if there exists a local
mazximal golution.

‘We now proceed to show that if solutions to boundary value problems
are unique, if f(%, ¥, ¥’) is non-decreasing in ¥, or if upper solutions are
guperfunctions, then we have behavoir as in (i), We shall then give an
example which behaves ag in (ii).

THEOREM 9. Assume solutions to boundary value problems for (1)
are unique if they cxtst. Let v (t) be a CW-upper solution on [a, b] = I and
let y,(t) be the maximal solution of (13):

¥ =F0,9),  y@) =w(te), Yy (L) = v (b)),

where tye[a, b). Then there exists an e > 0 such that p (1) < yo (1) on [Ty, to+el.

Proof. Assume that there exists no ¢> 0 such that y,(f) = »(f)
on [fy, to+¢]. By Theorem 8, there then must exist sequences {o,}, {s,}
such that 3y < g, < b, t, < p,, < b, 0, =1, p, >4, a8 n — oo, and y(o,)
< Yo(0n)s ¥ (tn) > Yolu,) for all n. By Theorem 3.12 (cf. [3]) there exists
a 6, > 0 such that for any ¢, > {; with ¢,—1?, < d, the boundary value
problem g = f(4, 4, ¥'), ¥ (%) = v(%), ¥ (&) = (i) has a solution z(¢;1,)
guch that z(¢; ¢,) < w(t) on [¢,, t;]). Choose t, such that y,(t,) = w(¢;) and
t;—1, < 6, which is possible because y,(t) —w(t) oscillates positive and
negative infinitely often as ¢t — ¢; . Then for #» sufficiently large, ¢, < o, < 7,
and y,(o,) > w(0,) = 2(0,; t,). But this contradicts uniqueness of boundary
value problems.

Hence, there exists an ¢ > 0 such that y,(1) = ¢(t) on [t,y, {,-+¢].

If we assume that OW-upper solutions are super functions, then it
follows that the maximal solution dominates the upper solution u on
their common interval of existence. Schrader [11] has shown that if
solutions to boundary value problems are unique and if solufions to
initial value problems for (1) are extendable to I, then C-upper solutions
are superfunctions.

THEOREM 10. Assume that CW-upper solutions are superfunctions.
Then, if (1) is a CM-upper solution on [a, b] = I and if y,(1) is the mawimal
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solution to the initial value problem on [t,, wi), y, (1) = yp(¢) on [4, , min (b, wg ))-

Proof. By Theorem 4, the maximal golution #,(t) of (13) exists on
(%, w; 1. Since y(f) is a superfunction, case (ii) of Theorem 8 is impossible.
Hence, there exists an &£ > 0 such that y,(t) > »(f) on [{,,1,+']. If there
exists 1 (fy, 1)+ e] With y,(t,) > v(t,), then y, (t) > v (t) on [t,, min (b, w;)).

The only possibility remaining is that y,(t) = () on [t,, t,+¢] and
Yo(t) < p(f) on [t,+¢, t4+e&,] for some &, > &. By Theorem 4, the initial
value problem ¥ = f(t,4,9"), Y(to-+e) = p(lote), ¥ (lote) =y’ (to+e)
has a -maximal solution ¥ (t) and since y(¢) is a superfunction y(t) = y(#)
on [iy+e, to+e,] for some &, > ¢. But then

2() ={y0(t): telto, to-¢],

y(t), te[tot+e, to+&2]
is a solution ta (13) such that z(f) > y,(t) for some ¢. This contradicts
the maximality of y,. Hence, ,(t) > v(t) on [f,, min (wg, b)).

THEOREM 11. Let w(f) be a CW-upper solution of (1) on [a,b] < I.
Suppose the maximal solution to (13) exists for tye[a, b]. Then either:

(1) yo(t) = v (t) on some right neighborhood of t,, or

(ii) y,(t)—y'(¢) changes sign at an infigite number of poinist,, where
i, >t and t, -~ 1, as n — oo.

Proof. By Theorem 8 and the mean value theorem, the possibility
that v’ (f) > y,(t) on (¢, t,+ 6] for some 6> 0 can. be ruled out imme-
diately. The only possibilities which remain are cases (i) and (ii).

If f(t, y, ') is Don-decreasing in ¢, then Kamke [6] and others have
proved that the maximal solution and its derivative dominate the given
upper solution and its derivative on their common interval of existence.
Of course, non-decreasing in ¥ is only a sufficient condition. For example,
y' = —y, y(0) =0, y'(0) =1 has y,(¢) = sint as its maximal solution
on [0, n] and p(f) = — $(t—1)2+ % as an upper solution with y(t) = (),
and y'(t) = v’ (¢) on [0, =],

We conclude this paper by giving an example of a differential equation
(1) with continuous right-hand side such that:

(A) there exists a C™-upper solution u(t) such that no solution of
(13) dominates (?) on [Z,, ¢, 4] for any 6 > 0;

(B) there exists a O®-upper solution (i) such that y,(t)—v(f) and,
Yo (t) —wo(t) change sign infinitely often as ¢ — ¢, where y,(t) is the
maximal solution of (13).

