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0. Introduction. In this paper we prove that any closed infranilmanifold
M with

bz, (M) = rankim[Z (n,(M))— H,(M)] > 0

is affinely "equivalent to (F x [0, 1])/((a(x), 0) ~ (x, 1)), where F is an affine
submanifold of M and a: F — F is an affine difffomorphism of finite order (see
Theorem 1.1 for a more precise statement). The affine equivalence is associated
with every choice of an epimorphism &: 7, (M)~ Z with ¢(Z(n,(M))) # 0 (see
Theorem 3.1 below).

Theorem 4.1 is an equivariant version of Theorem 1.1. It asserts the
following. If a compact Lie group H acts affinely on M and Fix(H; M) # 9,
then there is an invariant affine submanifold F =« M and an affine equivariant
diffeomorphism from F x (0, 1) onto M —F iff H fixes a nontrivial element of
Z(n,(M)).

When a manifold M is flat, bz, (M) coincides with the first Betti number
of M (see Corollary 1.1). Hence Calabi’s theorem (see, e.g., [2] and [15],
Theorem 3.6.3) is a particular case of Theorem 1.1.

Theorems 1.1 and 4.1 will be derived from Proposition 2.1 describing the
set Alp(M) of all closed and parallel 1-forms on a compact infranilmanifold M,
V, where V is the canonical connection on M. Proposition 2.1 is a simple
consequence of its particular case proved by Nomizu in [11]. Note that the
corresponding result is false for higher cohomology groups (see Propo-
sition 2.3 and [11], p. 538).

1. The generalized Calabi reduction.

DErFINITION 1.1. Let M, ¥ be a manifold with connection V. Then by an
affine Calabi reduction we mean an affine diffecomorphism (that is, a connection
preserving diffcomorphism) ¢: M - F,, V', where F is a manifold,

_ Fx[0,1]
= (a(x), 0) ~ (x, 1)’
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V' is the connection induced by a product connection on F x R, and a: F — F is
an affine diffeomorphism of finite order r.

Remark 1.1. In a similar way one can define a topological Calabi
reduction.

Remark 1.2. (a) An affine Calabi reduction ¢: M —F, determines
a fibration p: M —»S! given by p([x, t]) = [t]eR/Z = S*. Here [x, t] is the
class of (x, t)e Fx[0, 1] in F,, and [¢] is the class of teR in R/Z.

(b) As F,, = F;y = F x§', an r-fold cover of M is affinely diffeomorphic to
FxS'

DEFINITION 1.2. If
n: 7wy (M)~ 7, (M)/[n, (M), n,(M)] = H,(M)
is the projection and Z(rn,(M)) is the center of = (M), then
bz, (M) = rank n(Z(r,(M))).

One of the basic results in the flat manifolds theory is the so-called Calabi
reduction theorem. It asserts that a closed flat manifold with the first Betti
number b, (M) greater than zero admits an affine Calabi reduction (see [2] and
[15], Section 3.6; see also Corollary 1.1 below). This theorem allows us to study
flat manifolds inductively using the induction on their dimensions.

Let G be a nilpotent, connected, simply connected Lie group and let ¥, be
a connection on G such that left translations in G act on TG as parallel
translations (cf. [1], Section 7.2, and [7], Section 2). An infranilmanifold is an
orbit space M = (G, V,)/T’, where T is a discrete group acting affinely, freely,
and properly discontinuously on G, V, and such that G N I has finite index in
I'. We will always assume that G I" acts on G by right translations. An
infranilmanifold G/I" is a flat manifold if G is isomorphic to R".

A closed manifold M (dim M > 4) is homeomorphic to an infranilmanifold
iff m,(M) is a finite extension of a nilpotent, torsion free, finitely generated
group and =m,(M) =0 for i > 2 (see [6], Theorem 5.1).

It is easy to verify that one-parameter subgroups of G are exactly
geodesics and fe Aff(G) (where Aff(G) denotes the group of all affine diffeomor-
phisms of G) if and only if f = L 04, where ge G, L (y) = gy for ye G, and 4 is
an automorphism of G (cf. [7], Section 2). Hence affine submanifolds of G,
V are exactly algebraically affine submanifolds of G. By an algebraically affine
submanifold of G we mean a submanifold L,(H) = G, where H is a Lie
subgroup of G and heG.

The following result generalizes Calabi reduction to infranilmanifolds.

THEOREM 1.1.'Let M, V be a closed infranilmanifold with a flat canonical
connection V. Then there is an affine Calabi reduction of M if and only if
bz, (M) > 0.
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Remark 1.3. (a) It is easy to see that the existence of a topological
Calabi reduction implies bz, (M) > 0. So we should prove only the converse
implication.

