UNIFORM COMPLETENESS OF TOPOLOGICAL SPACES

BY

W. KULPA (KATOWICE)

In this note there are proved some theorems which are generalizations of three known theorems, namely of a theorem of Alexandroff [1] and Hausdorff [3] that each G_{δ}-subset of a complete metric space is homeomorphic to a complete metric space, of a theorem of Nagata [7] and Kelley [5] that each paracompact space is topologically complete, and of a theorem of Čech [2] that each metric G_{δ}-subspace of a compact space is homeomorphic to a complete metric space.

Our theorems extend those known theorems in two directions. First, we consider intersections of arbitrary families of open subsets instead of G_{δ}’s and a property induced by the uniformity with a base having prescribed cardinality (not necessarily \aleph_0) instead of metrizability. Second, we consider generalized uniformities, namely f-uniformities from our paper [5], instead of uniformities. As a consequence, results are concerned with general topological spaces without assuming any separation axioms.

In [5] there was introduced a notion of an f-uniformity on a set X, being a generalization of a uniformity in the sense of Tukey.

A family $\mathcal{U} \subset 2^X$ is called an f-uniformity on the set X if the following conditions are satisfied:

F1. $X = \bigcup \{ \bigcup P : P \in \mathcal{U} \}$.

F2. $Q \in \mathcal{U}$ iff for each $x \in \bigcup Q$ there exists $P(x) \in \mathcal{U}$ such that $x \in \bigcup P(x)$ and $P(x) \triangleright Q$.

F3. If $P_1, P_2 \in \mathcal{U}$, then for each $x \in \bigcup P_1 \cap \bigcup P_2$ there exists $P(x) \in \mathcal{U}$ such that $P(x) \triangleright P_1 \land P_2$.

F4. If $P, Q \in \mathcal{U}$ and $x \in \bigcup Q$, then $\text{st}(x, Q) \cap \bigcup P \neq \emptyset$.

The symbols $P \triangleright Q$ and $P \triangleright Q$ mean that P is a refinement and a star-refinement, respectively, of Q.

If we assume that the elements of \mathcal{U} are coverings of X, then we obtain axioms of uniformity without the axiom of separation.
A weight of an \(f \)-uniformity \(\mathcal{U} \) is the minimum of \(\text{card} \mathcal{B} \), where \(\mathcal{B} \) is a base for \(\mathcal{U} \).

Each \(f \)-uniformity \(\mathcal{U} \) on a set \(X \) induces a topology \(T_\mathcal{U} \) on \(X \): \(G \in T_\mathcal{U} \) iff for each \(x \in G \) there exists \(P \in \mathcal{U} \) such that \(x \in \bigcup P \) and \(\text{st}(x, P) \subset G \). Conversely, each topology on \(X \) is induced by some \(f \)-uniformity on \(X \) (see [5]).

A filter \(\xi \subset 2^X \) is called a Cauchy filter if, for each \(P \in \mathcal{U} \), \(P \cap \xi \) is non-empty. For each Cauchy filter \(\xi \) there exists a minimal Cauchy filter \(\xi_0 \subset \xi \) such that if \(\eta \subset \xi \) is a Cauchy filter, then \(\xi_0 \subset \eta \). The filter \(\xi_0 \) has a base of the form \(\{ \text{st}(A, P) : A \in \xi, P \in \mathcal{U} \} \). Let \(\xi(x) \) be the filter of neighbourhoods of the point \(x \). The filter \(\xi(x) \) is induced by the base \[\{ \text{st}(x, P) : x \in \bigcup P, P \in \mathcal{U} \} \] .

If \(\xi \) is a Cauchy filter, then the conditions
(a) \(x \in \lim \xi \),
(b) \(x \in \lim \xi_0 \), where \(\xi_0 \) is the minimal Cauchy filter of \(\xi \),
(c) \(x \in \bigcap \{ \text{cl} A : A \in \xi \} \),
where \(x \in \lim \xi \) means that \(\xi(x) \subset \xi \), are equivalent.

An \(f \)-uniformity \(\mathcal{U} \) on \(X \) is complete if each Cauchy filter converges.

