VOL. LIX 1990 FASC. 2

CLOSED PARALLEL 1-FORMS ON INFRANILMANIFOLDS AND CALABI REDUCTIONS

BY

MICHAŁ SADOWSKI (GDAŃSK)

0. Introduction. In this paper we prove that any closed infranilmanifold M with

$$bz_1(M) = rank im [Z(\pi_1(M)) \rightarrow H_1(M)] > 0$$

is affinely equivalent to $(F \times [0, 1])/((\alpha(x), 0) \sim (x, 1))$, where F is an affine submanifold of M and $\alpha: F \to F$ is an affine diffeomorphism of finite order (see Theorem 1.1 for a more precise statement). The affine equivalence is associated with every choice of an epimorphism $\varepsilon: \pi_1(M) \to Z$ with $\varepsilon(Z(\pi_1(M))) \neq 0$ (see Theorem 3.1 below).

Theorem 4.1 is an equivariant version of Theorem 1.1. It asserts the following. If a compact Lie group H acts affinely on M and $Fix(H; M) \neq \emptyset$, then there is an invariant affine submanifold $F \subset M$ and an affine equivariant diffeomorphism from $F \times (0, 1)$ onto M - F iff H fixes a nontrivial element of $Z(\pi_1(M))$.

When a manifold M is flat, $bz_1(M)$ coincides with the first Betti number of M (see Corollary 1.1). Hence Calabi's theorem (see, e.g., [2] and [15], Theorem 3.6.3) is a particular case of Theorem 1.1.

Theorems 1.1 and 4.1 will be derived from Proposition 2.1 describing the set $A_{CP}^1(M)$ of all closed and parallel 1-forms on a compact infranilmanifold M, V, where V is the canonical connection on M. Proposition 2.1 is a simple consequence of its particular case proved by Nomizu in [11]. Note that the corresponding result is false for higher cohomology groups (see Proposition 2.3 and [11], p. 538).

1. The generalized Calabi reduction.

DEFINITION 1.1. Let M, V be a manifold with connection V. Then by an affine Calabi reduction we mean an affine diffeomorphism (that is, a connection preserving diffeomorphism) $\phi: M \to F_{\alpha}$, V', where F is a manifold,

$$F_{\alpha} = \frac{F \times [0, 1]}{(\alpha(x), 0) \sim (x, 1)},$$

V' is the connection induced by a product connection on $F \times R$, and $\alpha: F \to F$ is an affine diffeomorphism of finite order r.

Remark 1.1. In a similar way one can define a topological Calabi reduction.

Remark 1.2. (a) An affine Calabi reduction $\phi: M \to F_{\alpha}$ determines a fibration $p: M \to S^1$ given by $p([x, t]) = [t] \in R/Z = S^1$. Here [x, t] is the class of $(x, t) \in F \times [0, 1]$ in F_{α} , and [t] is the class of $t \in R$ in R/Z.

(b) As $F_{\alpha r} = F_{id} = F \times S^1$, an r-fold cover of M is affinely diffeomorphic to $F \times S^1$.

DEFINITION 1.2. If

$$\pi: \pi_1(M) \to \pi_1(M)/[\pi_1(M), \pi_1(M)] = H_1(M)$$

is the projection and $Z(\pi_1(M))$ is the center of $\pi_1(M)$, then

$$bz_1(M) = \operatorname{rank} \pi(Z(\pi_1(M))).$$

One of the basic results in the flat manifolds theory is the so-called *Calabi* reduction theorem. It asserts that a closed flat manifold with the first Betti number $b_1(M)$ greater than zero admits an affine Calabi reduction (see [2] and [15], Section 3.6; see also Corollary 1.1 below). This theorem allows us to study flat manifolds inductively using the induction on their dimensions.

Let G be a nilpotent, connected, simply connected Lie group and let V_0 be a connection on G such that left translations in G act on TG as parallel translations (cf. [1], Section 7.2, and [7], Section 2). An infranilmanifold is an orbit space $M = (G, V_0)/\Gamma$, where Γ is a discrete group acting affinely, freely, and properly discontinuously on G, V_0 and such that $G \cap \Gamma$ has finite index in Γ . We will always assume that $G \cap \Gamma$ acts on G by right translations. An infranilmanifold G/Γ is a flat manifold if G is isomorphic to R^n .