(b) The fact that the existence of a topological Calabi fibration implies the
existence of an affine Calabi fibration seems to be a very special property of
infranilmanifolds. It can fail even for nonpositive curvature manifolds. To be
more specific, for every closed manifold M admitting a metric of nonpositive
curvature and satisfying Z(n,(M)) # {1} there is (see Theorem 3.1 in [5] and
[9]) a topological Calabi fibration but not always there is an affine Calabi
fibration. See [9], p. 222, for a counterexample.

(c) The fact that ¢: M - F, is a Calabi reduction of an infranilmanifold
M means that F is covered by an algebraically affine submanifold F = L,(H)
(where H is a Lie subgroup of G and he H) of G, G is isomorphic to H x R, and
¢ is covered by an algebraically affine diffeomorphism ¢: G—G. Hence
Theorem 1.1 can be treated as a purely algebraic result.

(d) A topological (or smooth) version of Theorem 1.1 can be found in 5]
(Theorem 3.1) and [10] (Section 4.7, Corollary 1). In [10], Section 4.7,
topological Calabi fibrations are treated as a particular case of a more general
notion of a Seifert fiber space with typical fiber S! and Corollary 1 there
follows from a more general result ([10], Section 4.7, Theorem 1).

CoroLLARY 1.1. If M is a closed riemannian flat manifold, then
bz, (M) = b,(M). Hence Calabi’s theorem is a particular case of Theorem 1.1.

Proof. The proof of Corollary 1.1 is implicitly described in the proof of
the Calabi reduction (see, e.g., [15], Section 3.6). For convenience of the reader
we present here a short direct argument. The flatness of M implies that
harmonic forms on M are parallel. Every parallel 1-form « determines
a parallel vector field X, that is perpendicular to kerw and satisfies
(X, (x)) = 1 for xe M. It is well known that I (M), the identity component of
the isometry group of a closed flat manifold M, is generated by parallel fields.
Since I,(M) is a compact, commutative (as parallel fields commute) Lie group,
I,(M) is a torus T* and our argument shows that k > b,(M). In particular,
there is an S'-action ¢,: M - M, t€[0, 1], generated by a parallel vector field X.

It is well known (see [4], Lemma 4.2) that every orbit of our S!-action
determines a central element of n,(M). As the vector field X is parallel, the
1-form w, given by w(v) = (X, v), is parallel and, in particular, it is harmonic.
For a fixed orbit c: [0, 1] M, c(t) = ¢,(x), we have

fo= }w(dc/dt)dt = jl'w(X)dt = |X|*> > 0.
c (V] 0

This holds for any S!-action embedded into our T*-action. Hence we have
a monomorphism

7, (TS H, (M) - Z*,

8 — Colloquium Mathematicum LIX.2
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where ev, is induced by ev: T*—» M, ev(t) = tx, (here x, is a chosen point of
M), and where the second map is induced by the projection onto the quotient
of H,(M) by its torsion subgroup. As

imev, < im[Z(rn,(M))— H,(M)],

we have bz, (M) = k. This completes the proof of Corollary 1.1.

ExaMPLE 1.1. The last statement, that b, (M) = bz, (M) for a flat manifold
M, is false for infranilmanifolds. A well-known counterexample is the following.
Let G be the Heisenberg group, i.e., the group of real 3 x 3 upper triangular
matrices with diagonal entries equal to 1. It is the simplest noncommutative
nilpotent Lie group. Let I" be its subgroup of all matrices with integer entries
and let M = G/I. Then G is diffeomorphic to R, I' ~ =, (M), and it is easy to
see that Z(I') = [I', I'] = Z. Hence bz,(M) = 0. However,

HM=T/IIN1=Z®Z and b,(M)=2.

2. Closed parallel 1-forms on infranilmanifolds. In this section we prove
the following

PROPOSITION 2.1. Let M = G/I" be a closed infranilmanifold and let V be
a canonical connection on M. Then every cohomology class ve H'(M; R)
contains a unique V-parallel 1-form. In particular, dim A% (M) = b, (M).

Throughout this section the following notation will be used. By L(G) we
denote the Lie algebra of a Lie group G. If H is a group (or if H is a Lie
algebra), then H®® denotes its abelianization, i.e., H*® = H/[H, H], and Z(H)
stands for the center of H. By B*(G) we denote the set of all bi-invariant k-forms
on a Lie group G, and by n*: B¥(G*®) » B*(G) the homomorphism induced by
the canonical projection n: G — G*®. The set of all parallel and closed k-forms
on an infranilmanifold M, V (where ¥V is a canonical connection) will be
denoted by AX.(M).