We say that \(f \)-completeness (completeness) of a space \(X \) is not greater than \(m \), and write \(\text{fcp} X \leq m \) (\(\text{cp} X \leq m \)), if there exists a complete \(f \)-uniformity (uniformity) \(\mathcal{U} \) of the weight not greater than \(m \) compatible with the topology on \(X \).

We say that a space \(X \) is well embedded in a space \(Y \) if \(Y = \text{cl}_Y X \) and \(\bigcap \{ \text{cl}_Y V : V \in \xi(x) \} \subset X \) for each \(x \in X \).

A space \(X \) is said to be \(f \)-compact if for each open covering \(P \) there exists a finite subfamily \(Q \subset P \) such that \(X = \text{cl} \bigcup Q \). If a space \(X \) is Hausdorff, then it is usually called \(H \)-closed. Note that there is an equivalence between the \(f \)-compactness and the convergence of each open filter.

Theorem 1. Each space \(X \) can be well embedded in an \(f \)-compact space \(Y \). If the topology on \(X \) is induced by a uniformity, then \(X \) can be well embedded in a compact space \(Y \).

Proof. In [5] it was proved that each space \(X \) has a totally bounded \(f \)-uniformity compatible with the topology on \(X \). There was constructed an \(f \)-completion (\(\tilde{X}, \tilde{\mathcal{U}} \)) of the \(f \)-uniform space (\(X, \mathcal{U} \)), where \(\tilde{X} = X \cup X_0 \), \(X_0 \) is the set of \(\xi_0 \) such that \(\xi_0 \) is a minimal Cauchy filter in \(\mathcal{U} \) having an empty limit, and the \(f \)-uniformity \(\tilde{\mathcal{U}} \) is induced by the base \(\{ \tilde{P} : P \in \mathcal{U} \} \) with \(\tilde{P} = \{ \tilde{U} : U \in P \} \) and \(\tilde{U} = U \cup \{ \xi_0 \in X_0 : U \in \xi_0 \} \).

It was proved also there that \(X \) is densely embedded in \(\tilde{X} \) and that the topology \(T_{\tilde{\mathcal{U}}} \) is \(f \)-compact. To see that \(X \) is well embedded in \(Y = \tilde{X} \)
notice that if \(x \in X \) and \(\xi_0 \in X_0 \), then there exist \(P \in \mathcal{U} \) and \(U \in \xi_0 \cap P \) such that \(x \notin \text{cl}_X U \). Hence and from the axiom F3 we infer that there exist open (in \(Y \)) neighbourhoods \(V_x \) and \(V_{\xi_0} \) of the points \(x \) and \(\xi_0 \), respectively, such that \(V_x \cap V_{\xi_0} = \emptyset \).

If the space \(X \) is uniformizable, then the topology on \(X \) is also induced by a totally bounded uniformity \(\mathcal{U} \). Since the above-described completion \(\mathcal{U} \) is also a uniformity, the topology \(T_{\mathcal{U}} \) is compact, which completes the proof.

A set \(X \) is a \(G_m \)-subset of a space \(Y \) if \(X \) is an intersection of no more than \(m \) open subsets of \(Y \).

Theorem 2. If \(\text{fep} \ X \leq m \) and a space \(X \) is well embedded in \(Y \), then \(X \) is a \(G_m \)-subset of \(Y \).

Proof. Let \(\mathcal{B} \subset \mathcal{U} \) with \(\text{card} \mathcal{B} \leq m \) be a base of a complete \(f \)-uniformity \(\mathcal{U} \) compatible with the topology on \(X \). For each \(P \in \mathcal{B} \) and \(x \in X \) let \(U_P(x) \) be an open subset of \(Y \) such that \(U_P(x) \cap X \subset V \in P \). Put

\[R_P = \bigcup \{ U_P(x) : x \in X \}. \]

It suffices to prove that \(X = \bigcap \{ R_P : P \in \mathcal{B} \} \). Clearly, \(X \subset \bigcap \{ R_P : P \in \mathcal{B} \} \). Now, suppose that there exists \(y \in \bigcap \{ R_P : P \in \mathcal{B} \} \) such that \(y \in Y \setminus X \). For each \(P \in \mathcal{B} \) choose \(x_P \in X \) such that \(y \in U_P(x_P) \). The family \(\{ U_P(x_P) \cap X : P \in \mathcal{B} \} \) is a base for a Cauchy filter \(\xi \). Since \(\mathcal{U} \) is complete, there exists

\[x \in \bigcap \{ \text{cl}_X U_P(x_P) \cap X : P \in \mathcal{B} \}. \]