A closed manifold M (dim M > 4) is homeomorphic to an infranilmanifold iff $\pi_1(M)$ is a finite extension of a nilpotent, torsion free, finitely generated group and $\pi_i(M) = 0$ for $i \ge 2$ (see [6], Theorem 5.1).

It is easy to verify that one-parameter subgroups of G are exactly geodesics and $f \in Aff(G)$ (where Aff(G) denotes the group of all affine diffeomorphisms of G) if and only if $f = L_g \circ A$, where $g \in G$, $L_g(y) = gy$ for $y \in G$, and A is an automorphism of G (cf. [7], Section 2). Hence affine submanifolds of G, V are exactly algebraically affine submanifolds of G. By an algebraically affine submanifold of G we mean a submanifold G, where G is a Lie subgroup of G and G and G is a lie subgroup of G and G is a lie of G is a lie of G in G is a lie of G is a lie of G in G is a lie of G in G.

The following result generalizes Calabi reduction to infranilmanifolds.

THEOREM 1.1. Let M, V be a closed infranilmanifold with a flat canonical connection V. Then there is an affine Calabi reduction of M if and only if $bz_1(M) > 0$.

Remark 1.3. (a) It is easy to see that the existence of a topological Calabi reduction implies $bz_1(M) > 0$. So we should prove only the converse implication.

- (b) The fact that the existence of a topological Calabi fibration implies the existence of an affine Calabi fibration seems to be a very special property of infranilmanifolds. It can fail even for nonpositive curvature manifolds. To be more specific, for every closed manifold M admitting a metric of nonpositive curvature and satisfying $Z(\pi_1(M)) \neq \{1\}$ there is (see Theorem 3.1 in [5] and [9]) a topological Calabi fibration but not always there is an affine Calabi fibration. See [9], p. 222, for a counterexample.
- (c) The fact that $\phi: M \to F_{\alpha}$ is a Calabi reduction of an infranilmanifold M means that F is covered by an algebraically affine submanifold $\widetilde{F} = L_h(H)$ (where H is a Lie subgroup of G and $h \in H$) of G, G is isomorphic to $H \times R$, and ϕ is covered by an algebraically affine diffeomorphism $\widetilde{\phi}: G \to G$. Hence Theorem 1.1 can be treated as a purely algebraic result.
- (d) A topological (or smooth) version of Theorem 1.1 can be found in [5] (Theorem 3.1) and [10] (Section 4.7, Corollary 1). In [10], Section 4.7, topological Calabi fibrations are treated as a particular case of a more general notion of a Seifert fiber space with typical fiber S^1 and Corollary 1 there follows from a more general result ([10], Section 4.7, Theorem 1).

COROLLARY 1.1. If M is a closed riemannian flat manifold, then $bz_1(M) = b_1(M)$. Hence Calabi's theorem is a particular case of Theorem 1.1.

Proof. The proof of Corollary 1.1 is implicitly described in the proof of the Calabi reduction (see, e.g., [15], Section 3.6). For convenience of the reader we present here a short direct argument. The flatness of M implies that harmonic forms on M are parallel. Every parallel 1-form ω determines a parallel vector field X_{ω} that is perpendicular to $\ker \omega$ and satisfies $\omega(X_{\omega}(x)) = 1$ for $x \in M$. It is well known that $I_0(M)$, the identity component of the isometry group of a closed flat manifold M, is generated by parallel fields. Since $I_0(M)$ is a compact, commutative (as parallel fields commute) Lie group, $I_0(M)$ is a torus T^k and our argument shows that $k \ge b_1(M)$. In particular, there is an S^1 -action $\phi_t: M \to M$, $t \in [0, 1]$, generated by a parallel vector field X.