We will need some known facts (cf. [11], Section 4, and [12], Appendix 2)
concerning closed and left-invariant 1-forms on Lie groups. They can be stated
as follows.

PROPOSITION 2.2. (a) Let G be a connected Lie group and let w be
a left-invariant 1-form on G. The following conditions are equivalent:

(i) the form w is bi-invariant;

(ii) the form w is closed;

(iii) the homomorphism L{(G)— R ~ L(R) determined by w is a Lie algebra
homomorphism. '

(b) The homomorphism n*: B'(G*®)— B(G) is an isomorphism.

The implication (i) = (ii) is known (see, e.g., [12], Appendix 2, Section 2).
The equivalence (ii) <> (iii) follows immediately from the formula 2dw(X, Y)
= w([X, Y]), where X, Ye L(G). If (iii) holds, then w: L(G) — L(R) has a unique
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factorization w = w, 0P, where P: L(G)— L(G®) is the canonical projection
and w,: L(G*®) > L(R). Note that P = dn and o = n*w,. Since the form w, is
bi-invariant, the form  is bi-invariant as well.

COROLLARY 2.1 (see [13], Corollary 7.28, and [11]). If M = G/T is a closed
nilmanifold, then

dim A{p(M) = dim B'(G) = dim G*® = rank I'"*® = rank =, (M)*® = b, (M).

Proof. Every 1-form we ALpx(M) is covered by a bi-invariant 1-form and
every bi-invariant 1-form can be projected onto M. Hence dim Alp(M)
= dim G*®. Now it suffices to check that dim G®® = rank I'**. This is well
known (see [13], Theorem 2.1).

Proof of Proposition 2.1. The manifold M can be written as the orbit
space M/A, where M is a nilmanifold and A is a finite group acting affinely and
freely on M. Let q: M — M be the canonical projection. By Theorem 1 of [11]
(and by Proposition 2.2) the cohomology class g*v is represented by a unique
form @e AL(M). ]

It suffices to show that the form @ is A-invariant. In order to prove this
note that the cohomology class g*v is A-invariant. Consider

(1/14) ) a*a.

aeA
As A c Aff(M), we have rie A%(M). As # and & belong to the same
cohomology class, #§ = &. The homomorphism g*: H'(M; R)— H'(M; R) is
a monomorphism, because the covering q is finite. If @, w, € A&p(M) N v, then,
by Theorem 1 of [11] again, g*w = q*w,, so that w = w,. This proves the
proposition.

i

Remark 2.1. If an infranilmanifold M is a closed flat manifold, then
harmonic forms on M are parallel. Hence, by the Hodge theorem, any
cohomology class ve H*(M; R) contains a unique parallel form. This cannot be
extended even to nilmanifolds (cf. [11], p. 538).

PROPOSITION 2.3. Let M = H/I' be the Heisenberg manifold (see Exam-
ple 1.1). Then A%:(M) is a one-dimensional vector space. All forms belonging to
A%(M) are exact.

Proof. The Lie algebra R(H) of right-invariant vector fields is generated
by the vector fields X, Y, Z such that [X, Z] =[Y, Z] =0, [X, Y] = Z. The
field Z is bi-invariant. For any right-invariant 1-form 5 and for any U, Ve R(H)
we have 2dn(U, V) = y([U, V]). Hence the form dn is bi-invariant. It deter-
mines a 2-form w e AL (M). This form is exact, because a right-invariant form
n can be projected onto M (the group I' acts on H by right translations).

The fact that dim 42,(M) = 1 follows from the results of [11] (see [11], p.
538, and the proof of Theorem 2 there). The proof of Proposition 2.3 is complete.
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3. Proof of Theorem 1.1. Let M be a closed infranilmanifold with
bz, (M) >0, let =n: n,(M)—>H,(M) be the canonical projection, and let
o€ Z(n,(M))—{1} be such that n(¢) # 0. Our proof of Theorem 1.1 is based on
the existence of an affine S'-action ¢,: M - M, te[0, 1], whose orbit con-
taining the base point belongs to o (see [8], Section 4.3). We show that for any
epimorphism h: n,(M)— =, (S?) satisfying h(c) # O there is an affine S'-equi-
variant Calabi fibration p: M — S* such that p, = h. Here by an S*-equivariant
fibration we mean a fibration p such that p(¢,(x))—p(x) depends on ¢ only.