Now \(\xi \) is a Cauchy filter, and so, for each \(V \in \xi(x) \), \(V \subset Y \), there exists \(P \in \mathcal{U} \) such that \(U_P(x_P) \cap X \subset V \). Since \(\text{cl}_Y X = Y \), we have

\[\text{cl}_Y (U_P(x_P) \cap X) \subset \text{cl}_Y U_P(x_P) \cap \text{cl}_Y V. \]

Thus \(y \notin \text{cl}_Y V \) for each neighbourhood \(V \subset Y \) of \(x \). This implies

\[y \notin \bigcap \{ \text{cl}_Y V : V \in \xi(x) \} \subset X, \]

which contradicts \(y \in Y \setminus X \).

Theorem 3. Each topological space has a complete \(f \)-uniformity compatible with the topology on \(X \).

Proof. Let \(Y \) be an \(f \)-compact extension of \(X \) such that \(Y = \hat{X} \), where \(\hat{X} \) is a space with the topology induced by the completion of the greatest totally bounded \(f \)-uniformity \(\mathcal{U} \) on \(X \). For each \(y \in Y \setminus X \) let \(P(y) \) be the set of \(V \) such that \(V \) is an open set in \(X \) with \(y \notin \text{cl}_Y V \) (cf. the remark in the proof of Theorem 1: for each \(x \in X \) and \(y \in Y \setminus X \) there exist open neighbourhoods \(V_x \) and \(V_y \) with \(V_x \cap V_y = \emptyset \)). The covering \(P(y) \) of \(X \) belongs to the greatest \(f \)-uniformity \(\mathcal{U}^* \) on the space \(X \) (see [5]). Now, it is easy to see that \(\mathcal{U}^* \) is complete.
Let \(\xi_0 \subset 2^X \) be a minimal Cauchy filter. For each \(A \in \xi_0 \) there is \(\text{int}_X A \neq \emptyset \). We have
\[
\bigcap \{ \text{cl}_X A : A \in \xi_0 \} \supset \bigcap \{ \text{cl}_X \text{int}_X A : A \in \xi_0 \} = \bigcap \{ \text{cl}_Y \text{int}_X A : A \in \xi_0 \} \cap X,
\]
but, in view of the \(f \)-compactness of \(Y \),
\[
\emptyset \neq \bigcap \{ \text{cl}_Y \text{int}_X A : A \in \xi_0 \} \subset \bigcap \{ \text{cl}_Y \text{int}_X A : A \in \xi_0 \cap P(y), y \in Y \setminus X \} \subset X.
\]
Hence \(\bigcap \{ \text{cl}_X A : A \in \xi_0 \} \neq \emptyset \).

Let \(X \) be a uniformizable space and let \(X \subset Y \). An open set \(G \subset Y \) is said to be a uniform neighbourhood of \(X \) if there exists an open covering \(P \) of \(X \) such that \(\bigcup \{ \text{cl}_Y U : U \in P \} \subset G \) and \(P \) belongs to the greatest uniformity compatible with the topology on \(X \).

Note that if \(X \) is paracompact, then each open set \(G \) containing \(X \) is a uniform neighbourhood of \(X \), since each open covering of \(X \) belongs to the greatest uniformity on \(X \).

Theorem 4. Let \(X \subset Y \), \(\text{cl}_Y X = Y \), be an intersection of no more than \(m \) uniform neighbourhoods of \(X \). If the topology on \(Y \) is induced by a complete uniformity of the weight not greater than \(m \), then the topology on \(X \) is induced by a complete uniformity of the weight not greater than \(m \cdot n \), i.e., \(\text{cp} Y \leq n \) implies \(\text{cp} X \leq m \cdot n \).