It is well known (see [4], Lemma 4.2) that every orbit of our S^1 -action determines a central element of $\pi_1(M)$. As the vector field X is parallel, the 1-form ω , given by $\omega(v) = \langle X, v \rangle$, is parallel and, in particular, it is harmonic. For a fixed orbit $c: [0, 1] \to M$, $c(t) = \phi_t(x)$, we have

$$\int_{c} \omega = \int_{0}^{1} \omega(dc/dt) dt = \int_{0}^{1} \omega(X) dt = |X|^{2} > 0.$$

This holds for any S^1 -action embedded into our T^k -action. Hence we have a monomorphism

$$\pi_1(\mathbf{T}^k) \xrightarrow{\mathrm{ev}_{\bullet}} H_1(M) \to \mathbf{Z}^k$$

where ev_{*} is induced by ev: $T^k \to M$, ev(t) = tx_0 (here x_0 is a chosen point of M), and where the second map is induced by the projection onto the quotient of $H_1(M)$ by its torsion subgroup. As

$$\operatorname{im} \operatorname{ev}_* \subset \operatorname{im} \left[Z(\pi_1(M)) \to H_1(M) \right],$$

we have $bz_1(M) \ge k$. This completes the proof of Corollary 1.1.

EXAMPLE 1.1. The last statement, that $b_1(M) = bz_1(M)$ for a flat manifold M, is false for infranilmanifolds. A well-known counterexample is the following. Let G be the Heisenberg group, i.e., the group of real 3×3 upper triangular matrices with diagonal entries equal to 1. It is the simplest noncommutative nilpotent Lie group. Let Γ be its subgroup of all matrices with integer entries and let $M = G/\Gamma$. Then G is diffeomorphic to R^3 , $\Gamma \approx \pi_1(M)$, and it is easy to see that $Z(\Gamma) = [\Gamma, \Gamma] \approx Z$. Hence $bz_1(M) = 0$. However,

$$H_1(M) \approx \Gamma/[\Gamma, \Gamma] \approx \mathbf{Z} \oplus \mathbf{Z}$$
 and $b_1(M) = 2$.

2. Closed parallel 1-forms on infranilmanifolds. In this section we prove the following

PROPOSITION 2.1. Let $M = G/\Gamma$ be a closed infranilmanifold and let V be a canonical connection on M. Then every cohomology class $v \in H^1(M; \mathbb{R})$ contains a unique V-parallel 1-form. In particular, dim $A^1_{CP}(M) = b_1(M)$.

Throughout this section the following notation will be used. By L(G) we denote the Lie algebra of a Lie group G. If H is a group (or if H is a Lie algebra), then H^{ab} denotes its abelianization, i.e., $H^{ab} = H/[H, H]$, and Z(H) stands for the center of H. By $B^k(G)$ we denote the set of all bi-invariant k-forms on a Lie group G, and by $\pi^* : B^k(G^{ab}) \to B^k(G)$ the homomorphism induced by the canonical projection $\pi : G \to G^{ab}$. The set of all parallel and closed k-forms on an infranilmanifold M, V (where V is a canonical connection) will be denoted by $A_{CP}^k(M)$.

We will need some known facts (cf. [11], Section 4, and [12], Appendix 2) concerning closed and left-invariant 1-forms on Lie groups. They can be stated as follows.

PROPOSITION 2.2. (a) Let G be a connected Lie group and let ω be a left-invariant 1-form on G. The following conditions are equivalent:

- (i) the form ω is bi-invariant;
- (ii) the form ω is closed;
- (iii) the homomorphism $L(G) \rightarrow \mathbb{R} \approx L(\mathbb{R})$ determined by ω is a Lie algebra homomorphism.
 - (b) The homomorphism $\pi^*: B^1(G^{ab}) \to B^1(G)$ is an isomorphism.

The implication (i) \Rightarrow (ii) is known (see, e.g., [12], Appendix 2, Section 2). The equivalence (ii) \Leftrightarrow (iii) follows immediately from the formula $2d\omega(X, Y) = \omega([X, Y])$, where $X, Y \in L(G)$. If (iii) holds, then $\omega: L(G) \to L(R)$ has a unique

factorization $\omega = \omega_0 \circ P$, where $P: L(G) \to L(G^{ab})$ is the canonical projection and $\omega_0: L(G^{ab}) \to L(R)$. Note that $P = d\pi$ and $\omega = \pi^* \omega_0$. Since the form ω_0 is bi-invariant, the form ω is bi-invariant as well.