Theorem 1.1 is a particular case of the following more technical result:

THEOREM 3.1. Let M = G/I" be a closed infranilmanifold, let o € Z(rn,(M)),
and let an S'-action ¢ M—-M, te[0,1], be as above. Let
h: n,(M)—>n,(S') ~ Z be any epimorphism such that h(c) =reZ—{0}, let
A =kerh, N = G/A, and let 5,: N — N, teR, denote the R-action covering our
S'-action on M. Then there are an affine submanifold V< M and an affine
diffeomorphism a: V-V such that .

(a) the mapping y: Vx R— N given by Y (u, t) = ¢,(u) is an R-equivariant
daffine diffeomorphism;

(b) the group of covering transformations of the covering q: N—-M is
infinite cyclic, and if & denotes its generator, then, under the above identification
of VxR with N,

o(u, t) = (a(u), t+1/r);
(c) a" =1dy;
(d) the fibration p: M —S' determined by our twisted decomposition
M = (Vx R)/{6) = V, (see Remark 1.2 (a)) satisfies p, = h; its typical fiber is
affinely diffeomorphic to V.

Remark 3.1. A smooth variant of Theorem 3.1 (valid for all closed
manifolds and for all smooth homologically injective S'-actions) can be found
in [5], Theorem 4.2.

Proof of Theorem 3.1. The homomorphism h determines a homomor-
phism hoeHom(H,(M; Z); Z) and h, determines an element

[W]eim[H (M; Z)- H'(M; R)]
characterized by the equality

(1) Jh]=h@) for yem,(M).

By Proposition 2.1 there is a unique parallel 1-form o representing [h].
The form w is nonvanishing and has integral periods. Fix x,e M. By [3],
the map p: M —>R/Z = S? given by

2) p(x) = I’ o (mod Z)

X0
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is a well-defined fibration over S! such that the leaves of the foliation tangent
to kerw are connected components of the fibers of p. The form w is
¢-invariant, because ¢ w is a parallel form cohomologous to w (cf. Proposi-
tion 2.1). It follows that the fibration p is S!-equivariant.

Let X be the vector field generating the S!-action. Assume that
X (x)eker w for some x € M. Note that ker w is the bundle tangent to the fibers
of p. Consider c: [0, 1] > M defined by c(t) = ¢,(x). Then ceo and (dc/dt)(t)
= X(c(#))- By (1) and by the S'-invariance of X and w we have

0#h(0)=fo= }w(X)dt = w(X(x)) =0.
c 0

This contradiction shows that the fibers of p are transversal to the orbits of the
S'-action. Note that

be(x) t
p(¢.(x)—p(x) = | ® (modZ)= [w(X)dt (mod Z)
x 0

= tw(X(x)) (mod Z) = th(c) (mod Z) = tr (mod Z).

Hence
€)) p(¢,(x))—p(x) = tr (mod Z),
(3) P, (0) = h(a).

Let V be a fiber of p. By (3) every fiber of p can be written as ¢,(V) for
some t€ [0, 1]. The field X is paraltel (because ¢,(x) = xg, = g,x, where t » g, is
a one-parameter subgroup of the center Z(G); see [8], Section 4.3) and the
bundle ker w is parallel. Hence it is not difficult to show that for any fiber ¢,(V)
and for some ¢ > 0 the map

®: Vx (—¢, &) > {9,(V): te(s—e, s+e)},

given by P(u, t) = ¢,+,(u), is an affine diffecomorphism. Under this iden-
tification, p can be written as p(u, t) = r(t +s). It follows that the map p is affine,
as claimed.

Let g: N—- M be the canonical projection, let p: N — R* be the fibration
covering p, let V= p"1(0), and ueV. By (3), '

“ p(®.) =tr+p(y) for yeN.

Hence j~'(s) = ¢,,(V) for seR. It is clear that y: VxR—V, given by
Y(v, t) = @,(v), is an R-equivariant diffeomorphism. The diffeomorphism ¥ is
affine (compare the argument showing that & is affine).

The homomorphism h,: I'/4 - Z determined by h is an isomorphism,
because h is an epimorphism and 4 = ker h. Here 4 is canonically identified
with the corresponding subgroup of I'. It follows that I'/4 is generated by
6 =hy(1). Let o, be the image of cen, (M)~ T in I'/A.
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Let ¢,: G- G, teR, be the R-action covering the S!-action. Under the
canonical identification of m,(M, x,) with I', ¢, corresponds to ¢ so that
0, = ¢,. Recall that yeI is identified with the homotopy class of Poc, where
c: [0, 11— M is any curve joining x, to y(x,), and P is the canonical projection
of the universal covering space of M onto M. As p, (o) = h(o) = r, we have
o, =19".