Proof. Let \(\mathcal{G} \) be a family of open neighbourhoods of \(X \) with \(\text{card} \mathcal{G} \leq m \) and such that \(X = \bigcap \{ G : G \in \mathcal{G} \} \). For each \(G \in \mathcal{G} \) choose a \(P_G \) belonging to the greatest uniformity \(\mathcal{U}^* \) on the space \(X \) such that
\[
\bigcup \{ \text{cl}_Y U : U \in P_G \} \subset G.
\]

Let \(\mathcal{V} \) be a complete uniformity on \(Y \) with weight \(\mathcal{V} \leq n \). By a countable operation (see [6], p. 246) we can find a uniformity
\[
\mathcal{U}_o \supset \mathcal{V} \cap X \cup \{ P_G : G \in \mathcal{G} \}
\]
compatible with the topology on \(X \) and such that
\[
\text{weight} \mathcal{U}_o = \text{weight} \mathcal{V} \cdot \text{card} \mathcal{G}.
\]

To see that \(\mathcal{U}_o \) is complete notice that each minimal Cauchy filter \(\xi \subset 2^X \) in the sense of \(\mathcal{U}_o \) is a Cauchy filter in the sense of \(\mathcal{V} \) and
\[
\bigcap \{ \text{cl}_X A : A \in \xi \} \supset \bigcap \{ \text{cl}_X \text{int}_X A : A \in \xi \} = \bigcap \{ \text{cl}_Y \text{int}_X A : A \in \xi \} \cap X \neq \emptyset,
\]
since \(\mathcal{V} \) is complete and
\[
\bigcap \{ \text{cl}_Y \text{int}_X A : A \in \xi \} \subset \bigcap \{ \text{cl}_Y \text{int}_X A : A \in \xi \cap P_G, G \in \mathcal{G} \} \subset X.
\]

Theorem 4 is a generalization of the Alexandroff [1] and Hausdorff [3] Theorem that each \(G \) subset of a complete metric space is metrizable in a complete manner.

Put \(\text{uw}X = \min \{ \text{weight} \mathcal{U} : \mathcal{U} \) is a uniformity compatible with the topology on \(X \)\}.

THEOREM 5. Suppose that \(\text{uw} X \leq n \), \(X \) is a dense subspace of an \(f \)-compact space \(Y \), and \(X \) is an intersection of no more than \(m \) uniform neighbourhoods of \(X \). Then \(\text{cp} X \leq n \cdot m \).

Proof. The idea of the proof is the same as that of Theorem 4. Let \(\mathcal{G} \) be a family of uniform neighbourhoods of \(X \) with \(\text{card} \mathcal{G} \leq m \). For each \(G \in \mathcal{G} \) choose an open covering \(P_G \in \mathcal{U} \) such that

\[
\bigcup \{ \text{cl}_Y U : U \in P_G \} = G.
\]

Let \(\mathcal{U} \) be a uniformity on \(X \) with weight not greater than \(n \). There exists a uniformity \(\mathcal{V}_0 \subset \mathcal{U}^* \) such that

\[
\mathcal{V}_0 \supset \mathcal{U} \cup \{ P_G : G \in \mathcal{G} \} \quad \text{and} \quad \text{weight} \mathcal{V}_0 \leq m \cdot n.
\]

Take a minimal Cauchy filter \(\xi \in 2^X \) in the sense of \(\mathcal{V}_0 \). We have

\[
\bigcap \{ \text{cl}_Y A : A \in \xi \} \supset \bigcap \{ \text{cl}_Y \text{int}_X A : A \in \xi \} \cap X = \bigcap \{ \text{cl}_Y \text{int}_X A : A \in \xi \} \neq \emptyset,
\]

since \(Y \) is \(f \)-compact and

\[
\bigcap \{ \text{cl}_Y \text{int}_X A : A \in \xi \} \supset \bigcap \{ \text{cl}_Y \text{int}_X A : A \in \xi \cap P_G, G \in \mathcal{G} \} \subset X.
\]

Theorem 5 is a generalization of the fact that each paracompact space \(X \) is topologically complete ([Nagata [7], Kelley [4]]) and it is also a generalization \((m = n = m_0)\) of the theorem that each metrizable \(G_\delta \) of a compact space is completely metrizable (Čech [2]).

REFERENCES

SILESIAN UNIVERSITY
KATOWICE

Reçu par la Rédaction le 15. 11. 1974

4 — Colloquium Mathematicum XXXVI.2