COROLLARY 2.1 (see [13], Corollary 7.28, and [11]). If $M = G/\Gamma$ is a closed nilmanifold, then

$$\dim A^1_{\mathrm{CP}}(M) = \dim B^1(G) = \dim G^{\mathrm{ab}} = \operatorname{rank} \Gamma^{\mathrm{ab}} = \operatorname{rank} \pi_1(M)^{\mathrm{ab}} = b_1(M).$$

Proof. Every 1-form $\omega \in A^1_{CP}(M)$ is covered by a bi-invariant 1-form and every bi-invariant 1-form can be projected onto M. Hence $\dim A^1_{CP}(M) = \dim G^{ab}$. Now it suffices to check that $\dim G^{ab} = \operatorname{rank} \Gamma^{ab}$. This is well known (see [13], Theorem 2.1).

Proof of Proposition 2.1. The manifold M can be written as the orbit space \hat{M}/A , where \hat{M} is a nilmanifold and A is a finite group acting affinely and freely on \hat{M} . Let $q: \hat{M} \to M$ be the canonical projection. By Theorem 1 of [11] (and by Proposition 2.2) the cohomology class q^*v is represented by a unique form $\hat{\omega} \in A_{CP}^1(\hat{M})$.

It suffices to show that the form $\hat{\omega}$ is A-invariant. In order to prove this note that the cohomology class q^*v is A-invariant. Consider

$$\hat{\eta} = (1/|A|) \sum_{a \in A} a^* \hat{\omega}.$$

As $A \subseteq \mathrm{Aff}(M)$, we have $\hat{\eta} \in A^1_{\mathrm{CP}}(\hat{M})$. As $\hat{\eta}$ and $\hat{\omega}$ belong to the same cohomology class, $\hat{\eta} = \hat{\omega}$. The homomorphism $q^* \colon H^1(M; R) \to H^1(\hat{M}; R)$ is a monomorphism, because the covering q is finite. If ω , $\omega_1 \in A^1_{\mathrm{CP}}(M) \cap v$, then, by Theorem 1 of [11] again, $q^*\omega = q^*\omega_1$, so that $\omega = \omega_1$. This proves the proposition.

Remark 2.1. If an infranilmanifold M is a closed flat manifold, then harmonic forms on M are parallel. Hence, by the Hodge theorem, any cohomology class $v \in H^*(M; \mathbb{R})$ contains a unique parallel form. This cannot be extended even to nilmanifolds (cf. [11], p. 538).

PROPOSITION 2.3. Let $M = H/\Gamma$ be the Heisenberg manifold (see Example 1.1). Then $A_{CP}^2(M)$ is a one-dimensional vector space. All forms belonging to $A_{CP}^2(M)$ are exact.

Proof. The Lie algebra R(H) of right-invariant vector fields is generated by the vector fields X, Y, Z such that [X, Z] = [Y, Z] = 0, [X, Y] = Z. The field Z is bi-invariant. For any right-invariant 1-form η and for any U, $V \in R(H)$ we have $2d\eta(U, V) = \eta([U, V])$. Hence the form $d\eta$ is bi-invariant. It determines a 2-form $\omega \in A^1_{CP}(M)$. This form is exact, because a right-invariant form η can be projected onto M (the group Γ acts on H by right translations).

The fact that dim $A_{CP}^2(M) = 1$ follows from the results of [11] (see [11], p. 538, and the proof of Theorem 2 there). The proof of Proposition 2.3 is complete.