0_ The equality 6 = h~'(1) implies that p(é(u)) = p(u)+1 for ueV. Since
p(é,w) = rt, we have 6(V) = ¢,(V). Let a = ¢;,;00. Then a(V)=V. As
¢, = idy and ¢, covers ¢,: M — M, it follows that ¢, commutes with é for every
teR. Hence ao¢, = ¢,0a and o = id.

Under the identification y: Vx R— N, the diffeomorphism a can be
written as o(u, t) = (x(u), ). As M = N/{8), it follows that g|, carries V
diffeomorphically onto a fiber of p, which proves (b). The group 4 x (g is
a subgroup of I' of index r because 4 x (o) = h~'(rZ). Ash = p, on 4x (a), it
follows that p, = h. This completes the proof of Theorem 3.1.

4. Equivariant affine Calabi reductions. Our aim here is to generalize the
results of the previous sections to the equivariant case. Let H be a Lie group
acting on a manifold V and let a: V- V be an H-equivariant diffeomorphism.
Let [x, t] denote the class of (x, t)e V'x [0, 1] in V,. For every aen,(M) the
symbol g(a) denotes the image of a in H,(M, Q).

DEerINITION 4.1. The manifold V, with the action of H given by
h[x, t] = [h(x), t] is called the equivariant mapping torus of a.

THEOREM 4.1. Let H be a compact Lie group acting affinely on a closed
infranilmanifold M = G/I" with a fixed point x. Then the following conditions are

equivalent:
(i) The manifold M is H-equivariantly and affinely diffeomorphic to

a mapping torus V, of an H-equivariant, periodic, affine diffeomorphism a: V- V.
(i) There is o€ Z(n,(M)) such that ¢(c) #0 and h (o) = ¢ for heH.
Remark 4.1. The case where the manifold M is flat is easier (cf. [14],

Section 1).

Proof. Assume that (i) holds. Let r be the order of a. Then ¢,: M — M,
te[0, 1], given by ¢,([x, s]) = [x, s+rt], where [x, s] is treated as the class of
(x, )e VxR in V,, is an S'-action on M. Let o € n, (M) be the class of the orbit
of our fixed point *. Then we know ([4], Lemma 4.2) that o € Z(r,(M)). As an
r-fold cover of M is V,4 = Vx S', we have g(o) # 0. By Definition 4.1 the action
of H on the orbit of * is trivial.

Assume (ii). Let ¢,: M - M, te[0, 1], be the parallel S'-action whose
orbits belong to o (see Section 3). Since g(c) # 0, there is an epimorphism
u: ny(M)— Z such that u(o) # 0. The identity component H,, of H acts trivially
on n,(M, ) and K-= H/H, is a finite group. Set

Ay) = Y plk, () for yem,(M).

keK

The homomorphism A is H-equivariant and A(¢) = |K| u(o) # 0.
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Take [A]eim[H!'(M; Z)—» H'(M; R)] corresponding to A (see Section 3)
and a parallel form o representing [A] (see Proposition 2.1). By the
H-invariance of [41] and by the uniqueness of w, the form w is H-invariant. It
follows (compare the proof of Theorem 3.1) that the corresponding
S!'-equivariant affine fibration p: M - S' is H-equivariant.

By [8], Section 4.3, we have ¢,(x) = g,x = xg,, where $,: G- G, teR, is
the action of R covering the S'-action and t — g, is a one-parameter subgroup
of Z(G). Let he H. Take he Aff(G) covering h. Let h = L o®, where ueG,
@€ Aut(G), and let b, = &(g,). Since H acts trivially on o, the affine actions

¢ M-M, ,=hopoh™':M->M, te[0,1],
have homotopic orbits so that ¢, = ,. A direct calculation yields
,(x) = (hod,0h™ ") (x) = &(g) x = b,x,

and as ¢, = \,, we have b, = g,. It follows that b, = g, for t€ [0, 1], because
b,, g,€ Z(G). Hence y,(x) = g,x = ¢,(x) for every xe G. Thus the S'-action @,
commutes with h and h(¢,(*)) = ¥,(*) = ¢,().

Let F=p 1(0). As *eF, we have h(F)=F for heH. If xeM, heH,
then xe¢,(F) for some te[0, 1], p(hx)= p(hd,(*)) = p(¢,(*)) = p(x), and
Theorem 4.1 follows from Theorem 3.1.
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