Consider

(16) y' =fty,9), y0) =0, y(0)=0,
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where
0, 1>20,y=>0,

20
&, y,y) = 5(7”—%)7 0<t<l, ~¥<y<0,

B(—20841), O<t<l,y< —0.

Then f(i, y,y’) is continuous on [0,1/2V56]x RX K, and y,(f) = 0
is a solution of (16). In fact, y,(t) is the maximal solution of (16) on
[0, 1 /21/5]. By the definition of f, there exists no solution of (16) which
is non-negative on any right neighborhood of 0 except y,(t) and there
algo exists no solution y(¢) < —1* on any right neighborhood of 0 since
y(t) < —¢° implies ¥’/ (¢) > 0. Assume y,(?) is not the maximal solution
to (16). Then there exists a solution w(¢) of (16) such that y({) < 0 on
(0, 8), ¥(8) = 0, and y(t) > 0 on (4, 6+ ¢) for some & > 0. For any 7¢(0, ),

Y(n) —a(n) = (9(0)—5o(0)) +{y' (0)—yo(0)t-+(y" () — 4" () /2
for some ue(0, 7) implies that if y(n) < 0, then y" (x) < 0. But

5
¥ (u) = ?;,(,”) [20p2—1]> 0

or 1

rs =5 _20 3_'_ >0 if <"_"'-._.
Y (1) [ e+ ul )% "

Hence,if 6§ < 1 /21/3, ¥’ (t) = 0 whenever ¥ (1) < 0 implies that y (f) = ¢
on [0, 1/2V5]. Assume then that there exists £, > 1/2V5 such that y () > 0.
Since the only solution z(t) of y'* = f(¢, v, ¥’), y(1/21/5) =0, y'(1/21/5) =0
that i3 non-negative is 2(f) = 0, y(f) must be negative at some points
t>1/2V5. But if ()< 0, t>1/2V/B, then ¢"(t) <0 which implies
() < 0. We conclude 7,(¢) is the maximal solntion on [0, 1].

Define p(t) = £ sint™ . p(¢) i3 not a CW-upper solution. However,
it can be modified in such a way that the modified function is. We will
only sketch the procedure. One can verify that v (t) is a C®-upper solution

2 2
(4n+1)w’. (40@—1)1‘:]’ =12

Let {o,} and {u,} be sequences of relative maxima and minima of
¥ (8), respectively, such that 0 < Opp1 < 0 < 1 /21/5, 0 < plpy < <1 /21/5-
and o, -0, 4, -0 as n - oo, Then we have

on any interval [

2 1 2 1 2

—_—< < < .
(dn+3)= Hn @ern+lr  (dnd-1)=m =S G S (dn—1)w < -
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For n sufficiently large, » > N,, one can verify that v’ < f(3, v, ¥*)
on [oy pin-1]. _

On the intervals [u,, 0,], ¥(¢) must be modified in such a way that
the resulting function is a O-upper solution on [0, sy ;1. To do this,
define

(17) Ya(t) = p(u,)8ine, (t—a,)
and
(18) 2, (1) = (0,)8in06,(t—a,).

Let t,e(4,, 0,) and choose ¢, a,, ¢,, a, such that

) ney(u,—a) =1, sing(o,—a) =1,
Binclztn—a1) = O’ Smaz(tn—a’:’.) = 0!
—017’ () = 02—'7’ (on).

From (19), we find that:

] 1
01=Em’ ay = 2y — 1,
T 1
Cy =5m, Ay =1y,
where
1 = £ (0n) = Onp (pn)

9(0n) ~v (1)
2,(1) < 0 = f(¢, 2,, 2,) on [t,, ¢,] and for n sufficiently large, n > N,
= N1y 4 () < f{t) 9n(t), ¥a(9) on [ug, 1] Define
y(f), te[oyy 1],
p() =12,(8), telty, ol
Yn(t)y  telnytnl
for n > N,. Then y(?) is of class C® on. [0, uy, ,], and is C® with 3" (2)
I 90 @) 0n U [ty 1)Uy ) U (s tacn)]: Fox 7 =y 0,
OT ity

Dy () < fln, v(n), v (n))

for all n> N,. Hence, y(t) is a C"-upper solution on [0, sy,_,].

As a final remark, we note that the above example shows that
a maximal solution to (1) may exist even if the conditions of Theorems
2,3, or 4 are not satisfied.
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