3. Proof of Theorem 1.1. Let M be a closed infranilmanifold with $bz_1(M) > 0$, let $\pi: \pi_1(M) \to H_1(M)$ be the canonical projection, and let $\sigma \in Z(\pi_1(M)) - \{1\}$ be such that $\pi(\sigma) \neq 0$. Our proof of Theorem 1.1 is based on the existence of an affine S^1 -action $\phi_t \colon M \to M$, $t \in [0, 1]$, whose orbit containing the base point belongs to σ (see [8], Section 4.3). We show that for any epimorphism $h: \pi_1(M) \to \pi_1(S^1)$ satisfying $h(\sigma) \neq 0$ there is an affine S^1 -equivariant Calabi fibration $p: M \to S^1$ such that $p_* = h$. Here by an S^1 -equivariant fibration we mean a fibration p such that $p(\phi_t(x)) - p(x)$ depends on t only.

Theorem 1.1 is a particular case of the following more technical result:

THEOREM 3.1. Let $M = G/\Gamma$ be a closed infranilmanifold, let $\sigma \in Z(\pi_1(M))$, and let an S^1 -action $\phi_t \colon M \to M$, $t \in [0, 1]$, be as above. Let $h \colon \pi_1(M) \to \pi_1(S^1) \approx Z$ be any epimorphism such that $h(\sigma) = r \in Z - \{0\}$, let $\Delta = \ker h$, $N = G/\Delta$, and let $\overline{\phi_t} \colon N \to N$, $t \in \mathbb{R}$, denote the \mathbb{R} -action covering our S^1 -action on M. Then there are an affine submanifold $V \subset M$ and an affine diffeomorphism $\alpha \colon V \to V$ such that

- (a) the mapping $\psi: V \times \mathbf{R} \to N$ given by $\psi(u, t) = \vec{\phi}_t(u)$ is an **R**-equivariant affine diffeomorphism;
- (b) the group of covering transformations of the covering $q: N \to M$ is infinite cyclic, and if δ denotes its generator, then, under the above identification of $V \times R$ with N,

$$\delta(u, t) = (\alpha(u), t + 1/r);$$

- (c) $\alpha^r = \mathrm{id}_V$;
- (d) the fibration $p: M \to S^1$ determined by our twisted decomposition $M = (V \times R)/\langle \delta \rangle = V_{\alpha}$ (see Remark 1.2 (a)) satisfies $p_* = h$; its typical fiber is affinely diffeomorphic to V.

Remark 3.1. A smooth variant of Theorem 3.1 (valid for all closed manifolds and for all smooth homologically injective S^1 -actions) can be found in [5], Theorem 4.2.

Proof of Theorem 3.1. The homomorphism h determines a homomorphism $h_0 \in \text{Hom}(H_1(M; \mathbb{Z}); \mathbb{Z})$ and h_0 determines an element

$$[h] \in \operatorname{im} [H^1(M; \mathbf{Z}) \to H^1(M; \mathbf{R})]$$

characterized by the equality

(1)
$$\int_{\gamma} [h] = h(\gamma) \quad \text{for } \gamma \in \pi_1(M).$$

By Proposition 2.1 there is a unique parallel 1-form ω representing [h]. The form ω is nonvanishing and has integral periods. Fix $x_0 \in M$. By [3], the map $p: M \to R/Z = S^1$ given by

(2)
$$p(x) = \int_{x_0}^x \omega \pmod{\mathbf{Z}}$$

is a well-defined fibration over S^1 such that the leaves of the foliation tangent to $\ker \omega$ are connected components of the fibers of p. The form ω is ϕ_t -invariant, because $\phi_t^*\omega$ is a parallel form cohomologous to ω (cf. Proposition 2.1). It follows that the fibration p is S^1 -equivariant.

Let X be the vector field generating the S^1 -action. Assume that $X(x) \in \ker \omega$ for some $x \in M$. Note that $\ker \omega$ is the bundle tangent to the fibers of p. Consider $c: [0, 1] \to M$ defined by $c(t) = \phi_t(x)$. Then $c \in \sigma$ and (dc/dt)(t) = X(c(t)). By (1) and by the S^1 -invariance of X and ω we have

$$0 \neq h(\sigma) = \int_{c} \omega = \int_{0}^{1} \omega(X) dt = \omega(X(x)) = 0.$$

This contradiction shows that the fibers of p are transversal to the orbits of the S^1 -action. Note that

$$p(\phi_t(x)) - p(x) = \int_{x}^{\phi_t(x)} \omega \pmod{Z} = \int_{0}^{t} \omega(X) dt \pmod{Z}$$
$$= t\omega(X(x)) \pmod{Z} = th(\sigma) \pmod{Z} = tr \pmod{Z}.$$

Hence

(3)
$$p(\phi_t(x)) - p(x) = tr \pmod{Z},$$

$$p_{\star}(\sigma) = h(\sigma).$$

Let V be a fiber of p. By (3) every fiber of p can be written as $\phi_t(V)$ for some $t \in [0, 1]$. The field X is parallel (because $\phi_t(x) = xg_t = g_t x$, where $t \to g_t$ is a one-parameter subgroup of the center Z(G); see [8], Section 4.3) and the bundle ker ω is parallel. Hence it is not difficult to show that for any fiber $\phi_s(V)$ and for some $\varepsilon > 0$ the map

$$\Phi \colon V \times (-\varepsilon, \varepsilon) \to \{\phi_t(V) \colon t \in (s - \varepsilon, s + \varepsilon)\},\$$

given by $\Phi(u, t) = \phi_{t+s}(u)$, is an affine diffeomorphism. Under this identification, p can be written as p(u, t) = r(t+s). It follows that the map p is affine, as claimed.

Let $q: N \to M$ be the canonical projection, let $\bar{p}: N \to \mathbb{R}^k$ be the fibration covering p, let $V = \bar{p}^{-1}(0)$, and $u \in V$. By (3),

(4)
$$\bar{p}(\bar{\phi}_t(y)) = tr + \bar{p}(y) \quad \text{for } y \in N.$$

Hence $\bar{p}^{-1}(s) = \bar{\phi}_{s/r}(V)$ for $s \in R$. It is clear that $\psi \colon V \times R \to V$, given by $\psi(v, t) = \bar{\phi}_t(v)$, is an R-equivariant diffeomorphism. The diffeomorphism ψ is affine (compare the argument showing that Φ is affine).

The homomorphism $h_1: \Gamma/\Delta \to \mathbb{Z}$ determined by h is an isomorphism, because h is an epimorphism and $\Delta = \ker h$. Here Δ is canonically identified with the corresponding subgroup of Γ . It follows that Γ/Δ is generated by $\delta = h_1^{-1}(1)$. Let σ_0 be the image of $\sigma \in \pi_1(M) \approx \Gamma$ in Γ/Δ .

Let $\tilde{\phi}_t$: $G \to G$, $t \in R$, be the R-action covering the S^1 -action. Under the canonical identification of $\pi_1(M, x_0)$ with Γ , $\tilde{\phi}_1$ corresponds to σ so that $\sigma_0 = \bar{\phi}_1$. Recall that $\gamma \in \Gamma$ is identified with the homotopy class of $P \circ c$, where $c : [0, 1] \to M$ is any curve joining x_0 to $\gamma(x_0)$, and P is the canonical projection of the universal covering space of M onto M. As $p_*(\sigma) = h(\sigma) = r$, we have $\sigma_0 = \delta^r$.

The equality $\delta = h^{-1}(1)$ implies that $\bar{p}(\delta(u)) = \bar{p}(u) + 1$ for $u \in V$. Since $\bar{p}(\bar{\phi}_t(u)) = rt$, we have $\delta(V) = \bar{\phi}_{1/r}(V)$. Let $\alpha = \bar{\phi}_{1/r}^{-1} \circ \delta$. Then $\alpha(V) = V$. As $\bar{\phi}_0 = \mathrm{id}_N$ and $\bar{\phi}_t$ covers $\phi_t \colon M \to M$, it follows that $\bar{\phi}_t$ commutes with δ for every $t \in R$. Hence $\alpha \circ \bar{\phi}_t = \bar{\phi}_t \circ \alpha$ and $\alpha^r = \mathrm{id}$.

Under the identification $\psi \colon V \times R \to N$, the diffeomorphism α can be written as $\alpha(u, t) = (\alpha(u), t)$. As $M = N/\langle \delta \rangle$, it follows that $q|_V$ carries V diffeomorphically onto a fiber of p, which proves (b). The group $\Delta \times \langle \sigma \rangle$ is a subgroup of Γ of index r because $\Delta \times \langle \sigma \rangle = h^{-1}(r\mathbf{Z})$. As $h = p_*$ on $\Delta \times \langle \sigma \rangle$, it follows that $p_* = h$. This completes the proof of Theorem 3.1.

4. Equivariant affine Calabi reductions. Our aim here is to generalize the results of the previous sections to the equivariant case. Let H be a Lie group acting on a manifold V and let $\alpha: V \to V$ be an H-equivariant diffeomorphism. Let [x, t] denote the class of $(x, t) \in V \times [0, 1]$ in V_{α} . For every $a \in \pi_1(M)$ the symbol $\varrho(a)$ denotes the image of a in $H_1(M, \mathbb{Q})$.

DEFINITION 4.1. The manifold V_{α} with the action of H given by h[x, t] = [h(x), t] is called the equivariant mapping torus of α .

THEOREM 4.1. Let H be a compact Lie group acting affinely on a closed infranilmanifold $M = G/\Gamma$ with a fixed point *. Then the following conditions are equivalent:

- (i) The manifold M is H-equivariantly and affinely diffeomorphic to a mapping torus V_{α} of an H-equivariant, periodic, affine diffeomorphism $\alpha: V \rightarrow V$.
 - (ii) There is $\sigma \in Z(\pi_1(M))$ such that $\varrho(\sigma) \neq 0$ and $h_*(\sigma) = \sigma$ for $h \in H$.

Remark 4.1. The case where the manifold M is flat is easier (cf. [14], Section 1).

Proof. Assume that (i) holds. Let r be the order of α . Then $\phi_t \colon M \to M$, $t \in [0, 1]$, given by $\phi_t([x, s]) = [x, s + rt]$, where [x, s] is treated as the class of $(x, s) \in V \times R$ in V_{α} , is an S^1 -action on M. Let $\sigma \in \pi_1(M)$ be the class of the orbit of our fixed point *. Then we know ([4], Lemma 4.2) that $\sigma \in Z(\pi_1(M))$. As an r-fold cover of M is $V_{id} = V \times S^1$, we have $\varrho(\sigma) \neq 0$. By Definition 4.1 the action of H on the orbit of * is trivial.

Assume (ii). Let ϕ_t : $M \to M$, $t \in [0, 1]$, be the parallel S^1 -action whose orbits belong to σ (see Section 3). Since $\varrho(\sigma) \neq 0$, there is an epimorphism μ : $\pi_1(M) \to Z$ such that $\mu(\sigma) \neq 0$. The identity component H_0 of H acts trivially on $\pi_1(M, *)$ and $K = H/H_0$ is a finite group. Set

$$\lambda(\gamma) = \sum_{k \in K} \mu(k_*(\gamma))$$
 for $\gamma \in \pi_1(M)$.

The homomorphism λ is H-equivariant and $\lambda(\sigma) = |K| \mu(\sigma) \neq 0$.

Take $[\lambda] \in \operatorname{im}[H^1(M; \mathbb{Z}) \to H^1(M; \mathbb{R})]$ corresponding to λ (see Section 3) and a parallel form ω representing $[\lambda]$ (see Proposition 2.1). By the *H*-invariance of $[\lambda]$ and by the uniqueness of ω , the form ω is *H*-invariant. It follows (compare the proof of Theorem 3.1) that the corresponding S^1 -equivariant affine fibration $p: M \to S^1$ is *H*-equivariant.

By [8], Section 4.3, we have $\tilde{\phi}_t(x) = g_t x = xg_t$, where $\tilde{\phi}_t : G \to G$, $t \in \mathbb{R}$, is the action of \mathbb{R} covering the S^1 -action and $t \to g_t$ is a one-parameter subgroup of Z(G). Let $h \in H$. Take $\tilde{h} \in \text{Aff}(G)$ covering h. Let $\tilde{h} = L_u \circ \Phi$, where $u \in G$, $\Phi \in \text{Aut}(G)$, and let $b_t = \Phi(g_t)$. Since H acts trivially on σ , the affine actions

$$\phi_t$$
: $M \to M$, $\psi_t = h \circ \phi_t \circ h^{-1}$: $M \to M$, $t \in [0, 1]$,

have homotopic orbits so that $\tilde{\phi}_1 = \tilde{\psi}_1$. A direct calculation yields

$$\widetilde{\psi}_t(x) = (\widetilde{h} \circ \widetilde{\phi}_t \circ \widetilde{h}^{-1})(x) = \Phi(g_t) x = b_t x,$$

and as $\tilde{\phi}_1 = \tilde{\psi}_1$, we have $b_1 = g_1$. It follows that $b_t = g_t$ for $t \in [0, 1]$, because b_t , $g_t \in Z(G)$. Hence $\tilde{\psi}_t(x) = g_t x = \tilde{\phi}_t(x)$ for every $x \in G$. Thus the S^1 -action ϕ_t commutes with h and $h(\phi_t(*)) = \psi_t(*) = \phi_t(*)$.

Let $F = p^{-1}(0)$. As $* \in F$, we have h(F) = F for $h \in H$. If $x \in M$, $h \in H$, then $x \in \phi_t(F)$ for some $t \in [0, 1]$, $p(hx) = p(h\phi_t(*)) = p(\phi_t(*)) = p(x)$, and Theorem 4.1 follows from Theorem 3.1.

REFERENCES

- [1] P. Buser and H. Karcher, Gromov's Almost Flat Manifolds, Astérisque 81, Société Mathématique de France, 1981.
- [2] E. Calabi, Closed, locally euclidean, 4-dimensional manifolds, Bull. Amer. Math. Soc. 63 (1957), p. 135.
- [3] J. Cerf, 1-formes fermées non singulières sur les variétés compactes de dimension 3, pp. 205-219 in: Bourbaki Seminar, Vol. 1980/81, Lecture Notes in Math. 901, Springer, Berlin-New York 1981.
- [4] P. E. Conner and F. Raymond, Actions of compact Lie groups on a spherical manifolds, pp. 227-264 in: Topology of Manifolds (Proc. Inst., Univ. of Georgia, Athens, Ga., 1969), Markham, Chicago 1970.
- [5] Injective operations of the toral groups, Topology 10 (1971), pp. 283-296.
- [6] F. T. Farrell and W. C. Hsiang, Topological characterisation of flat and almost flat Riemannian manifolds M^n ($n \neq 3$, 4), Amer. J. Math. 105 (1983), pp. 641-673.
- [7] F. Kamber and P. Tondeur, Flat Manifolds, Lecture Notes in Math. 67, Springer, Berlin 1980.
- [8] Y. Kamishima, K. B. Lee and F. Raymond, The Seifert construction and its applications to infranilmanifolds, Quart. J. Math. Oxford Ser. (2) 34 (1983), pp. 433-452.
- [9] H. B. Lawson and S. T. Yau, Compact manifolds of nonpositive curvature, J. Differential Geom. 7 (1972), pp. 211-228.
- [10] K. B. Lee and F. Raymond, The role of Seifert fiber spaces in transformation groups, pp. 367-425 in: Group Actions on Manifolds (Boulder, Colo., 1983), Contemp. Math. 36, Amer. Math. Soc., Providence, R.I., 1985.
- [11] K. Nomizu, On the cohomology of compact homogeneous spaces of nilpotent Lie groups, Ann. of Math. (2) 59 (1954), pp. 531-538.

- [12] H. V. Pittie, Characteristic Classes of Foliations, Pitman, London 1976.
- [13] M. S. Raghunathan, Discrete Subgroups of Lie Groups, Springer, Berlin 1972.
- [14] M. Sadowski, Calabi's reductions and centrally trivial actions, to appear.
- [15] J. Wolf, Spaces of Constant Curvature, McGraw Hill, New York 1967.

DEPARTMENT OF MATHEMATICS THE UNIVERSITY OF GDANSK 80-952 GDANSK WITA STWOSZA 57, POLAND

> Reçu par la Rédaction le 5.10.1988; en version modifiée le 11 4.1989